How do Conditions in Java know which Thread to trigger? - java

I am reading the Condition Documentation from Java and I have a misunderstanding. Reading their example of put and take, as you see they have in the function put the line of code: notEmpty.signal() where notEmpty is a Condition from lock.
What I am wondering if what if there are multiple threads that are waiting for the signal of notEmpty. What happens in this case and which thread is triggered?

It make a system call to the OS which handles it. The JVM has no idea which thread if any will wake.
Threads are managed by the OS not the JVM so the best it can do is make the right system calls and let the OS do the rest.

I think the thread calls await() first will be triggered first , and the conclusion comes from the source code.
What did await() do ?
create a wait node and add the node to a fifo queue maintained by Condition
release the lock, you see before you call await(),you need to call lock.lock()
test if signal() was called during step 2 by other thread. if no then park current thread.
What did signal() do ?
take a node in the queue maintained by Condition and put it in the queue maintained by Lock, so if one thread call await() first , it will get into Lock's queue first
When will the parked thread be awaken ?
Apparently,Lock.unlock() will be called after Condition.signal(), Lock.unlock() will get one node in Lock's waiting queue from the head to the tail, see AbstractQueuedSynchronizer#unparkSuccessor,so if you enter Lock's queue first, you will be triggered first.

What I am wondering is, what if there are multiple threads that are waiting for the signal of notEmpty. What happens in this case and which thread is triggered?
As others have already answered, you can not know which thread will be triggered.
so I guess this approach only works for two threads in total?
Depends what "this approach" means. It often does make sense to have several threads awaiting the same condition. The trick is, since you can not know which thread will be awakened, you should write your code in such a way that it does not matter which thread is awakened.
This is an example of a good practice that you should try to follow when you write multi-threaded code, namely: When there's work to be done, it should not matter which thread does the work.

Related

How does wait() and notify() work in Java?

I am new to OS/multithreading and I'm wondering how wait() and notify() work together. I just saw this: Producer Consumer Solution in Java
And I'm kind of confused. Let's say I called wait() in PC.consume() method. When I reach the line that says notify() in PC.produce(), how does this wait in PC.consume() know that THAT is the one being notified? There could be other places that could be notified so how does it exactly know which to notify?
Thanks!
Wait and notify are called on the same object, the one being used as a lock (in the example that’s the object referenced by the local variable pc). The term used in the javadoc (here is the start of the api doc for the notify method) is “monitor”:
Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion of the implementation. A thread waits on an object's monitor by calling one of the wait methods.
The OS has a thread scheduler that is making the arbitrary decision described in the javadoc, it decides things like when threads get context-switched or who gets notified.
So when a thread in consume waits, it goes dormant. Then eventually some other thread (in the example there are only two threads that acquire the lock on pc) calls notify on the same object the first thread called wait on, the scheduler picks the thread to be notified (has to be the first thread here because nothing else is waiting), and the notified thread wakes up and checks if there is anything to consume so it can know whether to proceed.

wait() , notify() - which thread first unlock?

Trying to understand wait() and notify(). I know when thread A went to wait() it will be waked up by notify() from other thread.
But what will happens if threads A,B,C went to wait() in represented order? Who will be waked up by notify()? According to my experiments A thread will be waked up at first. I'm right?
Does it means that system knows in which order threads went to wait() ?
From the documentation for notify(), emphasis mine:
Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion of the implementation. A thread waits on an object's monitor by calling one of the wait methods.
Some other APIs, such as Semaphore, have a concept of "fairness", where you can ensure that threads do proceed in the order in which they blocked.
Section 17.2.2 Notification of Java Language Specification:
There is no guarantee about which thread in the wait set is selected.
So, observed behavior is not guaranteed and should not be relied upon.
No, the VM does not know in which order the threads were put in Waiting state.
When you call notify(), one of them will be back to Alive/Runnable state and there is no way to know which one the VM will choose.
Sometimes they can run in the order they were put in Waiting state, but the specification does not guarantee that. So in a different VMs you can have a completely different results or even in the same VM, if you run the code multiple times.
No, there is no guarantee about the order. The javadoc of the notify method is pretty clear on this:
Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion of the implementation. A thread waits on an object's monitor by calling one of the wait methods.
There's no such an order. Either thread has an equal opportunity to get into runnable state. Actually JVM/OS can see them only as a set of waiting threads, they don't know any order.
In terms of your experiment, to get into a fair conclusion, actually you have to perform it for a huge number of times.
In threads, you can expect an order (FIFO), only if you are using something like a strong Semaphore. Then these threads are put into a waiting queue and fist comer would be first served.

JAVA waking up threads in specific order

Let's say that i have 10 active threads and only 3 resources (of something)
while the first three threads got the resources i want all other thread that try to get the resource to wait but that the wake up or notify will be in f.i.f.o order i mean that the first thread that got the waiting will be the first to wake up.
thank you all.
I think this link explains it quite well: https://www.safaribooksonline.com/library/view/java-threads-second/1565924185/ch04s03.html
When using notify it is impossible to decide or determine in advance which thread will be allowed to execute. I see 2 solutions to this:
Use notifyAll() and let each thread check for itself whether whose turn it is (e.g. by using a synchronised FIFO queue)
Use the method described in the link: let each thread wait on a different object and use 1 thread that has as it's sole purpose to notify the correct object. This seems like the best solution to me.
Java generally doesn't decide these things however if you use a fair lock e.g.
Lock lock = new ReentrantLock(true);
then those threads will acquire the lock in the order they were attempted. This works by disregarding the order thread would be notified and ensuring a lock which is not taken unless the thread is next on the FIFO queue.

Calling notify() on an Object where no other threads are waiting on the same Object cost

What is the cost associated with calling notify() on an Object on which no other Objects have called wait() in Java?
The reason I am interested in this is because I have a worker thread that has a queue of Objects.
The thread loops continuously checking if it has any Objects in the queue that it needs to work with. If it loops and there is nothing in said queue the thread calls wait on on a separate Object.
When another thread adds an Object to the queue it calls notify on the Object that the worker thread would be waiting on regardless if the working thread is actually waiting.
Before anyone says anything, it is all synchronized correctly and won't throw any exceptions/errors.
My question is: is this setup slower then just having the worker thread just continue checking and never call wait() and what is the cost of calling notify() without any threads waiting on the Object?
Thanks for the help in advance :)
If you don't block worker thread, it'll be a busy-wait "spinloop" pattern, e.g. something like:
while (queue.isEmpty()) {
Thread.yield();
}
I've been reading about this model of conditional waiting today (in regards of my own problem :)) and found the following notes about when such model might show superior performance to ordinary wait() - notify() scheme:
... The main exceptions are those cases in which you somehow know that the condition must become true within some very short, boudned amount of time. In such cases, the time wasted spinning might be less than the time required to suspend and resume threads.
The book is "Concurrent Programming in Java: Design Principles and Patterns" by Doug Lea.

Can anyone explain thread monitors and wait?

Someone at work just asked for the reasoning behind having to wrap a wait inside a synchronized.
Honestly I can't see the reasoning. I understand what the javadocs say--that the thread needs to be the owner of the object's monitor, but why? What problems does it prevent? (And if it's actually necessary, why can't the wait method get the monitor itself?)
I'm looking for a fairly in-depth why or maybe a reference to an article. I couldn't find one in a quick google.
Oh, also, how does thread.sleep compare?
edit: Great set of answers--I really wish I could select more than one because they all helped me understand what was going on.
Lots of good answers here already. But just want to mention here that the other MUST DO when using wait() is to do it in a loop dependent on the condition you are waiting for in case you are seeing spurious wakeups, which in my experience do happen.
To wait for some other thread to change a condition to true and notify:
synchronized(o) {
while(! checkCondition()) {
o.wait();
}
}
Of course, these days, I'd recommend just using the new Condition object as it is clearer and has more features (like allowing multiple conditions per lock, being able to check wait queue length, more flexible schedule/interrupt, etc).
Lock lock = new ReentrantLock();
Condition condition = lock.newCondition();
lock.lock();
try {
while (! checkCondition()) {
condition.await();
}
} finally {
lock.unlock();
}
}
If the object does not own the object monitor when it calls Object.wait(), it will not be able to access the object to setup a notify listener until the the monitor is released. Instead, it will be treated as a thread attempting to access a method on a synchronized object.
Or to put it another way, there is no difference between:
public void doStuffOnThisObject()
and the following method:
public void wait()
Both methods will be blocked until the object monitor is released. This is a feature in Java to prevent the state of an object from being updated by more than one thread. It simply has unintended consequences on the wait() method.
Presumably, the wait() method is not synchronized because that could create situations where the Thread has multiple locks on the object. (See Java Language Specifications/Locking for more info on this.) Multiple locks are a problem because the wait() method will only undo one lock. If the method were synchronized, it would guarantee that only the method's lock would be undone while still leaving a potential outer lock undone. This would create a deadlock condition in the code.
To answer your question on Thread.sleep(), Thread.sleep() does not guarantee that whatever condition you are waiting on has been met. Using Object.wait() and Object.notify() allows a programmer to manually implement blocking. The threads will unblock once a notify is sent that a condition has been met. e.g. A read from disk has finished and data can be processed by the thread. Thread.sleep() would require the programmer to poll if the condition has been met, then fall back to sleep if it has not.
It needs to own the monitor, since the purpose of the wait() is to release the monitor and let other threads obtain the monitor to do processing of their own. The purpose of these methods (wait/notify) is to coordinate access to synchronized code blocks between two threads that require each other to perform some functionality. It is not simply a matter of making sure access to a data structure is threadsafe, but to coordinate events between multiple threads.
A classic example would be a producer/consumer case where one thread pushes data to a queue, and another thread consumes the data. The consuming thread would always require the monitor to access the queue, but would release the monitor once the queue is empty. The producer thread would then only get access to write to the thread when the consumer is no longer processing. It would notify the consumer thread once it has pushed more data into the queue, so it can regain the monitor and access the queue again.
Wait gives up the monitor, so you must have it to give it up. Notify must have the monitor as well.
The main reason why you want to do this is to ensure that you have the monitor when you come back from wait() -- typically, you are using the wait/notify protocol to protect some shared resource and you want it to be safe to touch it when wait returns. The same with notify -- usually you are changing something and then calling notify() -- you want to have the monitor, make changes, and call notify().
If you made a function like this:
public void synchWait() {
syncronized { wait(); }
}
You would not have the monitor when wait returned -- you could get it, but you might not get it next.
Here's my understanding on why the restriction is actually a requirement. I'm basing this on a C++ monitor implementation I made a while back by combining a mutex and a condition variable.
In a mutex+condition_variable=monitor system, the wait call sets the condition variable into a wait state and releases the mutex. The condition variable is shared state, so it needs to be locked to avoid race conditions between threads that want to wait and threads that want to notify. Instead of introducing yet another mutex to lock its state, the existing mutex is used. In Java, the mutex is correctly locked when the about-to-wait thread owns the monitor.
Mostly wait is done if there is a condition say a queue is empty.
If(queue is empty)
queue.wait();
Let us assume the queue is empty.
In case if the current thread pre-empts after checking the queue, then if another
thread adds few elements to queue, the current thread will not know and will go for wait
state. Thats wrong.
So we should have something like
Synchornized(queue)
{
if(queue is empty)
queue.wait();
}
Now let us consider what if they made wait itself as synchronized. As already mentioned in one of the comments, it releases only one lock. That means if wait() was synchronized in the above code only one lock would have been released. Implies that current thread will go for wait with the lock for the queue.

Categories