I recently started reading about Java compilers. So far my understanding is, that optimization comes from techniques like tired compilation or code profiling. Now I read that Java 9 respectively Java 10 (Windows) provides the option of AOT compilation. Now I wonder: what use case would justify the use of AOT compilation?
To have better startup performance, like simple desktop app, it would be annoying for user to wait for it to load and then it still will be pretty slow until JIT kicks in. So then you can use AOT to already provide optimized code - it might not be as good as JIT, but will be much faster at startup.
Also some applications are used only for few seconds or even less - JIT will never have a chance to kick in. Like simple command line app that just sends single request and closes. Each function will be probably only executed once - so there is no reason to use JIT at all.
Also it might help to decrease binary size or allow for creation of very simple and small standalone binary. Same for memory usage - as JIT needs some memory to work.
Related
I'm building a java CLI utility application that processes some data from a file.
Apart from reading from a file, all the operations are done in-memory. The in-memory processing part is taking a surprisingly long time so I tried profiling it but could not pinpoint any specific function that performed particularly bad.
I was afraid that JIT was not able to optimize the program during a single run, so I benchmarked how the runtime changes between the consecutive executions of the function with all the program logic (including reading the input file) and sure enough, the runtime for the in-memory processing part goes down for several executions and becomes almost 10 times smaller already on the 5th run.
I tried shuffling the input data before every execution, but it doesn't have any visible effect on this. I'm not sure if some caching may be responsible for this improvement or the JIT optimizations done during the program run, but since usually the program is ran once at time, it always shows the worst performance.
Would it be possible to somehow get a good performance during the first run? Is there a generic way to optimize performance for a short-running java applications?
You probably cannot optimize startup time and performance by changing your application1, 2. And especially for a small application3. And I certainly don't think there are "generic" ways to do it; i.e. optimizations that will work for all cases.
However, there are a couple of JVM features that should improve performance for a short-lived JVM.
Class Data Sharing (CDS) is a feature that allows JIT compiled classes to be cached in the file system (as a CDS archive) and which is then reused by later of runs of your application. This feature has been available since Java 5 (though with limitations in earlier Java releases).
The CDS feature is controlled using the -Xshare JVM option.
-Xshare:dump generates a CDS archive during the run
-Xshare:off -Xshare:on and -Xshare:auto control whether an existing CDS archive will be used.
The other way to improve startup times for a HotSpot JVM is (was) to use Ahead Of Time (AOT) compilation. Basically, you compile your application to a native code binary using the jaotc command, and then run the executable it produces rather than the java command. The jaotc command is experimental and was introduced in Java 9.
It appears that jaotc was not included in the Java 16 builds published by Oracle, and is scheduled for removal in Java 17. (See JEP 410: Remove the Experimental AOT and JIT Compiler).
The current recommended way to get AOT compilation for Java is to use the GraalVM AOT Java compiler.
1 - You could convert into a client-server application where the server "up" all of the time. However, that has other problems, and doesn't eliminate the startup time issue for the client ... assuming that is coded in Java.
2 - According to #apangin, there are some other application tweaks that may could make you code more JIT friendly, though it will depend on what you code is currently doing.
3 - It is conceivable that the startup time for a large (long running) monolithic application could be improved by refactoring it so that subsystems of the application can be loaded and initialized only when they are needed. However, it doesn't sound like this would work for your use-case.
You could have the small processing run as a service: when you need to run it, "just" make a network call to that service (easier if it's HTTP because there are easy way to do it in Java). That way, the processing itself stays in the same JVM and will eventually get faster when JIT kicks in.
Of course, because it could require significant development, that is only valid if the processing itself:
is called often
has arguments that are easy to pass to the service (usually serialized as strings)
has arguments that don't require too much data to pass to the service (e.g. several MB binary content)
Is there a way to achieve JIT performance while removing JIT overhead? Preferably by compiling a class file to an native image.
I have investigated GCJ, but even for a simple program, GCJ output's performance is much worse than Java JIT.
You could try Excelsior.
http://www.excelsior-usa.com/jet.html
I've had good experiences with this in the past (but it was a long time ago)
There have been in the past a number of "static" compilers for Java, but I don't know that any are currently available. To the best of my knowledge the last one in use was the "Java Transformer" for the IBM iSeries "Classic JVM", but that JVM was deprecated in favor of the J9 JVM.
The "Java Transformer" did quite well, but, as others have noted, it could not take advantage of all of the info that a JITC has available at runtime (though it did manage to take advantage of some of the runtime info).
(And it should be noted that "JITC overhead" is really minimal. Compilation occurs pretty quickly and efficiently in most cases. The problem is that compilation doesn't even start until the interpreter has run long enough to collect statistics and trigger the JITC.)
The simplest solution is often to warmup your code on startup. If you have a server based application, the cost of startup isn't as important as the cost when the service is used. In this situation you can warmup all the critical code by calling it 10K - 20K times which triggers all that code to compile.
This can take less than a second in simple cases so has very little impact on startup and means you are using compiled code when the service is used.
If you have a client based application you usually have a lot of processing power for just one user in which case the cost of the background JIT is less important.
The moral of the story is; try to check you have a problem to solve before diving into a solution. Very often questions on stack over flow are about problems which have either a) already been solved or b) are not a significant problem in the first place.
Measuring the extent of your problem or performance is the best guide as to what matters and what doesn't. If you don't measure, you are just guessing. (Even if you have ten+ year experience performance tuning Java systems)
I have just found my answer here:
Why is Java faster when using a JIT vs. compiling to machine code?
Quote from top answer:
This means that you cannot write a AOT compiler which covers ALL Java
programs as there is information available only at runtime about the
characteristics of the program.
I'd recommend you to find the root cause of inferior performance of your Java code before trying out AOT compilation or rewriting any portions in C++.
Head over to http://www.javaperformancetuning.com/ for tons of information and links.
I'm running code within a sandbox that disallows prettymuch everything (reflection/classloading/etc.). I can still run Rhino Javascript, since it (to a large part) doesn't do any of these things. However, everything I could find about JRuby/Jython point towards their JIT compiter or AOT compiler.
Do these projects have a dumb "i'll interpret the AST as i go along" mode? I'd be happy to take the order of magnitude performance hit (it's nothing intensive) to let it run within the restricted environment.
ohai ;)
Taking a look at the JRuby GitHub wiki page, we have
# Set compilation mode. JIT = at runtime; FORCE = before execution.
# Options: [JIT, FORCE, OFF, OFFIR], Default: JIT.
compile.mode=JIT
Jython does not have a pure interpreted mode at this point. There is a beginning of one based on python bytecodes (that could be pure in memory and avoid all java bytecode issues) but it is not yet usable.
My professor did an informal benchmark on a little program and the Java times were: 1.7 seconds for the first run, and 0.8 seconds for the runs thereafter.
Is this due entirely to the loading of the runtime environment into the operating environment ?
OR
Is it influenced by Java's optimizing the code and storing the results of those optimizations (sorry, I don't know the technical term for that)?
Okay, I found where I read that. This is all from "Learning Java" (O'Reilly 2005):
The problem with a traditional JIT compilation is that optimizing code takes time. So a JIT compiler can produce decent results but may suffer a significant latency when the application starts up. This is generally not a problem for long-running server-side applications but is a serious problem for client-side software and applications run on smaller devices with limited capabilities. To address this, Sun's compiler technology, called HotSpot, uses a trick called adaptive compilation. If you look at what programs actually spend their time doing, it turns out that they spend almost all their time executing a relatively small part of the code again and again. The chunk of code that is executed repeatedly may be only a small fraction of the total program, but its behavior determines the program's overall performance. Adaptive compilation also allows the Java runtime to take advantage of new kinds of optimizations that simply can't be done in a statically compiled language, hence the claim that Java code can run faster than C/C++ in some cases.
To take advantage of this fact, HotSpot starts out as a normal Java bytecode interpreter, but with a difference: it measures (profiles) the code as it is executing to see what parts are being executed repeatedly. Once it knows which parts of the code are crucial to performance, HotSpot compiles those sections into optimal native machine code. Since it compiles only a small portion of the program into machine code, it can afford to take the time necessary to optimize those portions. The rest of the program may not need to be compiled at all—just interpreted—saving memory and time. In fact, Sun's default Java VM can run in one of two modes: client and server, which tell it whether to emphasize quick startup time and memory conservation or flat out performance.
A natural question to ask at this point is, Why throw away all this good profiling information each time an application shuts down? Well, Sun has partially broached this topic with the release of Java 5.0 through the use of shared, read-only classes that are stored persistently in an optimized form. This significantly reduces both the startup time and overhead of running many Java applications on a given machine. The technology for doing this is complex, but the idea is simple: optimize the parts of the program that need to go fast, and don't worry about the rest.
I'm kind of wondering how far Sun has gotten with it since Java 5.0.
I'm not aware of any virtual machine in widespread use that saves statistical usage data between program invocations -- but it certainly is an interesting possibility for future research.
What you're seeing is almost certainly due to disk caching.
I agree that it's likely the result of disk caching.
FYI, the IBM Java 6 VM does contain an ahead-of-time compiler (AOT). The code isn't quite as optimized as what the JIT would produce, but it is stored across VMs, I believe in some sort of persistent shared memory. Its primary benefit is to improve startup performance. The IBM VM by default JITs a method after it's been called 1000 times. If it knows that a method is going to be called 1000 times just during the VM startup (think a commonly-used method like java.lang.String.equals(...) ), then it's beneficial for it to store that in the AOT cache so that it never has to waste time compiling at runtime.
I agree that the performance difference seen by the poster is most likely caused by disk latency bringing the JRE into memory. The Just In Time compiler (JIT) would not have an impact on performance of a little application.
Java 1.6u10 (http://download.java.net/jdk6/) touches the runtime JARs in a background process (even if Java isn't running) to keep the data in the disk cache. This significantly decreases startup times (Which is a huge benefit to desktop apps, but probably of marginal value to server side apps).
On large, long running applications, the JIT makes a big difference over time - but the amount of time required for the JIT to accumulate sufficient statistics to kick in and optimize (5-10 seconds) is very, very short compared to the overall life of the application (most run for months and months). While storing and restoring the JIT results is an interesting academic exercise, the practical improvement is not very large (Which is why the JIT team has been more focused on things like GC strategies for minimizing memory cache misses, etc...).
The pre-compilation of the runtime classes does help desktop applications quite a bit (as does the aforementioned 6u10 disk cache pre-loading).
You should describe how your Benchmark was done. Especially at which point you start to measure the time.
If you include the JVM startup time (which is useful for Benchmarking the User experience but not so useful to optimize Java code) then it might be a filesystem caching effect or it can be caused by a feature called "Java Class Data Sharing":
For Sun:
http://java.sun.com/j2se/1.5.0/docs/guide/vm/class-data-sharing.html
This is an option where the JVM saves a prepared image of the runtime classes to a file, to allow quicker loading (and sharing) of those at the next start. You can control this with -Xshare:on or -Xshare:off with a Sun JVM. The default is -Xshare:auto which will load the shared classes image if present, and if not present it will write it at first startup if the directory is write able.
With IBM Java 5 this is BTW even more powerful:
http://www.ibm.com/developerworks/java/library/j-ibmjava4/
I don't know of any mainstream JVM which is saving JIT statistics.
Java JVM (actually might change from different implementations of the JVM) when first started out will interpret the byte code. Once it detects that the code will be running enough number of times JITs it to native machine language so it runs faster.
As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 9 years ago.
It seems like anything you can do with bytecode you can do just as easily and much faster in native code. In theory, you could even retain platform and language independence by distributing programs and libraries in bytecode then compiling to native code at installation, rather than JITing it.
So in general, when would you want to execute bytecode instead of native?
Hank Shiffman from SGI said (a long time ago, but it's till true):
There are three advantages of Java
using byte code instead of going to
the native code of the system:
Portability: Each kind of computer has its unique instruction
set. While some processors include the
instructions for their predecessors,
it's generally true that a program
that runs on one kind of computer
won't run on any other. Add in the
services provided by the operating
system, which each system describes in
its own unique way, and you have a
compatibility problem. In general, you
can't write and compile a program for
one kind of system and run it on any
other without a lot of work. Java gets
around this limitation by inserting
its virtual machine between the
application and the real environment
(computer + operating system). If an
application is compiled to Java byte
code and that byte code is interpreted
the same way in every environment then
you can write a single program which
will work on all the different
platforms where Java is supported.
(That's the theory, anyway. In
practice there are always small
incompatibilities lying in wait for
the programmer.)
Security: One of Java's virtues is its integration into the Web. Load
a web page that uses Java into your
browser and the Java code is
automatically downloaded and executed.
But what if the code destroys files,
whether through malice or sloppiness
on the programmer's part? Java
prevents downloaded applets from doing
anything destructive by disallowing
potentially dangerous operations.
Before it allows the code to run it
examines it for attempts to bypass
security. It verifies that data is
used consistently: code that
manipulates a data item as an integer
at one stage and then tries to use it
as a pointer later will be caught and
prevented from executing. (The Java
language doesn't allow pointer
arithmetic, so you can't write Java
code to do what we just described.
However, there is nothing to prevent
someone from writing destructive byte
code themselves using a hexadecimal
editor or even building a Java byte
code assembler.) It generally isn't
possible to analyze a program's
machine code before execution and
determine whether it does anything
bad. Tricks like writing
self-modifying code mean that the evil
operations may not even exist until
later. But Java byte code was designed
for this kind of validation: it
doesn't have the instructions a
malicious programmer would use to hide
their assault.
Size: In the microprocessor world RISC is generally preferable
over CISC. It's better to have a small
instruction set and use many fast
instructions to do a job than to have
many complex operations implemented as
single instructions. RISC designs
require fewer gates on the chip to
implement their instructions, allowing
for more room for pipelines and other
techniques to make each instruction
faster. In an interpreter, however,
none of this matters. If you want to
implement a single instruction for the
switch statement with a variable
length depending on the number of case
clauses, there's no reason not to do
so. In fact, a complex instruction set
is an advantage for a web-based
language: it means that the same
program will be smaller (fewer
instructions of greater complexity),
which means less time to transfer
across our speed-limited network.
So when considering byte code vs native, consider which trade-offs you want to make between portability, security, size, and execution speed. If speed is the only important factor, go native. If any of the others are more important, go with bytecode.
I'll also add that maintaining a series of OS and architecture-targeted compilations of the same code base for every release can become very tedious. It's a huge win to use the same Java bytecode on multiple platforms and have it "just work."
The performance of essentially any program will improve if it is compiled, executed with profiling, and the results fed back into the compiler for a second pass. The code paths which are actually used will be more aggressively optimized, loops unrolled to exactly the right degree, and the hot instruction paths arranged to maximize I$ hits.
All good stuff, yet it is almost never done because it is annoying to go through so many steps to build a binary.
This is the advantage of running the bytecode for a while before compiling it to native code: profiling information is automatically available. The result after Just-In-Time compilation is highly optimized native code for the specific data the program is processing.
Being able to run the bytecode also enables more aggressive native optimization than a static compiler could safely use. For example if one of the arguments to a function is noted to always be NULL, all handling for that argument can simply be omitted from the native code. There will be a brief validity check of the arguments in the function prologue, if that argument is not NULL the VM aborts back to the bytecode and starts profiling again.
Bytecode creates an extra level of indirection.
The advantages of this extra level of indirection are:
Platform independence
Can create any number of programming languages (syntax) and have them compile down to the same bytecode.
Could easily create cross language converters
x86, x64, and IA64 no longer need to be compiled as seperate binaries. Only the proper virtual machine needs to be installed.
Each OS simply needs to create a virtual machine and it will have support for the same program.
Just in time compilation allows you to update a program just by replacing a single patched source file. (Very beneficial for web pages)
Some of the disadvantages:
Performance
Easier to decompile
All good answers, but my hot-button has been hit - performance.
If the code being run spends all its time calling library/system routines - file operations, database operations, sending windows messages, then it doesn't matter very much if it's JITted, because most of the clock time is spent waiting for those lower-level operations to complete.
However, if the code contains things we usually call "algorithms", that have to be fast and don't spend much time calling functions, and if those are used often enough to be a performance problem, then JIT is very important.
I think you just answered your own question: platform independence. Platform-independent bytecode is produced and distributed to its target platform. When executed it's quickly compiled to native code either before execution begins, or simultaneously (Just In Time). The Java JVM and presumably the .NET runtimes operate on this principle.
Here: http://slashdot.org/developers/02/01/31/013247.shtml
Go see what the geeks of Slashdot have to say about it! Little dated, but very good comments!
Ideally you would have portable bytecode that compiles Just In Time to native code. I think the reason bytecode interpreters exist without JIT is due primarily to the practical fact that native code compilation adds complexity to a virtual machine. It takes time to build, debug, and maintain that additional component. Not everyone has the time or resources to make that commitment.
A secondary factor is safety. It's much easier to verify an interpreter won't crash than to guarantee the same for native code.
Third is performance. It can often take more time to generate machine code than to interpret bytecode for small pieces of code that only run once.
Portability and platform independence are probably the most notable advantages of bytecode over native code.