Cast to compiletime unknown generic type - java

So, I got a problem with casting to an unknown (at runtime) generic method argument.
ValueDescription<?> valueDesc = /* get the value description */;
Object value = /* get the value */;
valueDesc.gotAValue(valueDesc.getType().cast(value));
The abstract class ValueDescription looks like this:
public abstract class ValueDescription<T> {
public abstract Class<T> getType();
public void gotAValue(final T value) {
// do something
}
}
Eclipse allways gives the following error:
The method gotAValue(capture#1-of ?) in the type ValueDescription is not applicable for the arguments (capture#2-of ?)
Is it even possible to do something like this?

Put this code into a generic method:
<T> void doStuff(ValueDescription<T> valueDesc) {
Object value = /* get the value */;
valueDesc.gotAValue(valueDesc.getType().cast(value));
}
This allows the compiler to know that the getType() and gotAValue "?s" are the same type, even when you don't know the T directly:
ValueDescription<?> valueDesc = /* get the value description */;
doStuff(valueDesc); // Fine, even though you've only got ?.

If you are not supposed to know the actual generic type of ValueDescription, then you should let the class do it for you.
public abstract class ValueDescription<T> {
public abstract Class<T> getType();
public void gotAValue(final Object value) {
final T castedValue = getType().cast(value);
// Continue
}
}
If you do this, you may need to throw an appropriate exception if the Object type value cannot be casted to the actual type.
If it is possible to determine the type of valueDesc, then use Andy's solution.
Edit
Actually, if you do not know the type of ValueDescription, then it is likely that this class does not need to have generic at all. getType() can simply return a Class<?> and subclass just needs to override it to return the correct Class object.

Related

How can I use generics to provide a "universal getter method"?

This question is more theoretical (what I want to do is more complicated but this is the part I'm stuck on), so apologies for the contrived example which may not make much sense.
Say I have some class that has methods that return its value in different forms:
public class MyObject {
public String getAsString() {...}
public int getAsInt() {...}
// and so on
}
I'm trying to create a single method to allow me to specify which MyObject method to call via its parameters. Something like:
public <T> T getValue(MyObject obj, Class<T> c) {
if (c == String.class) {
return obj.getAsString();
} else if (c == Integer.class) {
return obj.getAsInt();
} // and so on
}
So then I would like to call this method like this, assuming obj is a MyObject:
String s = getValue(obj, String.class);
int i = getValue(obj, Integer.class);
// and so on
I'm getting the compile error "Type mismatch: cannot convert from String to T" (and likewise for Integer) in the getValue method. Clearly I'm just not understanding generics fully, but I thought this was the general idea behind generics - here I'm specifying (or trying to specify, at least) the real type of T via the parameter c. What am I doing wrong?
If you want to to create a single method with really safe casts - then I would suggest to setup a mapping between the expected type and its respective getter.
Given the MyObject class definition as:
public class MyObject {
public int getIntValue() {
return 42;
}
public String getStringValue() {
return "Answer";
}
}
So that the "accessor" class could look as follows (it can be generalized further if needed):
public class MyObjectAccessor {
private final Map<Class<?>, Function<MyObject, ?>> registry = new HashMap<>();
public Accessor() {
registerGetter(Integer.class, MyObject::getIntValue);
registerGetter(String.class, MyObject::getStringValue);
}
private <T> void registerGetter(Class<T> type, Function<MyObject, T> getter) {
registry.put(type, getter);
}
#SuppressWarnings("unchecked")
public <T> Optional<T> getValue(MyObject obj, Class<T> type) {
return (Optional<T>) ofNullable(registry.get(type)).map(getter -> getter.apply(obj));
}
}
This would allow you to make the behavior much more predictable with a control over the unexpected/missing mapping.
(Here it returns an Optional back, but you can also throw an exception or provide a default value or do something else)
Please note that the cast inside getValue is actually a safe checked cast (even though it was marked with #SuppressWarnings) as the "safety" proof here is a little bit beyond current javac's capability of static code analysys.
First of all, if getAsString and getAsInt are not doing any conversion (such as would be the case if all your values were stored as strings), you probably can reduce your method to this:
public <T> T getValue(MyObject obj) {
return (T) obj.value;
}
This will have an unchecked cast warning, but that's not worse than leaving the typing decision to your caller (so I'd just #SuppressWarnings("unchecked") it). If your caller uses the wrong target type, they will get a ClassCastException at runtime, which I assume goes well with your current contract. But you can keep c.cast(obj.getAsX()) if you want the exception to be raised in your own method.
With the above, your callers would just use:
String s = getValue(obj);
int i = getValue(obj);
If, however, you are actually converting data in getAs... methods, then you will need to cast in your generic getter after dispatching to the correct getAsX method, at least as ProGu suggested (i.e., return c.cast(obj.getAsX()) in each branch).

Conflicting constructor at runtime in generic class

Was working on something simple with a generic class that has two constructor
public class GenericObject<M> {
private String string;
private M generic;
public GenericObject(String string) {
this.string = string;
}
public GenericObject(M generic) {
this.generic= generic;
this.string = "default";
}
}
then at one point i needed a GenericObject<String>
GenericObject<String> obj = new GenericObject<>("randomString");
and i found out later on when debugging that the String constructor was being used instead of the expected generic one.
I can change however i want this class so it's not a problem to fix, but i was wondering if there's a way to hint which constructor to use in this situation at runtime
Let's see the byte code:
Because of the type erasure the 2nd constructors becomes public GenericObject(Object generic) and as users Kayaman and Tim Biegeleisen said, the String is more specific then Object, thus the first constructor gets called.

Is there an easier way to retrieve hard-coded type parameters in subclass implementations?

Given the following interface:
public interface GenericInterface<T> {
T getValue();
void setValue(T newVal);
}
And the following impl:
public class FixedImpl implements GenericInterface<String> {
String value;
public FixedImpl(String value) {
this.value = value;
}
#Override
public String getValue() {
return value;
}
#Override
public void setValue(String newVal) {
value = newVal;
}
}
I want to be able to determine that in the case of FixedImpl, String.class is the value for GenericInterface.T by interrogating FixedImpl.class.
My current idea:
Find a method name in GenericInterface that returns a <T> - in this case, there's "getValue".
Go through all the methods declared in FixedImpl.class with the same name, and collect all the different return types.
The return type farthest from Object is my value for GenericInterface.T.
But there's a couple of issues with this process:
It will only work for generic types containing a method that returns <T>. You can't safely do the same trick using setValue(T), because method overloading by parameter / arity is possible to do in Java source. It only works for T getValue() because overloading by return value isn't (unless I'm mistaken).
It might have weird interactions with Java 8 default methods, or a generic method implementation in a (still generic) possibly abstract superclass.
It's kinda kludgey.
Can anybody point me to an easier / more surefire way to get the same information? I can't seem to find one, but I thought I'd ask the superior intellects of the toobs :)
NB: If you're wondering why I'd need this, it's because I want to programatically construct mocks of container classes with similar hard-coded type parameters, but POJO values rather than simple Strings.
EDIT: I eventually worked out the following solution (before seeing #stony-zhang's):
public static <G> List<Class> getConcreteTypes(Class<? extends G> implClass, Class<G> genericClass) {
List<Class> concreteTypes = new ArrayList<Class>();
for (Type type : implClass.getGenericInterfaces()) {
if (!(type instanceof ParameterizedTypeImpl)) continue;
ParameterizedTypeImpl parameterizedType = (ParameterizedTypeImpl) type;
if (parameterizedType.getRawType() != genericClass) continue;
for (Object arg : parameterizedType.getActualTypeArguments()) {
if (!(arg instanceof Class))
throw new IllegalArgumentException("Class " + implClass + " not concrete for generic type " + genericClass);
concreteTypes.add((Class) arg);
}
}
return concreteTypes;
}
You can get the the class of T by the following way, in the interface add a method getMessageClass(), and in the FixedImpl add the implemented method,
#SuppressWarnings("rawtypes")
public Class getMessageClass() {
int index =0; //In the case, you only have a generic type, so index is 0 to get the first one.
Type genType = getClass().getGenericSuperclass();
if (!(genType instanceof ParameterizedType)) {
return Object.class;
}
Type[] params = ((ParameterizedType) genType).getActualTypeArguments();
if (index >= params.length || index < 0) {
throw new RuntimeException("Index outof bounds");
}
if (!(params[index] instanceof Class)) {
return Object.class;
}
return (Class) params[index];
}
In you case, if you have multiple subclass, to use it, create one abstract class to implement the interface GenericInterface, and then the all subclass extends from the new abstract class,
public class abstract abstractImpl<T> implements implements GenericInterface<T> {
#SuppressWarnings("rawtypes")
#Override
public Class getMessageClass() {
...............
}
}
Remember type erasure. At runtime, there is no type information about your generics anymore, unless you specify it yourself. And this is what you should do. Add this to your interface:
Class<T> getTypeOfT();
And add this to your FixedImpl:
#Override
public Class<String> getTypeOfT()
{
return String.class;
}
That way, you can always call getTypeOfT() on your GenericInterface<T> implementations and find out what type you are dealing with.
I don't think that you will be able to get reliable result because of Type Erasure:
Replace all type parameters in generic types with their bounds or Object if the type parameters are unbounded. The produced bytecode, therefore, contains only ordinary classes, interfaces, and methods.
Insert type casts if necessary to preserve type safety.
Generate bridge methods to preserve polymorphism in extended generic types.
Your approach of of using the types of objects returned may at first seem alright, but beyond the issues you have pointed out there is no way (at runtime) to know if The return type farthest from Object is my value for GenericInterface.T.
My suggestion would be to use some kind of configuration XML which could be generated at build time based on the java source (using a build tool such as Ant), which would in turn be used to create Mock objects, or you could simply generate the tests based off the source at buildtime.
If you don't mind changing your runtime code for the purposes of testing, Jan Doereenhaus' answer suggests a simple hard-coded mechanism for retrieving the type
EDIT:
Consider the scenario:
public class FixedImpl implements GenericInterface<SomeClass> {
#Override
public SomeClass getValue() {
return new SomeClass();
}
}
public class FixedImpl2 extends FixedImpl {
#Override
public SomeClass getValue()
{
return new SomeSubClass();
}
}
From this example, you can see that the sub class of FixedImpl is able to return a subclass of T (which is further down the inheritance hierarchy from Object)

Instantiate generified class after loading from repository

When writing a type handler for a repository (such as a web service or a database), I need to instantiate the type after the value is loaded from the repository.
Let's say I get a String value from the repository and there is a constructor with one String argument that I can use. If the return type has a type parameter, what else can I do besides instantiating the raw type? It seems raw types exist only for compatibility with legacy code so I would prefer not to use them.
Normally ? can be used as type parameter (if you know the type will be correct at runtime), but not in this case because you can't instantiate classes with wildcards as type parameter.
EDIT: some example code:
Let's say I have a PrimaryKey class like this:
public class PrimaryKey<R extends RepositoryObject<R>> {
private String value;
public PrimaryKey(String value) {
this.value = value;
}
}
And a set of classes that extend RepositoryObject, which is defined like this:
public class RepositoryObject<R extends RepositoryObject<R>> {
private PrimaryKey<R> pk;
public RepositoryObject(PrimaryKey<R> pk) {
this.pk = pk;
}
PrimaryKey<R> getPrimaryKey() {
return pk;
}
}
Example of a subclass:
public class User extends RepositoryObject<User> {
public User(PrimaryKey<User> userId) {
super(userId);
}
}
Now the type handling method for class PrimaryKey will look something like this:
public PrimaryKey<?> getValue(String stringValue) {
return new PrimaryKey<>(stringValue);
}
But this results in a compiler error (in the Maven build, not in Eclipse IDE strangely enough) even though I'm using the diamond operator instead of when instantiating. Maybe for some reason type inference doesn't work well because of the recursion in the type parameters.
In Java 7 you can typically use the diamond operator to get around this limitation:
Container<?> c = new Container<>(arg);
Otherwise you can use a helper factory method:
<T> Container<T> makeContainer(String arg) {
return new Container<T>(arg);
}
...
Container<?> c = makeContainer(arg);
EDIT:
Following your update, I can see you're using a recursive type parameter <R extends RepositoryObject<R>>. This compile error is due to limitations of javac when it comes to wildcard capture and recursive type parameters. See this related post for example: Java CRTP and Wildcards: Code compiles in Eclipse but not `javac`
Unfortunately, using a raw type is necessary as a workaround, but it can be hidden as an implementation detail:
public PrimaryKey<?> getValue(String stringValue) {
#SuppressWarnings("rawtypes") //a raw type is necessary to placate javac
final PrimaryKey<?> pk = new PrimaryKey(stringValue);
return pk;
}
class SomeBogusClass extends RepositoryObject<SomeBogusClass> { }
return new PrimaryKey<SomeBogusClass>(stringValue);
seriously, you can put anything there that satisfies the bounds, even some bogus class that has nothing to do with your code.

Instantiating generics type in java

I would like to create an object of Generics Type in java. Please suggest how can I achieve the same.
Note: This may seem a trivial Generics Problem. But I bet.. it isn't. :)
suppose I have the class declaration as:
public class Abc<T> {
public T getInstanceOfT() {
// I want to create an instance of T and return the same.
}
}
public class Abc<T> {
public T getInstanceOfT(Class<T> aClass) {
return aClass.newInstance();
}
}
You'll have to add exception handling.
You have to pass the actual type at runtime, since it is not part of the byte code after compilation, so there is no way to know it without explicitly providing it.
In the code you posted, it's impossible to create an instance of T since you don't know what type that is:
public class Abc<T>
{
public T getInstanceOfT()
{
// There is no way to create an instance of T here
// since we don't know its type
}
}
Of course it is possible if you have a reference to Class<T> and T has a default constructor, just call newInstance() on the Class object.
If you subclass Abc<T> you can even work around the type erasure problem and won't have to pass any Class<T> references around:
import java.lang.reflect.ParameterizedType;
public class Abc<T>
{
T getInstanceOfT()
{
ParameterizedType superClass = (ParameterizedType) getClass().getGenericSuperclass();
Class<T> type = (Class<T>) superClass.getActualTypeArguments()[0];
try
{
return type.newInstance();
}
catch (Exception e)
{
// Oops, no default constructor
throw new RuntimeException(e);
}
}
public static void main(String[] args)
{
String instance = new SubClass().getInstanceOfT();
System.out.println(instance.getClass());
}
}
class SubClass
extends Abc<String>
{
}
What you wrote doesn't make any sense, generics in Java are meant to add the functionality of parametric polymorphism to objects.
What does it mean? It means that you want to keep some type variables of your classes undecided, to be able to use your classes with many different types.
But your type variable T is an attribute that is resolved at run-time, the Java compiler will compile your class proving type safety without trying to know what kind of object is T so it's impossible for it to let your use a type variable in a static method. The type is associated to a run-time instance of the object while public void static main(..) is associated to the class definition and at that scope T doesn't mean anything.
If you want to use a type variable inside a static method you have to declare the method as generic (this because, as explained type variables of a template class are related to its run-time instance), not the class:
class SandBox
{
public static <T> void myMethod()
{
T foobar;
}
}
this works, but of course not with main method since there's no way to call it in a generic way.
EDIT: The problem is that because of type erasure just one generic class is compiled and passed to JVM. Type checker just checks if code is safe, then since it proved it every kind of generic information is discarded.
To instantiate T you need to know the type of T, but it can be many types at the same time, so one solution with requires just the minimum amount of reflection is to use Class<T> to instantiate new objects:
public class SandBox<T>
{
Class<T> reference;
SandBox(Class<T> classRef)
{
reference = classRef;
}
public T getNewInstance()
{
try
{
return reference.newInstance();
}
catch (Exception e)
{
e.printStackTrace();
}
return null;
}
public static void main(String[] args)
{
SandBox<String> t = new SandBox<String>(String.class);
System.out.println(t.getNewInstance().getClass().getName());
}
}
Of course this implies that the type you want to instantiate:
is not a primitive type
it has a default constructor
To operate with different kind of constructors you have to dig deeper into reflection.
You need to get the type information statically. Try this:
public class Abc<T> {
private Class<T> clazz;
public Abc(Class<T> clazz) {
this.clazz = clazz;
}
public T getInstanceOfT()
throws throws InstantiationException,
IllegalAccessException,
IllegalArgumentException,
InvocationTargetException,
NoSuchMethodException,
SecurityException {
return clazz.getDeclaredConstructor().newInstance();
}
}
Use it as such:
Abc<String> abc = new Abc<String>(String.class);
abc.getInstanceOfT();
Depending on your needs, you may want to use Class<? extends T> instead.
The only way to get it to work is to use Reified Generics. And this is not supported in Java (yet? it was planned for Java 7, but has been postponed). In C# for example it is supported assuming that T has a default constructor. You can even get the runtime type by typeof(T) and get the constructors by Type.GetConstructor(). I don't do C# so the syntax may be invalid, but it roughly look like this:
public class Foo<T> where T:new() {
public void foo() {
T t = new T();
}
}
The best "workaround" for this in Java is to pass a Class<T> as method argument instead as several answers already pointed out.
First of all, you can't access the type parameter T in the static main method, only on non-static class members (in this case).
Second, you can't instantiate T because Java implements generics with Type Erasure. Almost all the generic information is erased at compile time.
Basically, you can't do this:
T member = new T();
Here's a nice tutorial on generics.
You don't seem to understand how Generics work.
You may want to look at http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html
Basically what you could do is something like
public class Abc<T>
{
T someGenericThing;
public Abc(){}
public T getSomeGenericThing()
{
return someGenericThing;
}
public static void main(String[] args)
{
// create an instance of "Abc of String"
Abc<String> stringAbc = new Abc<String>();
String test = stringAbc.getSomeGenericThing();
}
}
I was implementing the same using the following approach.
public class Abc<T>
{
T myvar;
public T getInstance(Class<T> clazz) throws InstantiationException, IllegalAccessException
{
return clazz.newInstance();
}
}
I was trying to find a better way to achieve the same.
Isn't it possible?
Type Erasure Workaround
Inspired by #martin's answer, I wrote a helper class that allows me to workaround the type erasure problem. Using this class (and a little ugly trick) I'm able to create a new instance out of a template type:
public abstract class C_TestClass<T > {
T createTemplateInstance() {
return C_GenericsHelper.createTemplateInstance( this, 0 );
}
public static void main( String[] args ) {
ArrayList<String > list =
new C_TestClass<ArrayList<String > >(){}.createTemplateInstance();
}
}
The ugly trick here is to make the class abstract so the user of the class is forced to subtype it. Here I'm subclassing it by appending {} after the call to the constructor. This defines a new anonymous class and creates an instance of it.
Once the generic class is subtyped with concrete template types, I'm able to retrieve the template types.
public class C_GenericsHelper {
/**
* #param object instance of a class that is a subclass of a generic class
* #param index index of the generic type that should be instantiated
* #return new instance of T (created by calling the default constructor)
* #throws RuntimeException if T has no accessible default constructor
*/
#SuppressWarnings( "unchecked" )
public static <T> T createTemplateInstance( Object object, int index ) {
ParameterizedType superClass =
(ParameterizedType )object.getClass().getGenericSuperclass();
Type type = superClass.getActualTypeArguments()[ index ];
Class<T > instanceType;
if( type instanceof ParameterizedType ) {
instanceType = (Class<T > )( (ParameterizedType )type ).getRawType();
}
else {
instanceType = (Class<T > )type;
}
try {
return instanceType.newInstance();
}
catch( Exception e ) {
throw new RuntimeException( e );
}
}
}
There are hacky ways around this when you really have to do it.
Here's an example of a transform method that I find very useful; and provides one way to determine the concrete class of a generic.
This method accepts a collection of objects as input, and returns an array where each element is the result of calling a field getter on each object in the input collection. For example, say you have a List<People> and you want a String[] containing everyone's last name.
The type of the field value returned by the getter is specified by the generic E, and I need to instantiate an array of type E[] to store the return value.
The method itself is a bit ugly, but the code you write that uses it can be so much cleaner.
Note that this technique only works when somewhere in the input arguments there is an object whose type matches the return type, and you can deterministically figure it out. If the concrete classes of your input parameters (or their sub-objects) can tell you nothing about the generics, then this technique won't work.
public <E> E[] array (Collection c) {
if (c == null) return null;
if (c.isEmpty()) return (E[]) EMPTY_OBJECT_ARRAY;
final List<E> collect = (List<E>) CollectionUtils.collect(c, this);
final Class<E> elementType = (Class<E>) ReflectionUtil.getterType(c.iterator().next(), field);
return collect.toArray((E[]) Array.newInstance(elementType, collect.size()));
}
Full code is here: https://github.com/cobbzilla/cobbzilla-utils/blob/master/src/main/java/org/cobbzilla/util/collection/FieldTransformer.java#L28
It looks like you are trying to create the class that serves as the entry point to your application as a generic, and that won't work... The JVM won't know what type it is supposed to be using when it's instantiated as you start the application.
However, if this were the more general case, then something like would be what you're looking for:
public MyGeneric<MyChoiceOfType> getMeAGenericObject(){
return new MyGeneric<MyChoiceOfType>();
}
or perhaps:
MyGeneric<String> objMyObject = new MyGeneric<String>();
Abc<String> abcInstance = new Abc<String> ();
..for example

Categories