Why Spring's #Transactional works without proxy? - java

I got interested in how Spring's #Transactional works internally, but everywhere I read about it there's a concept of proxy. Proxies are supposed to be autowired in place of real bean and "decorate" base method with additional transaction handling methods.
The theory is quite clear to me and makes perfect sense so I tried to check how it works in action.
I created a Spring Boot application with a basic controller and service layers and marked one method with #Transactional annotation. Service looks like this:
public class TestService implements ITestService {
#PersistenceContext
EntityManager entityManager;
#Transactional
public void doSomething() {
System.out.println("Service...");
entityManager.persist(new TestEntity("XYZ"));
}}
Controller calls the service:
public class TestController {
#Autowired
ITestService testService;
#PostMapping("/doSomething")
public ResponseEntity addHero() {
testService.doSomething();
System.out.println(Proxy.isProxyClass(testService.getClass()));
System.out.println(testService);
return new ResponseEntity(HttpStatus.OK);
}}
The whole thing works, new entity is persisted to the DB but the whole point of my concern is the output:
Service...
false
com.example.demo.TestService#7fb48179
It seems that the service class was injected explicitly instead of proxy class. Not only "isProxy" returns false, but also the class output ("com.example.demo.TestService#7fb48179") suggests its not a proxy.
Could you please help me out with that? Why wasn't the proxy injected, and how does it even work without proxy? Is there any way I can "force" it to be proxied, and if so - why the proxy is not injected by default by Spring ?
There's not much to be added, this is a really simple app. Application properties are nothing fancy either :
spring.datasource.driver-class-name=com.mysql.jdbc.Driver
spring.datasource.username=root
spring.datasource.password=superSecretPassword
spring.datasource.url=jdbc:mysql://localhost:3306/heroes?serverTimezone=UTC
spring.jpa.hibernate.ddl-auto=create-drop
Thank you in advance!

Your understanding is correct, but your test is flawed:
When the spring docs say "proxy", they are referring to the pattern, not a particular implementation. Spring supports various strategies for creating proxy objects. One of these is the java.lang.reflect.Proxy you tested for, but by default spring uses a more advanced technique that generates a new class definition at runtime that subclasses the actual implementation class of the service (and overrides all methods to apply transaction advice). You can see this in action by checking testService.getClass(), which will refer to that generated class, or by halting execution in a debugger, and inspecting the fields of targetService.
The reason that toString() refers to the original object is that the proxy implements toString() by delegating to its target object, which uses its class name to build the String.

Related

#Transactional annotation at service layer does not rollback, jdbcTemplate [duplicate]

I have recently noticed that Spring successfully intercepts intra class function calls in a #Configuration class but not in a regular bean.
A call like this
#Repository
public class CustomerDAO {
#Transactional(value=TxType.REQUIRED)
public void saveCustomer() {
// some DB stuff here...
saveCustomer2();
}
#Transactional(value=TxType.REQUIRES_NEW)
public void saveCustomer2() {
// more DB stuff here
}
}
fails to start a new transaction because while the code of saveCustomer() executes in the CustomerDAO proxy, the code of saveCustomer2() gets executed in the unwrapped CustomerDAO class, as I can see by looking at 'this' in the debugger, and so Spring has no chance to intercept the call to saveCustomer2.
However, in the following example, when transactionManager() calls createDataSource() it is correctly intercepted and calls createDataSource() of the proxy, not of the unwrapped class, as evidenced by looking at 'this' in the debugger.
#Configuration
public class PersistenceJPAConfig {
#Bean
public DriverManagerDataSource createDataSource() {
DriverManagerDataSource dataSource = new DriverManagerDataSource();
//dataSource.set ... DB stuff here
return dataSource;
}
#Bean
public PlatformTransactionManager transactionManager( ){
DataSourceTransactionManager transactionManager = new DataSourceTransactionManager(createDataSource());
return transactionManager;
}
}
So my question is, why can Spring correctly intercept the intra class function calls in the second example, but not in the first. Is it using different types of dynamic proxies?
Edit:
From the answers here and other sources I now understand the following:
#Transactional is implemented using Spring AOP, where the proxy pattern is carried out by wrapping/composition of the user class. The AOP proxy is generic enough so that many Aspects can be chained together, and may be a CGLib proxy or a Java Dynamic Proxy.
In the #Configuration class, Spring also uses CGLib to create an enhanced class which inherits from the user #Configuration class, and overrides the user's #Bean functions with ones that do some extra work before calling the user's/super function such as check if this is the first invocation of the function or not. Is this class a proxy? It depends on the definition. You may say that it is a proxy which uses inheritance from the real object instead of wrapping it using composition.
To sum up, from the answers given here I understand these are two entirely different mechanisms. Why these design choices were made is another, open question.
Is it using different types of dynamic proxies?
Almost exactly
Let's figure out what's the difference between #Configuration classes and AOP proxies answering the following questions:
Why self-invoked #Transactional method has no transactional semantics even though Spring is capable of intercepting self-invoked methods?
How #Configuration and AOP are related?
Why self-invoked #Transactional method has no transactional semantics?
Short answer:
This is how AOP made.
Long answer:
Declarative transaction management relies on AOP (for the majority of Spring applications on Spring AOP)
The Spring Framework’s declarative transaction management is made possible with Spring aspect-oriented programming (AOP)
It is proxy-based (§5.8.1. Understanding AOP Proxies)
Spring AOP is proxy-based.
From the same paragraph SimplePojo.java:
public class SimplePojo implements Pojo {
public void foo() {
// this next method invocation is a direct call on the 'this' reference
this.bar();
}
public void bar() {
// some logic...
}
}
And a snippet proxying it:
public class Main {
public static void main(String[] args) {
ProxyFactory factory = new ProxyFactory(new SimplePojo());
factory.addInterface(Pojo.class);
factory.addAdvice(new RetryAdvice());
Pojo pojo = (Pojo) factory.getProxy();
// this is a method call on the proxy!
pojo.foo();
}
}
The key thing to understand here is that the client code inside the main(..) method of the Main class has a reference to the proxy.
This means that method calls on that object reference are calls on the proxy.
As a result, the proxy can delegate to all of the interceptors (advice) that are relevant to that particular method call.
However, once the call has finally reached the target object (the SimplePojo, reference in this case), any method calls that it may make on itself, such as this.bar() or this.foo(), are going to be invoked against the this reference, and not the proxy.
This has important implications. It means that self-invocation is not going to result in the advice associated with a method invocation getting a chance to execute.
(Key parts are emphasized.)
You may think that aop works as follows:
Imagine we have a Foo class which we want to proxy:
Foo.java:
public class Foo {
public int getInt() {
return 42;
}
}
There is nothing special. Just getInt method returning 42
An interceptor:
Interceptor.java:
public interface Interceptor {
Object invoke(InterceptingFoo interceptingFoo);
}
LogInterceptor.java (for demonstration):
public class LogInterceptor implements Interceptor {
#Override
public Object invoke(InterceptingFoo interceptingFoo) {
System.out.println("log. before");
try {
return interceptingFoo.getInt();
} finally {
System.out.println("log. after");
}
}
}
InvokeTargetInterceptor.java:
public class InvokeTargetInterceptor implements Interceptor {
#Override
public Object invoke(InterceptingFoo interceptingFoo) {
try {
System.out.println("Invoking target");
Object targetRetVal = interceptingFoo.method.invoke(interceptingFoo.target);
System.out.println("Target returned " + targetRetVal);
return targetRetVal;
} catch (Throwable t) {
throw new RuntimeException(t);
} finally {
System.out.println("Invoked target");
}
}
}
Finally InterceptingFoo.java:
public class InterceptingFoo extends Foo {
public Foo target;
public List<Interceptor> interceptors = new ArrayList<>();
public int index = 0;
public Method method;
#Override
public int getInt() {
try {
Interceptor interceptor = interceptors.get(index++);
return (Integer) interceptor.invoke(this);
} finally {
index--;
}
}
}
Wiring everything together:
public static void main(String[] args) throws Throwable {
Foo target = new Foo();
InterceptingFoo interceptingFoo = new InterceptingFoo();
interceptingFoo.method = Foo.class.getDeclaredMethod("getInt");
interceptingFoo.target = target;
interceptingFoo.interceptors.add(new LogInterceptor());
interceptingFoo.interceptors.add(new InvokeTargetInterceptor());
interceptingFoo.getInt();
interceptingFoo.getInt();
}
Will print:
log. before
Invoking target
Target returned 42
Invoked target
log. after
log. before
Invoking target
Target returned 42
Invoked target
log. after
Now let's take a look at ReflectiveMethodInvocation.
Here is a part of its proceed method:
Object interceptorOrInterceptionAdvice = this.interceptorsAndDynamicMethodMatchers.get(++this.currentInterceptorIndex);
++this.currentInterceptorIndex should look familiar now
Here is the target
And there are interceptors
the method
the index
You may try introducing several aspects into your application and see the stack growing at the proceed method when advised method is invoked
Finally everything ends up at MethodProxy.
From its invoke method javadoc:
Invoke the original method, on a different object of the same type.
And as I mentioned previously documentation:
once the call has finally reached the target object any method calls that it may make on itself are going to be invoked against the this reference, and not the proxy
I hope now, more or less, it's clear why.
How #Configuration and AOP are related?
The answer is they are not related.
So Spring here is free to do whatever it wants. Here it is not tied to the proxy AOP semantics.
It enhances such classes using ConfigurationClassEnhancer.
Take a look at:
CALLBACKS
BeanMethodInterceptor
BeanFactoryAwareMethodInterceptor
Returning to the question
If Spring can successfully intercept intra class function calls in a #Configuration class, why does it not support it in a regular bean?
I hope from technical point of view it is clear why.
Now my thoughts from non-technical side:
I think it is not done because Spring AOP is here long enough...
Since Spring Framework 5 the Spring WebFlux framework has been introduced.
Currently Spring Team is working hard towards enhancing reactive programming model
See some notable recent blog posts:
Reactive Transactions with Spring
Spring Data R2DBC 1.0 M2 and Spring Boot starter released
Going Reactive with Spring, Coroutines and Kotlin Flow
More and more features towards less-proxying approach of building Spring applications are introduced. (see this commit for example)
So I think that even though it might be possible to do what you've described it is far from Spring Team's #1 priority for now
Because AOP proxies and #Configuration class serve a different purpose, and are implemented in a significantly different ways (even though both involve using proxies).
Basically, AOP uses composition while #Configuration uses inheritance.
AOP proxies
The way these work is basically that they create proxies that do the relevant advice logic before/after delegating the call to the original (proxied) object. The container registers this proxy instead of the proxied object itself, so all dependencies are set to this proxy and all calls from one bean to another go through this proxy. However, the proxied object itself has no pointer to the proxy (it doesn't know it's proxied, only the proxy has a pointer to the target object). So any calls within that object to other methods don't go through the proxy.
(I'm only adding this here for contrast with #Configuration, since you seem to have correct understanding of this part.)
#Configuration
Now while the objects that you usually apply the AOP proxy to are a standard part of your application, the #Configuration class is different - for one, you probably never intend to create any instances of that class directly yourself. This class truly is just a way to write configuration of the bean container, has no meaning outside Spring and you know that it will be used by Spring in a special way and that it has some special semantics outside of just plain Java code - e.g. that #Bean-annotated methods actually define Spring beans.
Because of this, Spring can do much more radical things to this class without worrying that it will break something in your code (remember, you know that you only provide this class for Spring, and you aren't going to ever create or use its instance directly).
What it actually does is it creates a proxy that's subclass of the #Configuration class. This way, it can intercept invocation of every (non-final non-private) method of the #Configuration class, even within the same object (because the methods are effectively all overriden by the proxy, and Java has all the methods virtual). The proxy does exactly this to redirect any method calls that it recognizes to be (semantically) references to Spring beans to the actual bean instances instead of invoking the superclass method.
read a bit spring source code. I try to answer it.
the point is how spring deal with the #Configurationand #bean.
in the ConfigurationClassPostProcessor which is a BeanFactoryPostProcessor, it will enhance all ConfigurationClasses and creat a Enhancer as a subClass.
this Enhancer register two CALLBACKS(BeanMethodInterceptor,BeanFactoryAwareMethodInterceptor).
you call PersistenceJPAConfig method will go through the CALLBACKS. in BeanMethodInterceptor,it will get bean from spring container.
it may be not clearly. you can see the source code in ConfigurationClassEnhancer.java BeanMethodInterceptor.ConfigurationClassPostProcessor.java enhanceConfigurationClasses
You can't call #Transactional method in same class
It's a limitation of Spring AOP (dynamic objects and cglib).
If you configure Spring to use AspectJ to handle the transactions, your code will work.
The simple and probably best alternative is to refactor your code. For example one class that handles users and one that process each user. Then default transaction handling with Spring AOP will work.
Also #Transactional should be on Service layer and not on #Repository
transactions belong on the Service layer. It's the one that knows about units of work and use cases. It's the right answer if you have several DAOs injected into a Service that need to work together in a single transaction.
So you need to rethink your transaction approach, so your methods can be reuse in a flow including several other DAO operations that are roll-able
Spring uses proxying for method invocation and when you use this... it bypasses that proxy. For #Bean annotations Spring uses reflection to find them.

How to set the attributes to a generic #Service class in Spring Boot?

I'm new to Spring Boot, so bare me with my basic question here.
I want to build a generic #Service class that has well defined methods that don't even need to be overwritten.
The only thing this class needs is to adjust its attributes based on which Controller method was called. Basically, this class works as a Job handler that needs to adjust some parameters so its methods can perform what they're supposed to compute. The job will always have the same workflow, calling the methods in the same order, but it will obtain different results depending on the parameters/attributes it receives, which, as I said before, are defined by the controller methods.
The only attribute it has beside the ones that adjust the job's workflow is an autowired #Repository object that will save the results of the job in a database.
Maybe I could simply instantiate an Job Handler object and call a constructor with the paramaters I need for the job, but I don't know what is the "Spring way" of doing this, considering how Spring works with dependency injection and I need a #Repository object embbeded into the Job Handler service.
I would really appreciate if anyone could write a sample code/example so I could understand how this can be done with Spring Boot so I don't have to duplicate code or Service Classes.
The Spring way for this case would be to create a Bean of your JobHandler, where you inject the necessary dependencies, like your Repository:
#Configuration
class MyConfiguration {
#Bean
MyJobHandler myJobHandler(MyRepository myRepository) {
return new MyJobHandler (myrepository);
}
}
Alternatively, if you do not want a configuration class, you could declare your JobHandler as a Component and inject the repository in the constructor:
#Component
class MyJobHandler {
private MyRepository myRepository;
public MyJobHandler myJobHandler(MyRepository myRepository) {
this.myRepository = myRepository;
}
}

Create proxy for a interface, which could inject by #Autowired, proxy invokes different implement by key parameter

I want to define a annotation like #PlatformRelated, once it is marked in a interface, there will be a proxy bean at spring context, and this proxy bean should be #Priority.I want this proxy could invoke different implement according to key parameter #KeyPrameter.And I still wanna use spring features like #Async,#Trasaction,etc... at my Implement1 and Implement2.
#PlatformRelated
interface MyInterface {
method(#KeyPrameter String parameter);
}
#Component
class Implement1 implements MyInterface {
method(String parameter){
//do something 111
}
}
#Component
class Implement2 implements MyInterface {
method(String parameter){
//do something 222
}
}
#Service
class BusinessService{
#Autowired
private MyInterface myInterface;
public void doSomething() {
myInterface.method("key1");
//Implement1 work
myInterface.method("key2");
//Implement2 work
}
}
Do you guys have some good idea to complete it?
I must admit I haven't totally understood the meaning #Priority, however, I can say that if you want to implement this feature in spring, you should probably take a look at Bean Post Processors.
BeanPostProcessors are essentially a hook to Bean Creation process in spring intended for altering bean behavior.
Among other things, they allow wrapping the underlying bean into the proxy (CGLIB/java.lang.Proxy if you're working with interfaces, or even using programmatically Spring AOP), these proxies can provide a hook to the method execution that can read your annotations (like mentioned #KeyParameter) and execute a code in a way similar to Aspect's code that you already make use of.
Not all bean post processor wrap the bean into the proxy. For example, if you want to implement a BPP that uses "#Autowire", you will return the same bean, just "inject" (read, put by reflection) its dependencies. On the other hand, if you want to implement with BPP #Transactional behavior, then yes, you should wrap the bean into a proxy that would take care of transaction management capabilities before and after the method execution.
It's totally ok to have a spring bean that gets "altered" by many post processors, some of them would wrap it into a proxy other will just modify-and-return the same bean, If there are many BPP-s that wrap the bean into proxy we'll get "proxy inside proxy inside proxy" (you get the idea). Each layer of proxy will handle one specific behavior.
As an example, I suggest you take a look at existing Spring postprocessors, or, for instance, a source code of the following library: Spring Boot metering integration library
This library contains some implementations of post processors that allow metrics infrastructure integration by defining annotations on methods of Spring Beans.

Why #Scheduled annotation doesn't work with #Transaction annotation. Spring Boot [duplicate]

This question already has answers here:
Spring3 's #Transactional #Scheduled not committed to DB?
(3 answers)
Closed 2 years ago.
I have a question:
Why when we annotate method with #Scheduled and #Transaction, transaction doesn't work?
I know that the #Scheduled call my class instead of proxy class that created by Spring, but can't understand this behavior.
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.transaction.annotation.Transactional;
#Service
public class UserServiceImpl implements UserService {
#Override
#Scheduled(fixedRateString = "${somestring}",initialDelayString = "${anotherstring}")
#Transactional
public void doSomething() {
}
}
I have two solutions of this problem:
Call proxy from Scheduled method.
Implement ConcurrentTaskScheduler
and replace object of ScheduledMethodRunnable(that is with my class)
with object of ScheduledMethodRunnable with proxy.
But this solutions is very inconvenient.
Can you explaim me why #Scheduled works like this?
Thank you!
It happens because to process both annotations MAGIC is used.
I suppose there are several things happens:
UserServiceImpl is created.
#Scheduled annotation is processed and reference to bean is stored to invoke it at appropriate time.
#Transactional annotation is processed. It create proxy which store reference to original bean. Original bean is replaced to proxy in application context.
If step 2 and 3 passed in different order then you had no problem.
I don't know how to control order in which annotation is processed. I don't even sure it is possible at all.
There is basically two solution.
Use different kind of magic to process #Transaction. Default way is to create proxy object, but it is possible to instruct Spring to instrument current class.
Split this to two class each of them will have method with only one annotation.
Example:
#Service
public class UserServiceImpl implements UserService {
#Override
#Transactional
public void doSomething() {
}
}
#Service
public class UserServiceScheduler {
#Inject
private UserService service;
#Scheduled(fixedRateString = "${somestring}",initialDelayString = "${anotherstring}")
public void doSomething() {
service.doSomething();
}
}
I'm personally recommend second approach.
The Question is not private or public, the question is: How is it invoked and which AOP implementation you use!
If you use (default) Spring Proxy AOP, then all AOP functionality provided by Spring (like #Transational) will only be taken into account if the call goes through the proxy. -- This is normally the case if the annotated method is invoked from another bean.
This has two implications:
Because private methods must not be invoked from another bean (the exception is reflection), their #Transactional Annotation is not taken into account.
If the method is public, but it is invoked from the same bean, it will not be taken into account either (this statement is only correct if (default) Spring Proxy AOP is used).
you can also use the aspectJ mode, instead of the Spring Proxies, that will overcome the problem. And the AspectJ Transactional Aspects are woven even into private methods (checked for Spring 3.0).
refer: http://docs.spring.io/spring/docs/3.2.4.RELEASE/spring-framework-reference/html/aop.html#aop-proxying

Spring Data CrudRepository and Transactions

I'm trying to implement transactions on a CrudRepository Interface. I'm a beginner with this and my current problem is that when receiving a lot of requests from different clients, I'm sometimes getting a duplicate.
To avoid that I wanted to use SQL Transactions and their implementation with Spring but I'm unable to get it working.
Here is how I've tried to do it :
#Repository
#EnableTransactionManagement
#Transactional
public interface ApplicationPackageDao extends CrudRepository<ApplicationPackage, Long> {
/**
* Find if a record exists for this package name ,
* #param packageName
* #return
*/
#Transactional
ApplicationPackage findByPackageName(String packageName);
}
However it doesn't seem to work.
I tried to add the #Transactionnal annotations earlier in the Java methods I'm calling but I can't get it working either.
How am I supposed to work with transactions on CrudRepository ?
Or am I using completely the wrong thing?
In addition to crm86's answer some more notes to the #Transactional annotation:
It seems to be best practice to annotate the entry points into your application (e.g. your web controller methods or the main method of a scheduled batch). By using the annotation attribute TxType you can ensure constraints/conditions in methods which are located deeper in your application (e.g. TxType.MANDATORY would throw if no trx-context is running, etc.).
The #Transactional annotation has only an effect if the class is loaded as spring bean (e.g. #Component annotation at class level).
Remember that only RuntimeException's lead to a rollback. If you want a checked Exception leading to a rollback you have to enumerate each such Exception by using the attribute rollbackOn.
The annotation at class level is valid for all public methods of this class. Method level annotations override those at the class level. The repeated annotation in your example above (first at class level, then at method level) has no effect.
What I suggest:
Check your context and configuration classes with #Configuration annotation. From the documentation:
The #EnableTransactionManagement annotation provides equivalent
support if you are using Java based configuration. Simply add the
annotation to a #Configuration class
#EnableTransactionManagement and only looks
for #Transactional on beans in the same application context they are
defined in
Then you could use #Transactional in your service even in a method
Hope it helps

Categories