I have method to find month end date based on the timezone.
Calendar calendar = Calendar.getInstance(TimeZone.getTimeZone("CET"));
calendar.set(
Calendar.DAY_OF_MONTH,
calendar.getActualMaximum(Calendar.DAY_OF_MONTH)
);
System.out.println(calendar.getTime());`
It displays output: Thu Aug 30 18:04:54 PDT 2018.
It should, however, give me an output in CET.
What am I missing?
The Calendar.getTime() method returns a Date object, which you then printed in your code. The problem is that the Date class does not contain any notion of a timezone even though you had specified a timezone with the Calendar.getInstance() call. Yes, that is indeed confusing.
Thus, in order to print a Date object in a specific timezone, you have to use the SimpleDateFormat class, where you must call SimpleDateFormat.setTimeZone() to specify the timezone before you print.
Here's an example:
import java.util.Calendar;
import java.util.TimeZone;
import java.text.SimpleDateFormat;
public class TimeZoneTest {
public static void main(String argv[]){
Calendar calendar = Calendar.getInstance(TimeZone.getTimeZone("CET"));
calendar.set(Calendar.DAY_OF_MONTH, calendar.getActualMaximum(Calendar.DAY_OF_MONTH));
System.out.println("calendar.getTime(): " + calendar.getTime());
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MMM-dd HH:mm:ss z");
sdf.setTimeZone(TimeZone.getTimeZone("CET"));
System.out.println("sdf.format(): " + sdf.format(calendar.getTime()));
}
}
Here is the output on my computer:
calendar.getTime(): Fri Aug 31 01:40:17 UTC 2018
sdf.format(): 2018-Aug-31 03:40:17 CEST
This is because Date object doesn't have timezone as part of its state, and getTime() actually returns a date which corresponds to the JVM's timezone, instead you need SimpleDateFormat to format and print the date in your required timezone.
If you try adding the following line of code, you could see that the timezone in the calendar is actually CET.
System.out.println(calendar.getTimeZone().getDisplayName());
tl;dr
YearMonth // Represent a year-month without day-of-month.
.now( // Capture the current year-month as seen in the wall-clock time used by the people of a particular region (a time zone).
ZoneId.of( "Africa/Tunis" ) // Specify your desired time zone. Never use 3-4 letter pseudo-zones such as `CET`.
) // Returns a `YearMonth` object.
.atEndOfMonth() // Determine the last day of this year-month. Returns a `LocalDate` object.
.atStartOfDay( // Let java.time determine the first moment of the day. Not necessarily 00:00:00, could be 01:00:00 or some other time-of-day because of anomalies such as Daylight Saving Time (DST).
ZoneId.of( "Africa/Tunis" )
) // Returns a `ZonedDateTime` object, representing a date, a time-of-day, and a time zone.
java.time
You are using the terrible old Calendar class that was supplanted years ago but the modern java.time classes.
LocalDate
If you need only a date, use LocalDate class. Then the time zone is irrelevant for your output.
But time zone is very relevant for determining the current date. For any given moment, the date varies around the globe by zone.
Specify a proper time zone name in the format of continent/region, such as America/Montreal, Africa/Casablanca, or Pacific/Auckland. Never use the 3-4 letter abbreviation such as CET or IST as they are not true time zones, not standardized, and not even unique(!).
ZoneId z = ZoneId.of( "Europe/Paris" ) ; // Or "Africa/Tunis" etc.
LocalDate today = LocalDate.now( z ) ; // Capture the current date as seen by the wall-clock time used by the people of a certain region (a time zone).
YearMonth
Get the month for that date. Represent a year-month with, well, YearMonth.
YearMonth ym = YearMonth.from( today ) ;
Or skip the LocalDate.
YearMonth ym = YearMonth.now( z ) ;
Get the end of the month.
LocalDate endOfThisMonth = ym.atEndOfMonth() ;
ISO 8601
To generate a String representing that LocalDate object’s value, call toString. The default format is taken from the ISO 8601 standard. For a date-only value that will be YYYY-MM-DD such as 2018-01-23.
String output = endOfThisMonth.toString() ;
If you need another format, use DateTimeFormatter class. Search Stack Overflow for many examples and discussions.
Moment
If you need a moment, you can add a time-of-day and time zone to your LocalDate to get a ZonedDateTime. Or let ZonedDateTime determine the first moment of the day (which is not always 00:00:00!).
ZonedDateTime zdt = LocalDate.atStartOfDay( z ) ;
About java.time
The java.time framework is built into Java 8 and later. These classes supplant the troublesome old legacy date-time classes such as java.util.Date, Calendar, & SimpleDateFormat.
The Joda-Time project, now in maintenance mode, advises migration to the java.time classes.
To learn more, see the Oracle Tutorial. And search Stack Overflow for many examples and explanations. Specification is JSR 310.
You may exchange java.time objects directly with your database. Use a JDBC driver compliant with JDBC 4.2 or later. No need for strings, no need for java.sql.* classes.
Where to obtain the java.time classes?
Java SE 8, Java SE 9, Java SE 10, and later
Built-in.
Part of the standard Java API with a bundled implementation.
Java 9 adds some minor features and fixes.
Java SE 6 and Java SE 7
Much of the java.time functionality is back-ported to Java 6 & 7 in ThreeTen-Backport.
Android
Later versions of Android bundle implementations of the java.time classes.
For earlier Android (<26), the ThreeTenABP project adapts ThreeTen-Backport (mentioned above). See How to use ThreeTenABP….
The ThreeTen-Extra project extends java.time with additional classes. This project is a proving ground for possible future additions to java.time. You may find some useful classes here such as Interval, YearWeek, YearQuarter, and more.
Related
I have a string of the form "mm/yyyy" and I want to compare it against the date of the local system.
I have thought of either using a conversion table between my month and the MONTH field in Calendar, something like:
Calendar cal = Calendar.getInstance();
String date = "07/2014";
String month = date.subString(0, 2);
int monthToCompare;
if (month.equals("01"))
monthToCompare = cal.JANUARY;
if (month.equals("02"))
monthToCompare = cal.FEBRUARY;
...
And then comparing manually with an if. I don't like it because I think is way too long for such a simple operation.
The other option I've thought of is getting the current Date() and using the before() method. That would mean translating my date to the Date format, but the easy methods to do it are deprecated, I must specify the number of milliseconds and I do not know how to easily do that (taking into consideration leap years, calendar corrections and so on since 1970).
Using #Mifmif answer I finally solved the problem with:
if (new SimpleDateFormat("MM/yyyy").parse(date).before(new Date())) {
...
}
Try this :
new SimpleDateFormat("MM/yyyy").parse("07/2014").compareTo(new Date());
tl;dr
YearMonth.parse(
"07/2014" ,
DateTimeFormatter.ofPattern( "MM/uuuu" )
).isAfter(
YearMonth.now(
ZoneId.of( "Africa/Tunis" )
)
)
java.time
The modern solution uses the java.time classes rather than the troublesome old date-time classes.
Year & month only
To represent an entire month, use the YearMonth class.
String input = "07/2014" ;
DateTimeFormatter f = DateTimeFormatter.ofPattern( "MM/uuuu" ) ;
YearMonth ym = YearMonth.parse( input , f ) ;
Tips: Use such YearMonth objects throughout your codebase rather than a mere string. And when you do need a string to exchange data, use standard ISO 8601 format: YYYY-MM. The java.time classes use standard formats by default when parsing/generating strings, so no need to define formatting pattern.
Current year-month
Determining the current year-month means determining the current date.
A time zone is crucial in determining a date. For any given moment, the date varies around the globe by zone. For example, a few minutes after midnight in Paris France is a new day while still “yesterday” in Montréal Québec.
If no time zone is specified, the JVM implicitly applies its current default time zone. That default may change at any moment, so your results may vary. Better to specify your desired/expected time zone explicitly as an argument.
Specify a proper time zone name in the format of continent/region, such as America/Montreal, Africa/Casablanca, or Pacific/Auckland. Never use the 3-4 letter abbreviation such as EST or IST as they are not true time zones, not standardized, and not even unique(!).
ZoneId z = ZoneId.of( "America/Montreal" ) ;
LocalDate today = LocalDate.now( z ) ;
If you want to use the JVM’s current default time zone, ask for it and pass as an argument. If omitted, the JVM’s current default is applied implicitly. Better to be explicit, as the default may be changed at any moment during runtime by any code in any thread of any app within the JVM.
ZoneId z = ZoneId.systemDefault() ; // Get JVM’s current default time zone.
Same idea applies to getting the current YearMonth: pass a ZoneId.
YearMonth currentYearMonth = YearMonth.now( z ) ;
Compare
Compare using methods isBefore, isAfter, and equals.
boolean isAfterCurrentYearMonth = ym.isAfter( currentYearMonth ) ;
About java.time
The java.time framework is built into Java 8 and later. These classes supplant the troublesome old legacy date-time classes such as java.util.Date, Calendar, & SimpleDateFormat.
The Joda-Time project, now in maintenance mode, advises migration to the java.time classes.
To learn more, see the Oracle Tutorial. And search Stack Overflow for many examples and explanations. Specification is JSR 310.
Where to obtain the java.time classes?
Java SE 8, Java SE 9, and later
Built-in.
Part of the standard Java API with a bundled implementation.
Java 9 adds some minor features and fixes.
Java SE 6 and Java SE 7
Much of the java.time functionality is back-ported to Java 6 & 7 in ThreeTen-Backport.
Android
Later versions of Android bundle implementations of the java.time classes.
For earlier Android, the ThreeTenABP project adapts ThreeTen-Backport (mentioned above). See How to use ThreeTenABP….
The ThreeTen-Extra project extends java.time with additional classes. This project is a proving ground for possible future additions to java.time. You may find some useful classes here such as Interval, YearWeek, YearQuarter, and more.
//getting current date
private String getDateTime() {
DateFormat dateFormat = new SimpleDateFormat("dd-MMM-yyyy", Locale.getDefault());
Date date = new Date();
return dateFormat.format(date);
}
//compare the dates
Date date1 = new Date("second_date to be compared");
Date date2 = new Date(getDateTime());
if(date1.before(date2)) {
Log.d("Date already passed", " " + "second_date");
}
somebody please tell me how to get the time from the TimeZone class. When I run this code
System.out.println("Default Timezone: " + TimeZone.getDefault())
I got this
Default Timezone: sun.util.calendar.ZoneInfo[id="Asia/Manila",offset=28800000,dstSavings=0,useDaylight=false,transitions=10,lastRule=null]
I can't find any function that will get the time such as TimeZone.getDefault().getTime(). Please help.
Try below to get the time for EST TimeZone:
TimeZone est = TimeZone.getTimeZone("America/New_York");
Calendar calendar = new GregorianCalendar(est);
System.out.println(calendar.getTime()); //<-prints the date
System.out.println(calendar.getTimeInMillis()); //<-prints the time in milliseconds
You can change timezone to other timezones e.g. PST to get the time in other timezones:
TimeZone pst = TimeZone.getTimeZone("America/Los_Angeles");
calendar.setTimeZone(pst);
System.out.println(calendar.getTime()); //<-prints the date
System.out.println(calendar.getTimeInMillis()); //<-prints the time in milliseconds
Hope this helps.
Date theCurrentDateAndTime = new GregorianCalendar(timeZone).getTime();
TimeZone is a abstract class which represent timezone not time. As you mentioned you are invoking the getDefault(),TimeZone.getDefault() by using getDefault() you will get the timezone based on where the program is running.
If you want to just print the date, then you have options like Calendar or Date
or if you wish to move with timezone specific time then set the timezone and get the time of that zone.
Your program will print the date in this way(this is not only the way):
TimeZone defaultTimezone = TimeZone.getDefault();
Calendar calendar = new GregorianCalendar(defaultTimezone);
System.out.println(calendar.getTime());
The TimeZone class represents a time zone not the time. You will have to use either the Date or the Calendar class instead for the time.
You need to use either Date (or) Calendar API to get today date/time.
These APIs use default time zone configured in your system.
You don't.
Javadoc for TimeZone. You'll note this has nothing to do with the current time.
See Calendar
tl;dr
LocalTime.now( // Capture the current time-of-day for a particular time zone. Result discards the zone, leaving an object unaware of any zone or offset.
ZoneId.of( "Asia/Manila" ) // Represent the time zone, the history of past, present, and future changes in offset for a specific region.
)
23:45
java.time
The modern approach to date-time handling uses the java.time classes that supplanted the troublesome old legacy date-time classes.
Your Question is unclear? Are you asking for the current time-of-day for a particular time zone? Or are you asking for information about a time zone itself, its offset from UTC?
Zones
An offset-from-UTC is a number of hours, minutes, and seconds displaced from the same moment UTC. A time zone is a history of the past, present, and future changes in offset used by the people of a particular region.
Specify a proper time zone name in the format of continent/region, such as America/Montreal, Africa/Casablanca, or Pacific/Auckland. Never use the 3-4 letter abbreviation such as EST or IST as they are not true time zones, not standardized, and not even unique(!).
ZoneId z = ZoneId.of( "Asia/Manila" ) ;
Current time-of-day
For only the current time-of-day as seen on the wall-clocks by the people of a particular region, use LocalTime.now and pass the desired zone. The resulting object lacks any concept of zone or offset as the passed zone is discarded after determining the current moment.
LocalTime lt = LocalTime.now( z ) ;
23:45
For the date and time-of-day in that zone, use ZonedDateTime.
ZonedDateTime zdt = ZonedDateTime.now( z ) ;
To capture the current moment in UTC, use Instant.
Instant instant = Instant.now( z ) ;
Time zone info
The ZoneId and ZoneOffset classes supplant TimeZone.
ZoneRules rules = z.getRules() ;
You can interrogate a ZoneId about the rules it uses to define the behavior a particular time zone. You must pass a moment (a Instant), as the entire point of a time zone is that the offset used by the people of that region has changed over history. For example, countries silly enough to practice Daylight Saving Time (DST) change their offset twice a year.
ZoneOffset offset = rules.getOffset( zdt.toInstant() ) ;
About java.time
The java.time framework is built into Java 8 and later. These classes supplant the troublesome old legacy date-time classes such as java.util.Date, Calendar, & SimpleDateFormat.
The Joda-Time project, now in maintenance mode, advises migration to the java.time classes.
To learn more, see the Oracle Tutorial. And search Stack Overflow for many examples and explanations. Specification is JSR 310.
Using a JDBC driver compliant with JDBC 4.2 or later, you may exchange java.time objects directly with your database. No need for strings nor java.sql.* classes.
Where to obtain the java.time classes?
Java SE 8, Java SE 9, and later
Built-in.
Part of the standard Java API with a bundled implementation.
Java 9 adds some minor features and fixes.
Java SE 6 and Java SE 7
Much of the java.time functionality is back-ported to Java 6 & 7 in ThreeTen-Backport.
Android
Later versions of Android bundle implementations of the java.time classes.
For earlier Android, the ThreeTenABP project adapts ThreeTen-Backport (mentioned above). See How to use ThreeTenABP….
The ThreeTen-Extra project extends java.time with additional classes. This project is a proving ground for possible future additions to java.time. You may find some useful classes here such as Interval, YearWeek, YearQuarter, and more.
My program takes the current date and then, in a loop, adds a week to that date and prints out the new date. Something like:
Calendar cal = Calendar.getInstance();
for (int i=0; i < 52; i++) {
cal.add(Calendar.DATE, 7);
// print date out
}
The add method works the way I expect it to until it reaches Dec 30, at which point the year jumps from 2012 to 2013.
so, using today's date of 4/16/2012, i tested a few different inputs:
this - cal.add(Calendar.DATE, 38*7);
yields- "date:1/7/2013"
this - cal.add(Calendar.DATE, 37*7);
yields- "date:12/31/2013"
this - cal.add(Calendar.DATE, 37*7-1);
yields- "date:12/30/2013"
this - cal.add(Calendar.DATE, 37*7-2);
yields- "date:12/29/2012"
so i notice that the year is correct up until dec 30 and dec 31, and then it corrects itself again when it gets back to january. is there a reason why it does this? does it have anything to do with 2012 being a leap year or am i misunderstanding the add method
Did you use SimpleDateFormat to print the date and use YYYY to produce the year? If so, that is where the problem lies. Because YYYY produces the week-year and not the calendar year. And as 30/12/2012 is in calendar week 1 of 2013, YYYY produces 2013. To get the calendar year, use yyyy in your SimpleDateFormat format string.
See https://bugs.openjdk.java.net/browse/JDK-8194625
tl;dr
Use modern java.time classes, never the terrible legacy classes such as Calendar.
LocalDate // Represent a date-only value with `LocalDate`, without time-of-day and without time zone.
.now( // Capture the current date.
ZoneId.systemDefault() // Specify your desired/expected time zone explicitly.
) // Returns a `LocalDate` object.
.plusWeeks( 1 ) // Add a week, producing a new `LocalDate` object with values based on the original, per the immutable objects pattern.
.toString() // Generate text representing this date value in standard ISO 8601 format of YYYY-MM-DD.
2019-01-23
java.time
The modern approach uses the java.time classes.
The Calendar and GregorianCalendar classes are terrible, badly designed with flaws. Avoid them. Now replaced specifically by the ZonedDateTime class.
LocalDate
The LocalDate class represents a date-only value without time-of-day and without time zone or offset-from-UTC.
A time zone is crucial in determining a date. For any given moment, the date varies around the globe by zone. For example, a few minutes after midnight in Paris France is a new day while still “yesterday” in Montréal Québec.
If no time zone is specified, the JVM implicitly applies its current default time zone. That default may change at any moment during runtime(!), so your results may vary. Better to specify your desired/expected time zone explicitly as an argument.
Specify a proper time zone name in the format of Continent/Region, such as America/Montreal, Africa/Casablanca, or Pacific/Auckland. Never use the 2-4 letter abbreviation such as EST or IST as they are not true time zones, not standardized, and not even unique(!).
ZoneId z = ZoneId.of( "America/Montreal" ) ;
LocalDate today = LocalDate.now( z ) ;
To generate text representing that date value in standard ISO 8601 format, simply call toString.
String output = today.toString() ;
Date math is easy, with various plus… & minus… methods.
LocalDate weekLater = today.plusWeeks( 1 ) ;
You can also define a span of time as a Period or Duration. Then add that.
Period p = Period.ofWeeks( 1 ) ;
LocalDate weekLater = today.plus( p ) ;
Your example
Let's test out your example dates.
LocalDate ld = LocalDate.of( 2012 , Month.APRIL , 16 ) ;
Period period38Weeks = Period.ofWeeks( 38 ) ;
Period period37Weeks = Period.ofWeeks( 37 ) ;
Period period37WeeksLess1Days = period37Weeks.minusDays( 1 ) ;
Period period37WeeksLess2Days = period37Weeks.minusDays( 2 ) ;
LocalDate later_38 = ld.plus( period38Weeks ) ;
LocalDate later_37 = ld.plus( period37Weeks ) ;
LocalDate later_37_1 = ld.plus( period37WeeksLess1Days ) ;
LocalDate later_37_2 = ld.plus( period37WeeksLess2Days ) ;
Run code live at IdeOne.com. No problems. The 38th week is in 2013, while week 37 dates are in 2012.
later_38.toString(): 2013-01-07
later_37.toString(): 2012-12-31
later_37_1.toString(): 2012-12-30
later_37_2.toString(): 2012-12-29
About java.time
The java.time framework is built into Java 8 and later. These classes supplant the troublesome old legacy date-time classes such as java.util.Date, Calendar, & SimpleDateFormat.
The Joda-Time project, now in maintenance mode, advises migration to the java.time classes.
To learn more, see the Oracle Tutorial. And search Stack Overflow for many examples and explanations. Specification is JSR 310.
You may exchange java.time objects directly with your database. Use a JDBC driver compliant with JDBC 4.2 or later. No need for strings, no need for java.sql.* classes.
Where to obtain the java.time classes?
Java SE 8, Java SE 9, Java SE 10, Java SE 11, and later - Part of the standard Java API with a bundled implementation.
Java 9 adds some minor features and fixes.
Java SE 6 and Java SE 7
Most of the java.time functionality is back-ported to Java 6 & 7 in ThreeTen-Backport.
Android
Later versions of Android bundle implementations of the java.time classes.
For earlier Android (<26), the ThreeTenABP project adapts ThreeTen-Backport (mentioned above). See How to use ThreeTenABP….
The ThreeTen-Extra project extends java.time with additional classes. This project is a proving ground for possible future additions to java.time. You may find some useful classes here such as Interval, YearWeek, YearQuarter, and more.
It should be:
cal.add(Calendar.DAY_OF_YEAR, 7);
Calendar.DATE is same as Calendar.DAY_OF_MONTH.
I declared Calendar and SimpleDateFormat like this:
calendar = Calendar.getInstance(TimeZone.getTimeZone("Malaysia"));
final SimpleDateFormat sdf = new SimpleDateFormat("yyyy.MMMMM.dd hh:mm aaa");
or:
calendar = Calendar.getInstance(TimeZone.getTimeZone("GMT+08:00"));
Then I call this:
sdf.format(calendar.getTime());
but result is not in correct time zone (+8 hours). What could be the problem?
Unless you are going to perform Date/Time related calculations, there is no point in instantiating Calendar with given TimeZone. After calling Calendar's getTime() method, you will receive Date object, which is timezone-less either way (GMT based, actually).
What you need to do, is to set TimeZone for formatter instead. And also do not bother with passing your own format, there is a built-in already:
// get current time
// you could just as well use Date now = new Date();
Calendar now = Calendar.getInstance();
// Locale for formatter
Locale malaysianLocale = new Locale("ms", "MY");
// Default date and time format for Malaysia
DateFormat defaultMalaysianFormatter = DateFormat.getDateTimeInstance(
DateFormat.DEFAULT, DateFormat.DEFAULT, malaysianLocale);
// This step is crucial
TimeZone malaysianTimeZone = TimeZone.getTimeZone("Asia/Kuala_Lumpur");
defaultMalaysianFormatter.setTimeZone(malaysianTimeZone);
System.out.println(defaultMalaysianFormatter.format(now.getTime()));
This prints something like 10 Mei 2011 2:30:05 AM, which I believe is your desired result.
Time zone id should be set as Asia/Kuala_Lumpur. Date.toString() always returns time string using default time zone. But your default time zone is different.
Calendar tzCal = Calendar.getInstance(TimeZone.getTimeZone("Asia/Kuala_Lumpur"));
Calendar cal = Calendar.getInstance();
cal.set(Calendar.YEAR, tzCal.get(Calendar.YEAR));
cal.set(Calendar.MONTH, tzCal.get(Calendar.MONTH));
cal.set(Calendar.DAY_OF_MONTH, tzCal.get(Calendar.DAY_OF_MONTH));
cal.set(Calendar.HOUR_OF_DAY, tzCal.get(Calendar.HOUR_OF_DAY));
cal.set(Calendar.MINUTE, tzCal.get(Calendar.MINUTE));
cal.set(Calendar.SECOND, tzCal.get(Calendar.SECOND));
cal.set(Calendar.MILLISECOND, tzCal.get(Calendar.MILLISECOND));
System.out.println("Current Time = " + sdf.format(cal.getTime()));
The TimeZone.getTimeZone() call is incorrect. You have to pass a the correct identifier.
EDIT -- You can try to getAvailableIDs() and iterate through them to make sure you have the correct id.
If you've read the javadoc of TimeZone carefully, the way to use getTimeZone is:
TimeZone.getTimeZone("GMT-8")
or
TimeZone.getTimeZone("GMT+8")
tl;dr
java.time.ZonedDateTime.now(
ZoneId.of( "Asia/Kuala_Lumpur" )
).toString()
2018-01-23T18:48:32.263+08:00[Asia/Kuala_Lumpur]
Avoid legacy classes
The Question and other Answers use troublesome old date-time classes that are now legacy, supplanted by the java.time classes.
java.time
The modern approach uses java.time classes. Forget all about the terribly confusing Calendar class.
Current moment
First get the current moment in UTC. The Instant class represents a moment on the timeline in UTC with a resolution of nanoseconds (up to nine (9) digits of a decimal fraction).
Instant instant = Instant.now() ;
Time zone
Adjust into another time zone.
Specify a proper time zone name in the format of continent/region, such as America/Montreal, Africa/Casablanca, or Pacific/Auckland. Never use the 3-4 letter pseudo-zones such as EST or IST as they are not true time zones, not standardized, and not even unique(!).
ZoneId z = ZoneId.of( "Asia/Kuala_Lumpur" ) ; // Or "Asia/Kuching", etc.
Apply the ZoneId to instantiate a ZonedDateTime object. Both the ZonedDateTime and Instant represent the same moment, the very same point on the timeline, but is viewed through a different wall-clock time.
ZonedDateTime zdt = instant.atZone( z ) ; // Same moment, different wall-clock time.
Offset
If you had only an offset-from-UTC such as +08:00 rather than a known time zone, you would use ZoneOffset to get a OffsetDateTime instead of a ZoneId & ZonedDateTime. But a time zone is always preferable to a mere offset. A zone is a history of offsets used by the people of particular region.
Strings
To generate a string in standard ISO 8601 format, call toString method.
The ZonedDateTime class wisely extends the standard by appending the time zone name in square brackets.
String output = zdt.toString() ; // YYYY-MM-DDTHH:MM:SS.SSSSSSSSS[tz]
Localize to the user’s preferences. To localize, specify:
FormatStyle to determine how long or abbreviated should the string be.
Locale to determine (a) the human language for translation of name of day, name of month, and such, and (b) the cultural norms deciding issues of abbreviation, capitalization, punctuation, separators, and such.
Locale l = Locale.CANADA_FRENCH ;
DateTimeFormatter f = DateTimeFormatter.ofLocalizedDateTime( FormatStyle.FULL ).withLocale( l );
String output = zdt.format( f );
Dump to console.
System.out.println( "instant.toString(): " + instant ) ;
System.out.println( "output: " + output ) ;
System.out.println( "outputLocalized (always Locale.US on IdeOne.com): " + outputLocalized ) ;
See this code run live at IdeOne.com. Note that IdeOne.com overrides any Locale setting to always use Locale.US.
instant.toString(): 2018-01-23T10:48:32.263Z
output: 2018-01-23T18:48:32.263+08:00[Asia/Kuala_Lumpur]
ooutputLocalized (always Locale.US on IdeOne.com): Tuesday, January 23, 2018 6:48:32 PM MYT
About java.time
The java.time framework is built into Java 8 and later. These classes supplant the troublesome old legacy date-time classes such as java.util.Date, Calendar, & SimpleDateFormat.
The Joda-Time project, now in maintenance mode, advises migration to the java.time classes.
To learn more, see the Oracle Tutorial. And search Stack Overflow for many examples and explanations. Specification is JSR 310.
Where to obtain the java.time classes?
Java SE 8, Java SE 9, and later
Built-in.
Part of the standard Java API with a bundled implementation.
Java 9 adds some minor features and fixes.
Java SE 6 and Java SE 7
Much of the java.time functionality is back-ported to Java 6 & 7 in ThreeTen-Backport.
Android
Later versions of Android bundle implementations of the java.time classes.
For earlier Android, the ThreeTenABP project adapts ThreeTen-Backport (mentioned above). See How to use ThreeTenABP….
The ThreeTen-Extra project extends java.time with additional classes. This project is a proving ground for possible future additions to java.time. You may find some useful classes here such as Interval, YearWeek, YearQuarter, and more.
i have made an application in which i need to perform date conversion.
Here is my code.
GregorianCalendar c = new GregorianCalendar(Locale.GERMANY);
c.set(2011, 04, 29,0,0,0);
String cdate = (String) DateFormat.format("yyyy-MM-dd HH:mm:ss", c.getTime());
Log.i(tag,cdate);
now when i check my LOG here is the output:
04-22 12:44:15.956: INFO/GridCellAdapter(30248): 2011-04-29 HH:00:00
why is the hour field not getting set. i have explicitly passed 0 when i was making the calendar object, still it is display HH in the LOG.
what could be the problem?
thank you in advance.
use lower-case hh:
String cdate = (String) DateFormat.format("yyyy-MM-dd hh:mm:ss", c.getTime());
set c.set(Calendar.HOUR_OF_DAY,0) and it should work.
Have you tried like this?
c.set(Calendar.YEAR, 2009);
c.set(Calendar.MONTH,11);
c.set(Calendar.DAY_OF_MONTH,4);
c.set(Calendar.HOUR_OF_DAY,0);
c.set(Calendar.MINUTE,0);
c.set(Calendar.SECOND,0)
tl;dr
LocalDate.of( 2011 , 4 , 29 ) // Represent April 29, 2011.
.atStartOfDay( ZoneId.of( "America/Montreal" ) ) // Determine the first moment of the day. Often 00:00:00 but not always.
.format( DateTimeFormatter.ISO_LOCAL_DATE_TIME ) // Generate a String representing the value of this date, using standard ISO 8601 format.
.replace( "T" , " " ) // Replace the `T` in the middle of standard ISO 8601 format with a space for readability.
Using java.time
The modern way is with the java.time classes.
If you are trying to get the first moment of the day, do not assume the time 00:00:00. Anomalies in some time zones mean the day may start at another time-of-day such as 01:00:00.
The LocalDate class represents a date-only value without time-of-day and without time zone.
A time zone is crucial in determining a date. For any given moment, the date varies around the globe by zone. For example, a few minutes after midnight in Paris France is a new day while still “yesterday” in Montréal Québec.
Specify a proper time zone name in the format of continent/region, such as America/Montreal, Africa/Casablanca, or Pacific/Auckland. Never use the 3-4 letter abbreviation such as EST or IST as they are not true time zones, not standardized, and not even unique(!).
ZoneId z = ZoneId.of( "America/Montreal" );
LocalDate today = LocalDate.now( z );
You want a specific date in your Question.
LocalDate localDate = LocalDate.of( 2011 , 4 , 29 ) ;
Apply the time zone again in determining the first moment of the day.
ZonedDateTime zdt = localDate.atStartOfDay( z ); // Determine the first moment of the day on this date for this zone.
I recommend always including an indicator of the time zone or offset-from-UTC with your date-time strings. But if you insist, you can use a DateTimeFormatter predefined in java.time that does not include zone/offset: DateTimeFormatter.ISO_LOCAL_DATE_TIME. Merely remove the T from the middle.
String output = zdt.format( DateTimeFormatter.ISO_LOCAL_DATE_TIME )
.replace( "T" , " " ) ;
About java.time
The java.time framework is built into Java 8 and later. These classes supplant the troublesome old legacy date-time classes such as java.util.Date, Calendar, & SimpleDateFormat.
The Joda-Time project, now in maintenance mode, advises migration to the java.time classes.
To learn more, see the Oracle Tutorial. And search Stack Overflow for many examples and explanations. Specification is JSR 310.
Where to obtain the java.time classes?
Java SE 8, Java SE 9, and later
Built-in.
Part of the standard Java API with a bundled implementation.
Java 9 adds some minor features and fixes.
Java SE 6 and Java SE 7
Much of the java.time functionality is back-ported to Java 6 & 7 in ThreeTen-Backport.
Android
The ThreeTenABP project adapts ThreeTen-Backport (mentioned above) for Android specifically.
See How to use ThreeTenABP….