How to properly handle max/min int value edge case-Java - java

I am working on a problem from LeetCode (not an interview question just practicing) that asks the following:
Given a sorted integer array nums, where the range of elements are in the inclusive range [lower, upper], return its missing ranges.
The code that I came up with fails for inputs where the nums array is [-2147483648,2147483647] and lower/upper are -2147483648/2147483647 respectively. The part of my code that actually answers the question is:
if (nums[0]-lower > 1) {
String range = lower + "->" + (nums[0]-1);
ans.add(range);
}
else if (nums[0]-lower == 1) {
String range = new Integer(lower).toString();
ans.add(range);
}
for (int i = 1; i < nums.length; i++) {
if (nums[i] - nums[i-1] > 2) {
String range = nums[i-1]+1 + "->" + (nums[i]-1);
ans.add(range);
}
else if (nums[i] - nums[i-1] == 2) {
String range = new Integer(nums[i]-1).toString();
ans.add(range);
}
}
I was wondering how best to handle this edge case, not just for this question but generally. Do I just add extra if-statements to my code to specifically handle these two numbers (or if addition/subtraction of numbers causes the int value to overflow) or is there a more elegant way to handle this?

The maximum value of an int is 231-1 which is 2147483647, but the difference between that number and any negative number is larger than that number itself.
So all your subtraction expressions like nums[0]-lower overflow with [-2147483648,2147483647] (or [-1,2147483647]).
You can check it with this:
System.out.println(2147483647 - -1);
This prints out -2147483648 even though you would expect it to be 2147483648.
One easy fix is to do the calculations as a 64-bit long. Change all your subtractions like below to cast the expression to long.
if (nums[0] - (long)lower > 1) {
Take the above example and change it to:
System.out.println(2147483647 - (long) -1);
This will correctly print 2147483648.

Related

Choose best combinations of operators to find target number

I have an array of operations and a target number.
The operations could be
+ 3
- 3
* 4
/ 2
I want to find out how close I can get to the target number by using those operations.
I start from 0 and I need to iterate through the operations in that order, and I can choose to either use the operation or not use it.
So if the target number is 13, I can use + 3 and * 4 to get 12 which is the closest I can get to the target number 13.
I guess I need to compute all possible combinations (I guess the number of calculations is thus 2^n where n is the number of operations).
I have tried to do this in java with
import java.util.*;
public class Instruction {
public static void main(String[] args) {
// create scanner
Scanner sc = new Scanner(System.in);
// number of instructions
int N = sc.nextInt();
// target number
int K = sc.nextInt();
//
String[] instructions = new String[N];
// N instructions follow
for (int i=0; i<N; i++) {
//
instructions[i] = sc.nextLine();
}
//
System.out.println(search(instructions, 0, N, 0, K, 0, K));
}
public static int search(String[] instructions, int index, int length, int progressSoFar, int targetNumber, int bestTarget, int bestDistance) {
//
for (int i=index; i<length; i++) {
// get operator
char operator = instructions[i].charAt(0);
// get number
int number = Integer.parseInt(instructions[i].split("\\s+")[1]);
//
if (operator == '+') {
progressSoFar += number;
} else if (operator == '*') {
progressSoFar *= number;
} else if (operator == '-') {
progressSoFar -= number;
} else if (operator == '/') {
progressSoFar /= number;
}
//
int distance = Math.abs(targetNumber - progressSoFar);
// if the absolute distance between progress so far
// and the target number is less than what we have
// previously accomplished, we update best distance
if (distance < bestDistance) {
bestTarget = progressSoFar;
bestDistance = distance;
}
//
if (true) {
return bestTarget;
} else {
return search(instructions, index + 1, length, progressSoFar, targetNumber, bestTarget, bestDistance);
}
}
}
}
It doesn't work yet, but I guess I'm a little closer to solving my problem. I just don't know how to end my recursion.
But maybe I don't use recursion, but should instead just list all combinations. I just don't know how to do this.
If I, for instance, have 3 operations and I want to compute all combinations, I get the 2^3 combinations
111
110
101
011
000
001
010
100
where 1 indicates that the operation is used and 0 indicates that it is not used.
It should be rather simple to do this and then choose which combination gave the best result (the number closest to the target number), but I don't know how to do this in java.
In pseudocode, you could try brute-force back-tracking, as in:
// ops: list of ops that have not yet been tried out
// target: goal result
// currentOps: list of ops used so far
// best: reference to the best result achieved so far (can be altered; use
// an int[1], for example)
// opsForBest: list of ops used to achieve best result so far
test(ops, target, currentOps, best, opsForBest)
if ops is now empty,
current = evaluate(currentOps)
if current is closer to target than best,
best = current
opsForBest = a copy of currentOps
otherwise,
// try including next op
with the next operator in ops,
test(opsAfterNext, target,
currentOps concatenated with next, best, opsForBest)
// try *not* including next op
test(opsAfterNext, target, currentOps, best, opsForBest)
This is guaranteed to find the best answer. However, it will repeat many operations once and again. You can save some time by avoiding repeat calculations, which can be achieved using a cache of "how does this subexpression evaluate". When you include the cache, you enter the realm of "dynamic programming" (= reusing earlier results in later computation).
Edit: adding a more OO-ish variant
Variant returning the best result, and avoiding the use of that best[] array-of-one. Requires the use of an auxiliary class Answer with fields ops and result.
// ops: list of ops that have not yet been tried out
// target: goal result
// currentOps: list of ops used so far
Answer test(ops, target, currentOps, opsForBest)
if ops is now empty,
return new Answer(currentOps, evaluate(currentOps))
otherwise,
// try including next op
with the next operator in ops,
Answer withOp = test(opsAfterNext, target,
currentOps concatenated with next, best, opsForBest)
// try *not* including next op
Answer withoutOp = test(opsAfterNext, target,
currentOps, best, opsForBest)
if withOp.result closer to target than withoutOp.target,
return withOp
else
return withoutOp
Dynamic programming
If the target value is t, and there are n operations in the list, and the largest absolute value you can create by combining some subsequence of them is k, and the absolute value of the product of all values that appear as an operand of a division operation is d, then there's a simple O(dkn)-time and -space dynamic programming algorithm that determines whether it's possible to compute the value i using some subset of the first j operations and stores this answer (a single bit) in dp[i][j]:
dp[i][j] = dp[i][j-1] || dp[invOp(i, j)][j-1]
where invOp(i, j) computes the inverse of the jth operation on the value i. Note that if the jth operation is a multiplication by, say, x, and i is not divisible by x, then the operation is considered to have no inverse, and the term dp[invOp(i, j)][j-1] is deemed to evaluate to false. All other operations have unique inverses.
To avoid loss-of-precision problems with floating point code, first multiply the original target value t, as well as all operands to addition and subtraction operations, by d. This ensures that any division operation / x we encounter will only ever be applied to a value that is known to be divisible by x. We will essentially be working throughout with integer multiples of 1/d.
Because some operations (namely subtractions and divisions) require solving subproblems for higher target values, we cannot in general calculate dp[i][j] in a bottom-up way. Instead we can use memoisation of the top-down recursion, starting at the (scaled) target value t*d and working outwards in steps of 1 in each direction.
C++ implementation
I've implemented this in C++ at https://ideone.com/hU1Rpq. The "interesting" part is canReach(i, j); the functions preceding this are just plumbing to handle the memoisation table. Specify the inputs on stdin with the target value first, then a space-separated list of operations in which operators immediately preceed their operand values, e.g.
10 +8 +11 /2
or
10 +4000 +5500 /1000
The second example, which should give the same answer (9.5) as the first, seems to be around the ideone (and my) memory limits, although this could be extended somewhat by using long long int instead of int and a 2-bit table for _m[][][] instead of wasting a full byte on each entry.
Exponential worst-case time and space complexity
Note that in general, dk or even just k by itself could be exponential in the size of the input: e.g. if there is an addition, followed by n-1 multiplication operations, each of which involves a number larger than 1. It's not too difficult to compute k exactly via a different DP that simply looks for the largest and smallest numbers reachable using the first i operations for all 1 <= i <= n, but all we really need is an upper bound, and it's easy enough to get a (somewhat loose) one: simply discard the signs of all multiplication operands, convert all - operations to + operations, and then perform all multiplication and addition operations (i.e., ignoring divisions).
There are other optimisations that could be applied, for example dividing through by any common factor.
Here's a Java 8 example, using memoization. I wonder if annealing can be applied...
public class Tester {
public static interface Operation {
public int doOperation(int cur);
}
static Operation ops[] = { // lambdas for the opertions
(x -> x + 3),
(x -> x - 3),
(x -> x * 4),
(x -> x / 2),
};
private static int getTarget(){
return 2;
}
public static void main (String args[]){
int map[];
int val = 0;
int MAX_BITMASK = (1 << ops.length) - 1;//means ops.length < 31 [int overflow]
map = new int[MAX_BITMASK];
map[0] = val;
final int target = getTarget();// To get rid of dead code warning
int closest = val, delta = target < 0? -target: target;
int bestSeq = 0;
if (0 == target) {
System.out.println("Winning sequence: Do nothing");
}
int lastBitMask = 0, opIndex = 0;
int i = 0;
for (i = 1; i < MAX_BITMASK; i++){// brute force algo
val = map[i & lastBitMask]; // get prev memoized value
val = ops[opIndex].doOperation(val); // compute
map[i] = val; //add new memo
//the rest just logic to find the closest
// except the last part
int d = val - target;
d = d < 0? -d: d;
if (d < delta) {
bestSeq = i;
closest = val;
delta = d;
}
if (val == target){ // no point to continue
break;
}
//advance memo mask 0b001 to 0b011 to 0b111, etc.
// as well as the computing operation.
if ((i & (i + 1)) == 0){ // check for 2^n -1
lastBitMask = (lastBitMask << 1) + 1;
opIndex++;
}
}
System.out.println("Winning sequence: " + bestSeq);
System.out.println("Closest to \'" + target + "\' is: " + closest);
}
}
Worth noting, the "winning sequence" is the bit representation (displayed as decimal) of what was used and what wasn't, as the OP has done in the question.
For Those of you coming from Java 7, this is what I was referencing for lambdas: Lambda Expressionsin GUI Applications. So if you're constrained to 7, you can still make this work quite easily.

Dealing with overflow in Java without using BigInteger

Suppose I have a method to calculate combinations of r items from n items:
public static long combi(int n, int r) {
if ( r == n) return 1;
long numr = 1;
for(int i=n; i > (n-r); i--) {
numr *=i;
}
return numr/fact(r);
}
public static long fact(int n) {
long rs = 1;
if(n <2) return 1;
for (int i=2; i<=n; i++) {
rs *=i;
}
return rs;
}
As you can see it involves factorial which can easily overflow the result. For example if I have fact(200) for the foctorial method I get zero. The question is why do I get zero?
Secondly how do I deal with overflow in above context? The method should return largest possible number to fit in long if the result is too big instead of returning wrong answer.
One approach (but this could be wrong) is that if the result exceed some large number for example 1,400,000,000 then return remainder of result modulo
1,400,000,001. Can you explain what this means and how can I do that in Java?
Note that I do not guarantee that above methods are accurate for calculating factorial and combinations. Extra bonus if you can find errors and correct them.
Note that I can only use int or long and if it is unavoidable, can also use double. Other data types are not allowed.
I am not sure who marked this question as homework. This is NOT homework. I wish it was homework and i was back to future, young student at university. But I am old with more than 10 years working as programmer. I just want to practice developing highly optimized solutions in Java. In our times at university, Internet did not even exist. Today's students are lucky that they can even post their homework on site like SO.
Use the multiplicative formula, instead of the factorial formula.
Since its homework, I won't want to just give you a solution. However a hint I will give is that instead of calculating two large numbers and dividing the result, try calculating both together. e.g. calculate the numerator until its about to over flow, then calculate the denominator. In this last step you can chose the divide the numerator instead of multiplying the denominator. This stops both values from getting really large when the ratio of the two is relatively small.
I got this result before an overflow was detected.
combi(61,30) = 232714176627630544 which is 2.52% of Long.MAX_VALUE
The only "bug" I found in your code is not having any overflow detection, since you know its likely to be a problem. ;)
To answer your first question (why did you get zero), the values of fact() as computed by modular arithmetic were such that you hit a result with all 64 bits zero! Change your fact code to this:
public static long fact(int n) {
long rs = 1;
if( n <2) return 1;
for (int i=2; i<=n; i++) {
rs *=i;
System.out.println(rs);
}
return rs;
}
Take a look at the outputs! They are very interesting.
Now onto the second question....
It looks like you want to give exact integer (er, long) answers for values of n and r that fit, and throw an exception if they do not. This is a fair exercise.
To do this properly you should not use factorial at all. The trick is to recognize that C(n,r) can be computed incrementally by adding terms. This can be done using recursion with memoization, or by the multiplicative formula mentioned by Stefan Kendall.
As you accumulate the results into a long variable that you will use for your answer, check the value after each addition to see if it goes negative. When it does, throw an exception. If it stays positive, you can safely return your accumulated result as your answer.
To see why this works consider Pascal's triangle
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
which is generated like so:
C(0,0) = 1 (base case)
C(1,0) = 1 (base case)
C(1,1) = 1 (base case)
C(2,0) = 1 (base case)
C(2,1) = C(1,0) + C(1,1) = 2
C(2,2) = 1 (base case)
C(3,0) = 1 (base case)
C(3,1) = C(2,0) + C(2,1) = 3
C(3,2) = C(2,1) + C(2,2) = 3
...
When computing the value of C(n,r) using memoization, store the results of recursive invocations as you encounter them in a suitable structure such as an array or hashmap. Each value is the sum of two smaller numbers. The numbers start small and are always positive. Whenever you compute a new value (let's call it a subterm) you are adding smaller positive numbers. Recall from your computer organization class that whenever you add two modular positive numbers, there is an overflow if and only if the sum is negative. It only takes one overflow in the whole process for you to know that the C(n,r) you are looking for is too large.
This line of argument could be turned into a nice inductive proof, but that might be for another assignment, and perhaps another StackExchange site.
ADDENDUM
Here is a complete application you can run. (I haven't figured out how to get Java to run on codepad and ideone).
/**
* A demo showing how to do combinations using recursion and memoization, while detecting
* results that cannot fit in 64 bits.
*/
public class CombinationExample {
/**
* Returns the number of combinatios of r things out of n total.
*/
public static long combi(int n, int r) {
long[][] cache = new long[n + 1][n + 1];
if (n < 0 || r > n) {
throw new IllegalArgumentException("Nonsense args");
}
return c(n, r, cache);
}
/**
* Recursive helper for combi.
*/
private static long c(int n, int r, long[][] cache) {
if (r == 0 || r == n) {
return cache[n][r] = 1;
} else if (cache[n][r] != 0) {
return cache[n][r];
} else {
cache[n][r] = c(n-1, r-1, cache) + c(n-1, r, cache);
if (cache[n][r] < 0) {
throw new RuntimeException("Woops too big");
}
return cache[n][r];
}
}
/**
* Prints out a few example invocations.
*/
public static void main(String[] args) {
String[] data = ("0,0,3,1,4,4,5,2,10,0,10,10,10,4,9,7,70,8,295,100," +
"34,88,-2,7,9,-1,90,0,90,1,90,2,90,3,90,8,90,24").split(",");
for (int i = 0; i < data.length; i += 2) {
int n = Integer.valueOf(data[i]);
int r = Integer.valueOf(data[i + 1]);
System.out.printf("C(%d,%d) = ", n, r);
try {
System.out.println(combi(n, r));
} catch (Exception e) {
System.out.println(e.getMessage());
}
}
}
}
Hope it is useful. It's just a quick hack so you might want to clean it up a little.... Also note that a good solution would use proper unit testing, although this code does give nice output.
You can use the java.math.BigInteger class to deal with arbitrarily large numbers.
If you make the return type double, it can handle up to fact(170), but you'll lose some precision because of the nature of double (I don't know why you'd need exact precision for such huge numbers).
For input over 170, the result is infinity
Note that java.lang.Long includes constants for the min and max values for a long.
When you add together two signed 2s-complement positive values of a given size, and the result overflows, the result will be negative. Bit-wise, it will be the same bits you would have gotten with a larger representation, only the high-order bit will be truncated away.
Multiplying is a bit more complicated, unfortunately, since you can overflow by more than one bit.
But you can multiply in parts. Basically you break the to multipliers into low and high halves (or more than that, if you already have an "overflowed" value), perform the four possible multiplications between the four halves, then recombine the results. (It's really just like doing decimal multiplication by hand, but each "digit" is, say, 32 bits.)
You can copy the code from java.math.BigInteger to deal with arbitrarily large numbers. Go ahead and plagiarize.

BigInteger Homework Help Needed

I have been told I have to write a BigInteger class, I know there is one, but I have to write my own. I am to take either ints or a string and turn them into arrays to store them. From there I am to then allow adding, subtract, and multiplying of the numbers. I have it taking the ints and the string and making the arrays that was fine. I am having issues with the rest.
For the add, I have tried to make something that checks the size of the type arrays of numbers, and then sets which is smaller and bigger. From there I have it looping till it gets to the end of the smaller one, and as it loops it takes the digit at that part of the array for the two numbers and adds them. Now this is ok till they are greater then 10, in which case I need to carryover a number. I think I had that working at a point too.
Keep in mind the two things my BigInt has is the array of the number and an int for the sign, 1 or -1.
So in this case I am having issues with it adding right and the sign being right. Same with subtracting.
As for multiplying, I am completely lost on that, and haven't even tried. Below is some of the code I have tried making: ( the add function), PLEASE HELP ME.
public BigInt add(BigInt val){
int[] bigger;
int[] smaller;
int[] dStore;
int carryOver = 0;
int tempSign = 1;
if(val.getSize() >= this.getSize()){
bigger = val.getData();
smaller = this.getData();
dStore = new int[val.getSize()+2];
if(val.getSign() == 1){
tempSign = 1;
}else{
tempSign = -1;
}
}else{
bigger = this.getData();
smaller = val.getData();
dStore = new int[this.getSize()+2];
if(this.getSign() == 1){
tempSign = 1;
}else{
tempSign = -1;
}
}
for(int i=0;i<smaller.length;i++){
if((bigger[i] < 0 && smaller[i] < 0) || (bigger[i] >= 0 && smaller[i] >= 0)){
dStore[i] = Math.abs(bigger[i]) + Math.abs(smaller[i]) + carryOver;
}else if((bigger[i] <= 0 || smaller[i] <= 0) && (bigger[i] > 0 || smaller[i] > 0)){
dStore[i] = bigger[i] + smaller[i];
dStore[i] = Math.abs(dStore[i]);
}
if(dStore[i] >= 10){
dStore[i] = dStore[i] - 10;
if(i == smaller.length - 1){
dStore[i+1] = 1;
}
carryOver = 1;
}else{
carryOver = 0;
}
}
for(int i = smaller.length;i<bigger.length;i++){
dStore[i] = bigger[i];
}
BigInt rVal = new BigInt(dStore);
rVal.setSign(tempSign);
return rVal;
if you know how to add and multiply big numbers by hand, implementing those algorithms in Java won't be difficult.
If their signs differ, you'll need to actually subtract the digits (and borrow if appropriate). Also, it looks like your carry function doesn't work to carry past the length of the smaller number (the carried "1" gets overwritten).
To go further into signs, you have a few different cases (assume that this is positive and val is negative for these cases):
If this has more digits, then you'll want to subtract val from this, and the result will be positive
If val has more digits, then you'll want to subtract this from val, and the result will be negative
If they have the same number of digits, you'll have to scan to find which is larger (start at the most significant digit).
Of course if both are positive then you just add as normal, and if both are negative you add, then set the result to be negative.
Now that we know the numbers are stored in reverse...
I think your code works if the numbers both have the same sign. I tried the following test cases:
Same length, really basic test.
Same length, carryover in the middle.
Same length, carryover at the end.
Same length, carryover in the middle and at the end
First number is longer, carryover in the middle and at the end
Second number is longer, carryover in the middle and at the end
Both negative, first number is longer, carryover in the middle and at the end
This all worked out just fine.
However, when one is positive and one is negative, it doesn't work properly.
This isn't too surprising, because -1 + 7 is actually more like subtraction than addition. You should think of it as 7-1, and it'll be much easier for you if you check for this case and instead call subtraction.
Likewise, -1 - 1 should be considered addition, even though it looks like subtraction.
I've actually written a big numbers library in assembly some years ago; i can add the multiplication code here if that helps. My advice to you is not try to write the functions on your own. There are already known ways to add, substract, multiply, divide, powmod, xgcd and more with bignumbers. I remember that i was reading Bruce Schneier's Applied Cryptography book to do that and The Art of Assembly by Randall Hyde. Both have the needed algorithms to do that (in pseudocode also). I would highly advice that you take a look, especially to the second one that it's an online free resource.

How to test if an array contains a pair of numbers whose product is odd?

How can I write a function that takes an array of integers and returns true if their exists a pair of numbers whose product is odd?
What are the properties of odd integers? And of course, how do you write this function in Java? Also, maybe a short explanation of how you went about formulating an algorithm for the actual implementation.
Yes, this is a function out of a textbook. No, this is not homework—I'm just trying to learn, so please no "do your own homework comments."
An odd number is not evenly divisible by two. All you need to know is are there two odd numbers in the set. Just check to see if each number mod 2 is non-zero. If so it is odd. If you find two odd numbers then you can multiply those and get another odd number.
Note: an odd number multiplied by an even number is always even.
The product of two integers will be odd only if both integers are odd. So, to solve this problem, just scan the array once and see if there are two (or more) odd integers.
EDIT: As others have mentioned, you check to see if a number is odd by using the modulus (%) operator. If N % 2 == 0, then the number is even.
Properties worth thinking about:
Odd numbers are not divisible by 2
Any number multiplied by an even number is even
So you can re-state the question as:
Does the array contain at least two integers that are not divisible by 2?
Which should make things easier.
You can test for evenness (or oddness) by using the modulus.
i % 2 = 0 if i is even; test for that and you can find out if a number is even/odd
A brute force algorithm:
public static boolean hasAtLeastTwoOdds(int[] args) {
int[] target = args; // make defensive copy
int oddsFound;
int numberOddsSought = 2;
for (int i = 0; i < target.length; i++) {
if (target[i] % 2 != 0) {
if (oddsFound== numberOddsSought) {
return true;
}
oddsFound++;
}
}
return false;
}
Thank you for your answers and comments.
I now understand well how to test whether an integer is odd. For example, this method is a neat way of doing this test without using multiplication, modulus, or division operators:
protected boolean isOdd(int i) {
return ( (i&1) == 1);
}
With your help, I now realize that the problem is much simpler than I had expected. Here is the rest of my implementation in Java. Comments and criticism are welcome.
protected boolean isOddProduct(int[] arr) {
int oddCount = 0;
if (arr.length < 2)
throw new IllegalArgumentException();
for (int i = 0; i <= arr.length-1; i++) {
if (isOdd(arr[i]))
oddCount++;
}
return oddCount > 1;
}
I wonder if there exists any other ways to perform this test without using *, % or / operators? Maybe I'll ask this question in a new thread.

Make a negative number positive

I have a Java method in which I'm summing a set of numbers. However, I want any negatives numbers to be treated as positives. So (1)+(2)+(1)+(-1) should equal 5.
I'm sure there is very easy way of doing this - I just don't know how.
Just call Math.abs. For example:
int x = Math.abs(-5);
Which will set x to 5.
Note that if you pass Integer.MIN_VALUE, the same value (still negative) will be returned, as the range of int does not allow the positive equivalent to be represented.
The concept you are describing is called "absolute value", and Java has a function called Math.abs to do it for you. Or you could avoid the function call and do it yourself:
number = (number < 0 ? -number : number);
or
if (number < 0)
number = -number;
You're looking for absolute value, mate. Math.abs(-5) returns 5...
Use the abs function:
int sum=0;
for(Integer i : container)
sum+=Math.abs(i);
Try this (the negative in front of the x is valid since it is a unary operator, find more here):
int answer = -x;
With this, you can turn a positive to a negative and a negative to a positive.
However, if you want to only make a negative number positive then try this:
int answer = Math.abs(x);
A little cool math trick! Squaring the number will guarantee a positive value of x^2, and then, taking the square root will get you to the absolute value of x:
int answer = Math.sqrt(Math.pow(x, 2));
Hope it helps! Good Luck!
This code is not safe to be called on positive numbers.
int x = -20
int y = x + (2*(-1*x));
// Therefore y = -20 + (40) = 20
Are you asking about absolute values?
Math.abs(...) is the function you probably want.
You want to wrap each number into Math.abs(). e.g.
System.out.println(Math.abs(-1));
prints out "1".
If you want to avoid writing the Math.-part, you can include the Math util statically. Just write
import static java.lang.Math.abs;
along with your imports, and you can refer to the abs()-function just by writing
System.out.println(abs(-1));
The easiest, if verbose way to do this is to wrap each number in a Math.abs() call, so you would add:
Math.abs(1) + Math.abs(2) + Math.abs(1) + Math.abs(-1)
with logic changes to reflect how your code is structured. Verbose, perhaps, but it does what you want.
When you need to represent a value without the concept of a loss or absence (negative value), that is called "absolute value".
The logic to obtain the absolute value is very simple: "If it's positive, maintain it. If it's negative, negate it".
What this means is that your logic and code should work like the following:
//If value is negative...
if ( value < 0 ) {
//...negate it (make it a negative negative-value, thus a positive value).
value = negate(value);
}
There are 2 ways you can negate a value:
By, well, negating it's value: value = (-value);
By multiplying it by "100% negative", or "-1": value = value *
(-1);
Both are actually two sides of the same coin. It's just that you usually don't remember that value = (-value); is actually value = 1 * (-value);.
Well, as for how you actually do it in Java, it's very simple, because Java already provides a function for that, in the Math class: value = Math.abs(value);
Yes, doing it without Math.abs() is just a line of code with very simple math, but why make your code look ugly? Just use Java's provided Math.abs() function! They provide it for a reason!
If you absolutely need to skip the function, you can use value = (value < 0) ? (-value) : value;, which is simply a more compact version of the code I mentioned in the logic (3rd) section, using the Ternary operator (? :).
Additionally, there might be situations where you want to always represent loss or absence within a function that might receive both positive and negative values.
Instead of doing some complicated check, you can simply get the absolute value, and negate it: negativeValue = (-Math.abs(value));
With that in mind, and considering a case with a sum of multiple numbers such as yours, it would be a nice idea to implement a function:
int getSumOfAllAbsolutes(int[] values){
int total = 0;
for(int i=0; i<values.lenght; i++){
total += Math.abs(values[i]);
}
return total;
}
Depending on the probability you might need related code again, it might also be a good idea to add them to your own "utils" library, splitting such functions into their core components first, and maintaining the final function simply as a nest of calls to the core components' now-split functions:
int[] makeAllAbsolute(int[] values){
//#TIP: You can also make a reference-based version of this function, so that allocating 'absolutes[]' is not needed, thus optimizing.
int[] absolutes = values.clone();
for(int i=0; i<values.lenght; i++){
absolutes[i] = Math.abs(values[i]);
}
return absolutes;
}
int getSumOfAllValues(int[] values){
int total = 0;
for(int i=0; i<values.lenght; i++){
total += values[i];
}
return total;
}
int getSumOfAllAbsolutes(int[] values){
return getSumOfAllValues(makeAllAbsolute(values));
}
Why don't you multiply that number with -1?
Like This:
//Given x as the number, if x is less than 0, return 0 - x, otherwise return x:
return (x <= 0.0F) ? 0.0F - x : x;
If you're interested in the mechanics of two's complement, here's the absolutely inefficient, but illustrative low-level way this is made:
private static int makeAbsolute(int number){
if(number >=0){
return number;
} else{
return (~number)+1;
}
}
Library function Math.abs() can be used.
Math.abs() returns the absolute value of the argument
if the argument is negative, it returns the negation of the argument.
if the argument is positive, it returns the number as it is.
e.g:
int x=-5;
System.out.println(Math.abs(x));
Output: 5
int y=6;
System.out.println(Math.abs(y));
Output: 6
String s = "-1139627840";
BigInteger bg1 = new BigInteger(s);
System.out.println(bg1.abs());
Alternatively:
int i = -123;
System.out.println(Math.abs(i));
To convert negative number to positive number (this is called absolute value), uses Math.abs(). This Math.abs() method is work like this
“number = (number < 0 ? -number : number);".
In below example, Math.abs(-1) will convert the negative number 1 to positive 1.
example
public static void main(String[] args) {
int total = 1 + 1 + 1 + 1 + (-1);
//output 3
System.out.println("Total : " + total);
int total2 = 1 + 1 + 1 + 1 + Math.abs(-1);
//output 5
System.out.println("Total 2 (absolute value) : " + total2);
}
Output
Total : 3
Total 2 (absolute value) : 5
I would recommend the following solutions:
without lib fun:
value = (value*value)/value
(The above does not actually work.)
with lib fun:
value = Math.abs(value);
I needed the absolute value of a long , and looked deeply into Math.abs and found that if my argument is less than LONG.MIN_VAL which is -9223372036854775808l, then the abs function would not return an absolute value but only the minimum value. Inthis case if your code is using this abs value further then there might be an issue.
Can you please try this one?
public static int toPositive(int number) {
return number & 0x7fffffff;
}
if(arr[i]<0)
Math.abs(arr[i]); //1st way (taking absolute value)
arr[i]=-(arr[i]); //2nd way (taking -ve of -ve no. yields a +ve no.)
arr[i]= ~(arr[i]-1); //3rd way (taking negation)
I see people are saying that Math.abs(number) but this method is not full proof.
This fails when you try to wrap Math.abs(Integer.MIN_VALUE) (see ref. https://youtu.be/IWrpDP-ad7g)
If you are not sure whether you are going to receive the Integer.MIN_VALUE in the input. It is always recommended to check for that number and handle it manually.
In kotlin you can use unaryPlus
input = input.unaryPlus()
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-int/unary-plus.html
Try this in the for loop:
sum += Math.abs(arr[i])
dont do this
number = (number < 0 ? -number : number);
or
if (number < 0) number = -number;
this will be an bug when you run find bug on your code it will report it as RV_NEGATING_RESULT_OF

Categories