Injection of Multiple Conflicting Dependencies in Spring - java

I have a Spring bean class which requests dependencies to be injected. However, in my class, I am manually wiring different dependencies to the same private class variable. What happens in this scenario? Which injection takes precedent?
Details:
I have created a Spring bean class called BadmintonCoach.
It relies on an IfortuneService helper. IfortuneService is an interface with TWO different implementations. The two implementations are:
FortuneService_RESTful
FortuneService_Random
In my badmintonCoach class, I have created a private variable to receive the injection from Spring:
private IFortuneService theFortuneService
That is to say, I am manually wiring up the the injected dependency to this private member, theFortuneService
I am injecting these iFortuneService dependencies using method injection.
BUT here is the problem: I have TWO methods, both of which request an injection from Spring of the type iFortuneService. One method requests one implementation (FortuneService_RESTful) and the other method requests a bean of the other implementation (FortuneService_Random).
Both of these methods set this.theFortuneService equal to its respective requested helper. So what I have within my BadmintonCoach class is:
private IFortuneService theFortuneService
#Autowired
#Qualifier("fortuneService_Random")
public void randomMethod_ONE(IFortuneService theFortuneService) {
System.out.println("Code inside randomMethod_ONE!");
this.theFortuneService = theFortuneService;
}
#Autowired
#Qualifier("fortuneService_RESTful")
public void randomMethod_TWO(IFortuneService theFortuneService) {
System.out.println("Code inside randomMethod_TWO!");
this.theFortuneService = theFortuneService;
}
My question then, is:
Which of the two wirings wins out? Why? How does Spring decide the ORDER of its injections? What determines the order of the injections? Is it random? Is it injected in alphabetic order of the method names? Is there an order of injection between constructor, setter, field and method injections?
What am I seeing when I run my program? I am seeing the injection of fortuneService_RESTful win out, but it is unclear to me whether this is by chance or by design from within Spring's logic.
Here is another thought:
What if, instead of requesting different implementations of the IFortuneService interface, the two methods above asked for the same bean but that bean was prototyped? Clearly, there would be a new incarnation created for each request and there would only be one helper class assigned to my BadmintonCoach class. But which incarnation would win out?
I can provide the whole of my code if it will make my question clearer.
If you are wondering WHY I have written conflicting code? It is plain and simple curiosity to try and understand how Spring works behind the scenes.

OK folks, it has taken a day for me to see this but I can confirm that what happens here is indeed random!
Yesterday, I was exclusively seeing method_ONE win out. Today, I am seeing method_TWO win out. I can therefore conclude that the order of injections by Spring is indeed random!
Thomas Klager had provided a suggestion in the comments above which may explain this phenomenon:
One obvious reason [for this] is that using annotation based injections, spring
needs to list the methods of a class using Class.getDeclaredMethods()
or Class.getMethods(). Neither of these methods return the methods in
any particular order.
I still find it a mystery how execution of the same logic by Spring (ie: Class.getDeclaredMethods() or Class.getMethods()) can yield random results like this.
It is very important to be aware of this limitation! When writing code, you may find yourself wanting to use the services of injected dependencies which in turn depend on the services other injected dependencies. It is clear from this experiment that this could potentially be dangerous and therefore you should not layer your wiring in this manner. That is to say, your wiring should always be single tiered if it spans multiple methods, otherwise, you risk spurious output from your program. An illustration of this danger can be seen in Slim's answer in this link.

Related

initialize an instance without any field in spring

I am trying to apply ioc into a school project. I have an abstract class Application without any field
public abstract class Application {
abstract public void execute(ArrayList<String> args, OutputStream outputStream, InputStream inputStream) throws IOException;
}
And I will call the concrete class that extends Application by
ApplicationContext context = new ClassPathXmlApplicationContext("beans.xml");
Application app = (Application)context.getBean(appName);
My questions are:
Is it a bad practice to initialise a bean without any field (or all the fields are constants) using Spring?
As there is no dependency to other classes in Application, are we still consider this as a dependency injection or IOC? If no, what is the difference between this and a normal factory pattern? It seems that what Spring does here is simply matching the class and initializing it.
UPDATE
Here is the code snippet of the class where the instance of Application is needed.
String appName = argument.get(0);
Application app = ApplicationFactory.getApplication(appName);
ArrayList<String> appArgs
= new ArrayList<String>(argument.subList(1, argument.size()));
app.execute(appArgs, outputStream, inputStream);
Further questions:
in my code the class X will call the instance of Application by specifying a concrete application class name. In this case, it is still not possible for Spring to inject the dependency to Application, right? As what I need is a concrete class but not Application itself.
if Application does have fields but these fields are initialsed somewhere higher than X (X receives them as inputs and passes them to Application), can I use DI in this case?
Is it a bad practice to initialise a bean without any field (or all the fields are constants) using Spring?
No, its totally fine. Its true that you won't be able to "take advantage" of the automatic dependency injection mechanisms provided by spring (because obviously there are no dependencies in the class Application in your example), however spring can still:
Make sure that the Application as a singleton "obeys" the rule of being a single instance in the whole application context. For "manually" maintaining singletons you need to write code. Spring does it for you.
Manages the lifecycle of the object. Example, Spring has "postConstruct"/"preDestroy" methods that can can be run in the appropriate time and make example any custom code of the class Application.
If this class does some heavy-lifting (even without spring) than it can make sense to define it "lazy" so that the initialization of this instance will actually be done upon the first request to it.
Sometimes you/or spring itself will create a proxy of this class in runtime (for many different reasons, for example this aforementioned lazy functionality, but there are also other use cases). This is something that spring can do for you only if it manages the Application and not if its defined outside the spring.
Ok, you don't have dependencies in the application, This means that this Application class has some useful methods (at least on method, like public void foo() for
simplicity). But this in turn means that there is some class (lets call it X) that calls this method. So this class has an instance of Application as a dependency. So now the real question is who manages this class X. Probably it makes sense to manage it in Spring as well, and then you will benefit of the Dependency Injection mechanisms in this class X only because Application is also managed by Spring. In general Spring can inject dependencies only if these dependencies are managed by Spring.
I know, this last paragraph may sound vague given the use case you've presented, but you've got a point, for example in real application people make an initial bootstrapping in very certain places. Usually also people use spring boot that kind of encapsulates this kind of things for you.
As there is no dependency to other classes in Application, are we still consider this as a dependency injection or IOC? If no, what is the difference between this and a normal factory pattern? It seems that what Spring does here is simply matching the class and initializing it.
So as you see, the concept of DI container goes far beyond of what the factory pattern has to offer. In short, factory pattern only specifies the way to create the objects. Spring on the other hand, not only creates the objects but also manages them.
First, I very strongly suggest that you use Spring Boot instead of manually manipulating Spring at a low level like this.
It's perfectly ordinary to use beans that don't have their own fields for settings, but this is usually so that other beans can have pluggable strategies or providers and you can define in your application setup which to use.
If your Application class doesn't need anything else, then there really is not much advantage to Spring. Most real-world programs get complicated soon, however, and that's where it becomes useful.
Finally, you should almost never pass ArrayList as a parameter; use List instead. In the code you showed, however, if you have String[] args, you couldn't say app.execute(Arrays.asList(args), System.out).

#Autowired during testing

I have a question.
#Autowired annotation is not recomended since Spring Boot 2.x. Then I have to use constructor.
but in during testing (JUnit 5) i don't have any warning
Questions:
that means using #Autowired during testing is good practicle ?
JUnit and Spock(which is actually based on JUnit) frameworks are enforcing tests classes to have no-args constructors only. So it's not even achievable - probably that's why you weren't prompted about potential issue.
Test classes must not be abstract and must have a single constructor.
from junit documentation
To add a bit more to this article
Additional pros for constructor autowiring:
you can validate what kind of bean is being injected, either by code or by debugging tools if something suddenly stops working as expected.
it's easier to create class instance for testing purposes, especially if it has private/protected attributes that should be mocked and you are writing tests in pure java.
field injection is not recommended for a several of concepts, most of them connected to the usage of the class in other places, e.g the class can be instantiate with the default (no-args) constructor, thus will not be created with all or any dependencies
because the actual class can be instantiate in other places like at the testing part of code you get this warning
because the testing class usually isn't meant to be instantiate at any other parts of the code, you get no warning, this doesn't mean it's ok, it's still field injection and is still not recommended
you can read more about this here

Dependency injection on a protected field using #Inject [duplicate]

I read in some posts about Spring MVC and Portlets that field injection is not recommended. As I understand it, field injection is when you inject a Bean with #Autowired like this:
#Component
public class MyComponent {
#Autowired
private Cart cart;
}
During my research I also read about constructor injection:
#Component
public class MyComponent {
private final Cart cart;
#Autowired
public MyComponent(Cart cart){
this.cart = cart;
}
}
What are the advantages and the disadvantages of both of these types of injections?
EDIT 1: As this question is marked as duplicate of this question i checked it. Cause there aren't any code examples neither in the question nor in the answers it's not clear to me if i'm correct with my guess which injection type i'm using.
Injection types
There are three options for how dependencies can be injected into a bean:
Through a constructor
Through setters or other methods
Through reflection, directly into fields
You are using option 3. That is what is happening when you use #Autowired directly on your field.
Injection guidelines
A general guideline, which is recommended by Spring (see the sections on Constructor-based DI or Setter-based DI) is the following:
For mandatory dependencies or when aiming for immutability, use constructor injection
For optional or changeable dependencies, use setter injection
Avoid field injection in most cases
Field injection drawbacks
The reasons why field injection is frowned upon are as follows:
You cannot create immutable objects, as you can with constructor injection
Your classes have tight coupling with your DI container and cannot be used outside of it
Your classes cannot be instantiated (for example in unit tests) without reflection. You need the DI container to instantiate them, which makes your tests more like integration tests
Your real dependencies are hidden from the outside and are not reflected in your interface (either constructors or methods)
It is really easy to have like ten dependencies. If you were using constructor injection, you would have a constructor with ten arguments, which would signal that something is fishy. But you can add injected fields using field injection indefinitely. Having too many dependencies is a red flag that the class usually does more than one thing, and that it may violate the Single Responsibility Principle.
Conclusion
Depending on your needs, you should primarily use constructor injection or some mix of constructor and setter injection. Field injection has many drawbacks and should be avoided. The only advantage of field injection is that it is more convenient to write, which does not outweigh all the cons.
Further reading
I wrote a blog article about why field injection is usually not recommended: Field Dependency Injection Considered Harmful.
This is one of the never-ending discussions in software development, but major influencers in the industry are getting more opinionated about the topic and started to suggest constructor injection as the better option.
Constructor injection
Pros:
Better testability. You do not need any mocking library or a Spring context in unit tests. You can create an object that you want to test with the new keyword. Such tests are always faster because they do not rely on the reflection mechanism. (This question was asked 30 minutes later. If the author had used constructor injection it would not have appeared).
Immutability. Once the dependencies are set they cannot be changed.
Safer code. After execution of a constructor your object is ready to use as you can validate anything that was passed as a parameter. The object can be either ready or not, there is no state in-between. With field injection you introduce an intermediate step when the object is fragile.
Cleaner expression of mandatory dependencies. Field injection is ambiguous in this matter.
Makes developers think about the design. dit wrote about a constructor with 8 parameters, which actually is the sign of a bad design and the God object anti-pattern. It does not matter whether a class has 8 dependencies in its constructor or in fields, it is always wrong. People are more reluctant to add more dependencies to a constructor than via fields. It works as a signal to your brain that you should stop for a while and think about your code structure.
Cons:
More code (but modern IDEs alleviate the pain).
Basically, the field injection is the opposite.
Matter of taste. It is your decision.
But I can explain, why I never use constructor injection.
I don't want to implement a constructor for all my #Service, #Repository and #Controller beans. I mean, there are about 40-50 beans or more. Every time if I add a new field I would have to extend the constructor. No. I don't want it and I don't have to.
What if your Bean (Service or Controller) requires a lot of other beans to be injected? A constructor with 4+ parameters is very ugly.
If I'm using CDI, constructor does not concern me.
EDIT #1:
Vojtech Ruzicka said:
class has too many dependencies and is probably violating single
responsibility principle and should be refactored
Yes. Theory and reality.
Here is en example: DashboardController mapped to single path *:8080/dashboard.
My DashboardController collects a lot of informations from other services to display them in a dashboard / system overview page. I need this single controller. So I have to secure only this one path (basic auth or user role filter).
EDIT #2:
Since everyone is focused on the 8 parameters in the constructor... This was a real-world example - an customers legacy code. I've changed that. The same argumentation applies to me for 4+ parameters.
It's all about code injection, not instance construction.
One more comment - Vojtech Ruzicka stated that Spring injects beans in such three ways (the answer with the biggest numbers of points) :
Through a constructor
Through setters or other methods
Through reflection, directly into fields
This answer is WRONG - because FOR EVERY KIND OF INJECTION SPRING USES REFLECTION!
Use IDE, set breakpoint on setter / constructor, and check.
This can be a matter of taste but it can also be a matter of a CASE.
#dieter provided an excellent case when field injection is better. If You're using field injection in integration tests that are setting up Spring context - the argument with testability of the class is also invalid - unless You want to write later on tests to Your integration tests ;)

Finding stateful singleton beans

Today, we found this pattern in our code:
class Foo {
private List<String> errors;
public void addError(String error) { ... }
public List<String> getErrors();
}
While the code seems to work, this is a singleton Spring bean and it's injected in several independent places and the consumers of the bean assume that they each have their own list of errors. So this introduces subtle bugs.
The obvious solution is to educate developers to avoid this kind of error but I was wondering if there is a static or runtime code analysis tool which can find this kind of bug.
For example, a bean postprocessor could analyze the bean before it's returned and look for private fields that aren't #Autowired.
After pouring some more brains (ours and other peoples) on this, we came up with this approach:
Install a BeanPostProcessor which makes sure that all singleton beans (i.e. where the scope in the bean definition is Singleton) have the custom annotation #Stateless on the actual bean type.
We chose a custom annotation instead of reusing #Singleton since we need this functionality elsewhere, too.
If the annotation is missing, the factory throws an error.
In a unit test, we use ClassPathScanningCandidateComponentProvider with out custom annotation to locate all classes on the classpath. We can then do the complex and expensive tests to make sure the bean has no state that changes after the initial configuration (i.e. after the autowiring has happened).
The second step could become a little bit easier if we moved the autowired fields into the constructor but we don't like methods that take many, many arguments. It would be nice if Java or an IDE could generate builders from the bean code. Since that's not the case, we stick to autowired fields and/or setters.
You could create a JUnit test that would load your app config.
This could combine ListableBeanFactory from here :
Can I dynamically create a List by scanning the beans in a spring configuration file?
with the 'isSingleton' check here :
How to enforce a prototype scope of Spring beans
i.e. list all the beans in the app context, then check to see which are singletons.
This would let you find all singleton beans...although it wouldn't really prevent your error case where someone treats one of these singletons as if it were not.

Guice eager/lazy singleton instantiations

I'm having some troubles understanding how Guice's singleton instantiations works. I've read the available documentation (here - http://code.google.com/p/google-guice/wiki/Scopes ), but I still can't figure out some things:
I've integrated Guice with Tomcat, and I've set up some bindings in a ServletModule:
bind(MyServlet.class).asEagerSingleton();
serve("myUrl").with(MyServlet.class);
serve("myOtherUrl").with(MyOtherServlet.class);
(where MyOtherServlet class has a #Singleton annotation above it)
My intention here was to have two servlets, where one is eagerly instantiated, while the other isn't. However it seems like the "serve... with..." line automatically instantiates servlets objects, even though that class is not bound as an eager singleton.
The link I attached above mentions difference between Guice running under Stage.Development and Stage.Production - however this still happened even when I explicitly used Stage.Development (which is the default one anyway).
Is there any way to avoid this?
(continues 1) Trying to ensure that MyServlet gets instantiated first even though all servlets instantiate eagerly now, I've modified the order of modules (and binding statements) when creating an Injector, so that the binding for MyServlet appears first. However, I found that it still gets instantiated later than some other bindings (of non-servlet classes), which were of the form:
bind(MyInterface.class).to(MyClass.class).asEagerSingleton()
even though those other bindings appeared later in the modules/bindings order.
I've looked into it, and found that Guice simply instantiates eager singletons which were bound by the form of "bind... to... asEagerSingleton()" before it does ones of "bind... asEagerSingleton()", and so I solved it by modifying the line:
bind(MyServlet.class).asEagerSingleton();
into:
bind(MyServletDummyInterface.class).to(MyServlet.class).asEagerSingleton()
and that actually worked. Still, I'd rather avoid having a dummy interface just to solve this, so I was wondering if anyone had a better solution for this..?
I have two Guice modules - one ServletModule and one AbstractModule.
The ServletModule configureServlets() has the following binding in it:
serve("aUrl").with(SomeServlet.class);
The AbstractModule's configure() has the following bindings:
bind(SomeImpl.class).asEagerSingleton();
bind(SomeInterface.class).to(SomeImpl.class).in(Singleton.class);
Additionally, The SomeServlet class has an injected field of type SomeInterface, and has a #Singleton annotation on top of the class.
Now, one would expect that upon creating an injector, the SomeImpl class will get instantiated, and the same instance will be injected into the SomeServlet instance. As mentioned before, servlets bounded with a "serve... with..." statement also seem to get eagerly instantiated, but either way there should still be only one SomeImpl object instantiated. Yet for some reason, I got two SomeImpl objects instantiated when doing this.
To get around it, I mixed the two lines in configure() a bit, and instead of the above I had there the following lines:
bind(SomeImpl.class).in(Singleton.class)
bind(SomeInterface.class).to(SomeImpl.class).asEagerSingleton();
and then it worked fine, and I got only one instance of SomeImpl instantiated. I don't really get why the switch should matter - I can see how the latter way is "better", but I'd expect both to work correctly, so I'm just wondering if I'm getting something wrong here...
1) There is no way to avoid this, since Guice calls the init() method of all servlets on initialization of its own filter pipeline and thus constructs them all. If you really need such lazy initialization logic, you should place it into the servlet itself (or use a decoupled helper class, or... there are many ways, depending on your use case).
2) Generally said, the modules of Guice declare bindings, there are not designed to be bootstrap definitions with precise instantiation orders. If you need such a defined instantiation order, create the objects yourself in the desired order and bind them via bind(...).toInstance(...). If you need injection in the self constructed instances you may use requestInjection(...) (if field/method injection is sufficient, it's more cumbersome for constructor injection).
3) The scope of Guice applies to the binding key, not the binding value, Applying Scopes describes why only your second example is working as intended.

Categories