I'm working on a vertical scrolling game, and I'm using a thread to generate new enemies every 2 seconds. Each enemy is an image in a JPanel. For some reason, The generated enemies are not showing up in the JFrame, but they are present. When the player collides with one of the enemies, all the enemies show up.
Here's the code:
private void checkCollision() {
for(AlienShip as : enemies) {
if(player.getBounds().intersects(as.getBounds()))
player.setVisible(false);
}
}
private void setAlien() {
alien = new AlienShip();
add(alien);
enemies.add(alien);
System.out.println("Enemies: " + enemies.size());
}
public Thread alienGenerator() {
for(int i = 0; i < 3; i++) { // these are being drawn
setAlien();
}
return new Thread(new Runnable() {
#Override
public void run() {
int sleepTime = 2000;
while(true) {
try {
Thread.sleep(sleepTime);
} catch(InterruptedException e) {
System.out.println(e);
}
setAlien(); //these aren't
}
}
});
}
private void gameLoop() {
alienGenerator().start();
mainTimer = new Timer(50, new ActionListener() {
#Override
public void actionPerformed(ActionEvent e) {
repaint();
checkCollision();
}
});
mainTimer.start();
}
It always seems that you're Darned If You Do And Darned If You Don't. As far as I'm concerned the code you had placed in your earlier post was adequate, as a matter of fact, it was still lacking (no PlayerShip Class). The code example in this post does even less justice. Never the less......
Before I get started I just want you to know that I personally would have tackled this task somewhat differently and the meager assistance provided here will be solely based on the code you have already provided in this and previous posts.
The reason you are not seeing your Alien Ships displaying onto the Game Board upon creation is because you don't revalidate the board panel. As you currently have your code now this can be done from within the Board.setAlien() method where the Alien Ships are added. Directly under the code lines:
alien = new AlienShip();
add(alien);
enemies.add(alien);
add the code line: revalidate();, so the code would look like this:
alien = new AlienShip();
add(alien);
enemies.add(alien);
revalidate();
Your Alien Ships should now display.
On A Side Note:
What is to happen when any Alien Ship actually makes it to the bottom of the Game Board? As a suggestion, have them re-spawn to the top of the game board (serves ya right fer missin em). This can be done from within the AlienShip.scrollShip() method by checking to see if the Alien Ship has reached the bottom of the board, for example:
public void scrollShip() {
if (getY() + 1 > this.getParent().getHeight()) {
setY(0 - PANEL_HEIGHT);
}
else {
setY(getY() + 1);
}
}
In my opinion, PANEL_HEIGHT is the wrong field name to use. I think it would be more appropriate to use something like ALIEN_SHIP_WIDTH and ALIEN_SHIP_HEIGHT. Same for the variables panelX and panelY, could be alienShipX and alienShipY. Food for thought.
As you can see in the code above the current Game Board height is acquired by polling the Game Board's getHeight() method with: this.getParent().getHeight(). This allows you to change the Game Board size at any time and the Alien Ships will know where that current boundary is when scrolling down. All this then means that the setResizable(false); property setting done in the Main Class for the Game's JFrame window can now be resizable: setResizable(true);.
You will also notice that when the Alien Ship is re-spawned at top of the Game Board it is actually out of site and it flows into view as it moves downward. I think this is a much smoother transition into the gaming area rather than just popping into view. This is accomplished with the setY(0 - PANEL_HEIGHT); code line above. As a matter of fact even when the game initially starts, your Alien Ships should flow into the the gaming area this way and that can be done from within the AlienShip.initAlienShip() method by initializing the panelY variable to panelY = -PANEL_HEIGHT;.
This now takes me to the initialization of the PANEL_WIDTH and PANEL_HEIGHT fields. The values seem enormous (224 and 250 respectively). Of course you may have set to these sizes for collision testing purposes, etc but I think an image size of 64 x 35 would most likely suffice:
This image should be a PNG image with a transparent background which then eliminates the need for the setBackground(Color.BLUE); code line located within the AlienShip.initAlienShip() method.
The AlienShip.getX() and AlienShip.getY() methods should be overridden:
#Override
public int getX() { ... }
#Override
public int getY() { ... }
I think extending the AlienShip Class to JLabel would be better than to JPanel. To JPanel seems like overkill:
public class AlienShip extends JLabel { ... }
Adding a background image to the Game Board can add pizazz to the game. This can be achieved by adding the following code to the Board.paintComponent() method:
#Override
public void paintComponent(Graphics g) {
super.paintComponent(g);
ImageIcon imgIcon = new ImageIcon("images/StarBackground.png");
Image img = imgIcon.getImage();
g.drawImage(img, 0, 0, this.getSize().width, this.getSize().height, this);
}
Images can be acquired here.
This should keep you going for a while. Before to long it'll be Alien mayhem.
Related
Hello fellow programmers,
I've ran into a little issue in my code that I can't seem to crack. It has to do with the Jframe; Graphics area of Java. The code that I'll post below, is over a drawing method. Which purpose is to draw the "rooms" that are in a ArrayList roomList which is located in another class hence lvl. before. This off-course doesn't happen, hence the post on here.
public class LevelGUI implements Observer {
private Level lv;
private Display d;
public LevelGUI(Level level, String name) {
this.lv = level;
JFrame frame = new JFrame(name);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
d = new Display(lv, 500, 500);
frame.getContentPane().add(d);
frame.pack();
frame.setLocation(0, 0);
frame.setVisible(true);
}
private class Display extends JPanel {
public Display(Level fp, int x, int y) {
addKeyListener(new Listener());
setBackground(Color.GRAY);
setPreferredSize(new Dimension(x + 20, y + 20));
setFocusable(true);
}
public void paintComponent(Graphics g) {
super.paintComponent(g);
draw(g);
}
private void draw(Graphics g) {
Level lvl = new Level();
for(int i = 0; i < lvl.roomList.size(); i++) {
Room room = lvl.roomList.get(i);
g.setColor(room.floorColor);
g.drawRect(room.posX, room.posY, room.roomWidth, room.roomHeight);
}
}
}
}
To get some background info on the program. roomList is the ArrayList, and it is filled with various different sized and colored rooms. The rooms themselves are objects.
Here comes first Level class:
public class Level extends Observable {
private boolean Switch = true;
public ArrayList<Room> roomList = new ArrayList<Room>();
(...)
}
Here is the Class Room() that is used to create the rooms.
public class Room {
Color floorColor;
int roomWidth;
int roomHeight;
int posX;
int posY;
public Room(int dx, int dy, Color color) {
this.floorColor = color;
this.roomHeight = dy;
this.roomWidth = dx;
this.posY = 0;
this.posX = 0;
}
(...)
}
I've managed to locate where the problem is thought to occur, and it's the code in the for-loop. I tried switching the roomList.size() for an integer to test if it was the loop., But it wasn't. It is possible to draw a figure outside of the for-loop.
and again, the problem isn't an error message, the program simply doesn't draw the rooms that I've instructed it to draw in the method draw().
The display output looks like this:
Thanks beforehand!
Be aware that the paintComponent() method is invoked by Swing whenever the framework thinks the component needs to be rendered on screen. This usually is when the window is getting visible - initially or because some other window no longer hides the component. Such events are out of your control.
So your application should create a state and be ready to draw it anytime. Therefore you do not create state (like a level) inside the paint() or paintComponent() method. Put that elsewhere - if need be into the constructor.
Looking at you code:
As you are creating a new level inside paintComponent()/draw(), is it correct to assume that this level has no rooms associated? In that case the method is right to return without having painted anything.
If your application thinks the screen should be updated call repaint(), knowing that the paint() method will be called by the framework soon.
I have a class that creates a JFrame on which a simple game of Tetris will be played, I also have a class DrawSquare, which does exactly what you think it does, however when I initialise a new instance of the DrawSquare class and then try to draw that one and all the others to my JFrame things start to go wrong, the code is intended for one square to be drawn in the top left hand corner and then drop down a line at a time until it reaches the bottom of the frame (it does this), then a new square should be drawn in the second column at the top of the frame, as well as our first square in the bottom left hand corner, however once it starts dropping down the second column I get a series of squares drawn in a diagonal towards the top right hand corner. At the moment all I plan for the code to do is have a square drop from the top row of each column and stop when it reaches the bottom of the frame, am I storing the instance of the class at the wrong point in the code? Edit: In fact I'm pretty sure it's that, I'd want to store that instance when it reaches the bottom. Does every instance of the class need its own timer?
public class Tetris extends JFrame {
public static final int height = 20; //height of a square
public static final int width = 20; //width of a square
public int xPos = 0; //column number of the square
public int yPos = 0; //row number of the square
public static void main(String[] args){
Tetris tet = new Tetris();
}
public Tetris() {
DrawSquare square = new DrawSquare(xPos, yPos, width, height, false);
add(square);
DrawSquare.squares.add(square);
setSize(220,440);
setLocationRelativeTo(null);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
}
}
public class DrawSquare extends JPanel {
public static List<DrawSquare> squares = new ArrayList<>();
protected int xPos;
protected int yPos;
protected int width;
protected int height;
protected Timer timer = new Timer(200, new TimerListener());
protected boolean endFall = false;
public DrawSquare(int xPos, int yPos, int width, int height, boolean endFall) {
this.xPos = xPos;
this.yPos = yPos;
this.width = width;
this.height = height;
this.endFall = endFall;
this.timer.start();
}
class TimerListener implements ActionListener {
#Override
public void actionPerformed(ActionEvent e) {
yPos++;
if (yPos > 19) {
yPos = 19;
endFall = true;
}
if (endFall == true) {
timer.stop();
if (xPos > 8) {
xPos = 8;
}
xPos++;
endFall = false;
yPos = 0;
DrawSquare newSqr = new DrawSquare(xPos, yPos, width, height, true);
squares.add(newSqr);
add(newSqr);
}
timer.start();
repaint();
}
}
protected void paintComponent(Graphics g) {
super.paintComponent(g);
Iterator<DrawSquare> it = squares.iterator();
while (it.hasNext()) {
DrawSquare square = it.next();
g.fillRect(square.xPos * square.width, square.yPos * square.height, square.width, square.height);
}
}
}
You are giving a great example of the fundamental misunderstanding beginners have of how the swing (and many other graphics toolkits) render stuff to the screen. I will give an overview of that, as it pertains to you, then answer your immediate questions and explain how to fix your code.
It took me a (very long) while to figure out how this stuff works my self, so please bear with me. I hope that reading through this answer will help you in a much more general way than answering this one question.
Asynchronous Drawing
Swing draws windows in a totally different sequence (the event dispatching thread) than the ones that modifies the state of your program (the main thread, as well as timer and other threads). You can modify the coordinates of things you want to draw as many times as you like in the main thread, but the changes will not show up until you request them to by calling JComponent.repaint() on one of your components. This will generally trigger a nearly-immediate repaint of the component, displaying your latest state.
If you change the coordinates of a widget like a JPanel in your main thread, it will likely show up immediately. This is because the methods you use to set the position will trigger repaint requests internally.
A repaint request gets queued and eventually processed by the event dispatching thread. This is where the paintComponent method gets called. The paintComponent method should therefore only draw. It should not do any other logic. If it needs to know how to draw some specialized stuff, the information for that should be stashed somewhere accessible by one of the other threads.
In short, you make calculations and update state as you need in the main thread or the timer. Then you access that state in the event dispatching thread via the paintComponent method.
Timers
There are a bunch of ways you can use timers to run your GUI, but you only really need one for the current application. In your case, the timer only needs to do two things:
Check if a block has fallen all the way down and doesn't need to move any more.
Trigger a repaint of your panel.
You do not need to compute the updated position of the blocks in the timer if the block's position is a simple equation with respect to time. If you know the time at which a block appears on the screen and the current time, you know how far the block has moved, so you can paint it in the correct spot based purely on the elapsed time.
If you had a more complicated system with paths that you could not predict purely on the time, I would recommend sticking the movement logic into the timer events as well. In that case, you might consider having multiple timers, or switching to java.util.timer. But again, this does not apply to your current case (even with multiple blocks).
Model and View
The model of your program is the thing that holds the abstract state. In this case, the positions and other meta-data about all your blocks. The view is the part that does the rendering. It is usually a good idea to separate these two things. There is often a third component to GUIs, called the controller, which connects the model and view to the user. We will ignore it here since you are not asking about controlling the blocks yet.
In your current code, you have attempted to represent your blocks with an extension to JPanel and a static list of existing blocks. While a JPanel may be a convenient way to display rectangular blocks with some custom graphics in them (like icons), I would recommend that you start by drawing the blocks directly using the Graphics object passed to paintComponent. At least initially, it will help you to think of the drawing code and the game logic as separate entities.
Final Rant Before Code Dump
I have made rewrites to your code to encapsulate all the ranting I did before into code. Here are some additional minor points about what I did that may help explain my reasoning:
When you call JFrame.add(...) to add a component to a JFrame, you are really calling JFrame.getContentPane().add(...). The content pane is where 90% of normal swing components go in a window. Therefore, we can either set the JPanel that will do the rendering as your content pane or we can add it to the current content pane. I have chosen to do the latter so that you can add other widgets, like a score board, at a later time.
Class names should generally be nouns, while methods are often verbs. This is not an absolute rule (nothing really is), but naming things this way will often help you visualize the interactions between objects in a more meaningful way. I have renamed DrawSquare to GamePiece for this reason.
There is no longer any reason for GamePiece to be a JPanel. It just needs to know its own width, height, and time of appearance.
The other problem with trying to have DrawSquare draw itself is that a component can only really draw within its own bounding box. So you really want to override the paintComponent of whatever holds the rectangles.
The rendering class maintains a reference to two lists of GamePieces. One is for the moving objects and one is for the ones that have fallen. The logic for moving them between the lists is in the timer. This is better than say adding a flag to GamePiece because it facilitates incremental repaint. I will only partially illustrate this here, but there is a version of repaint that only requests a small region to be painted. This would be useful to speed up the movement.
Code
public class Tetris extends JFrame
{
public static final int height = 20; //height of a square
public static final int width = 20; //width of a square
public static final int x = 0;
private GamePanel gamePanel;
public static void main(String[] args)
{
Tetris tet = new Tetris();
// Normally you would tie this to a button or some other user-triggered action.
tet.gamePanel.start();
tet.gamePanel.addPiece(new GamePiece(width, height, x));
}
public Tetris()
{
getContentPane().setLayout(new BorderLayout());
gamePanel = GamePanel();
add(gamePanel, BorderLayout.CENTER);
setSize(220,440);
setLocationRelativeTo(null);
setDefaultCloseOperation(EXIT_ON_CLOSE);
setVisible(true);
}
}
public class GamePanel extends JPanel
{
private List<GamePiece> moving;
private List<GamePiece> still;
private Timer timer;
public GamePanel()
{
moving = new ArrayList<>();
still = new ArrayList<>();
timer = new Timer(100, new TimerListener());
}
public addPiece(int width, int height, int x)
{
moving.add(new GamePiece(width, height, x));
}
public void start()
{
timer.start();
}
#Override
public void paintComponent(Graphics g)
{
Rectangle clip = g.getClipBounds(null);
Rectangle rectToDraw = new Rectangle();
// I prefer this, but you can make the call every
// time you call `GamePiece.getY()`
long time = System.currentTimeMillis();
for(GamePiece piece : this.moving) {
rectToDraw.setSize(piece.width, piece.height)
rectToDraw.setLocation(piece.x, piece.getY(time))
if(rectangleToDraw.intersects(clip))
((Graphics2D)g).fill(rectToDraw)
}
for(GamePiece piece : this.still) {
rectToDraw.setSize(piece.width, piece.height)
rectToDraw.setLocation(piece.x, piece.getY(time))
if(rectangleToDraw.intersects(clip))
((Graphics2D)g).fill(rectToDraw)
}
}
private class TimerListener implements ActionListener
{
#Override
public void actionPerformed(ActionEvent e)
{
long time = System.currentTimeMillis();
// Using non-iterator loop to move the pieces that
// stopped safely. Iterator would crash on in-loop move.
for(int i = 0; i < moving.size(); i++) {
piece = moving.get(i);
if(piece.getY(time) > 440 - piece.height) {
moving.remove(i);
still.add(piece);
i--;
}
}
repaint();
}
}
}
public class GamePiece
{
public final int width;
public final int height;
public final long startTime;
public int x;
public GamePiece(int width, int height, int x)
{
this.width = width;
this.height = height;
this.startTime = System.currentTimeMillis();
this.x = x;
}
public int getY(long time)
{
// This hard-codes a velocity of 10px/sec. You could
// implement a more complex relationship with time here.
return (int)((time - this.startTime) / 100.0);
}
}
Your main problem in a nutshell: you need to separate the JPanel component class from the square logical class. Right now, they are one and the same, and every time you create a new DrawSqaure, you're creating a new JPanel, starting a new Swing Timer, and thus calling code that doesn't need to be called. This is also forcing you to make the List static else you'd have a stack overflow error. Solution: separate the two out, make your List non-static, and use only one Swing Timer.
I have been practicing with java's swing features recently, and in one of my classes that extends the class JPanel, I have overriden the method paintComponent() so that it will paint my BufferedImage onto the JPanel. I also have a method on it to move around. Before this issue, I have had a problem that shows the process of moving as it repaints too quickly. So, I created a boolean variable called available which is set to false when the image is still in the moving process. But, now I see that the screen is taking away the entire image and putting it back, causing it to blink. Here is my basic pseudocode:
class A extends JPanel{
BufferedImage canvas;
public A(){
//create image here
}
public move(){
available = false;
//move things around in here
available = true;
}
#Override
protected void paintComponent(Graphics g){
super.paintComponent(g);
if(available){
g.drawImage(this.canvas, 0, 0, null);
}
g.dispose();
}
}
class B{
public static void main(String[] args){
//construct the class A JPanel
while(some_variable){
class_A_JPanel.repaint();
}
}
}
This is very old topic which is fixed in modern Java. But you prefer old way then use old techniques. For example Double Buffering
I am writing the Sugarscape simulation in Java and need a working GUI. Sugarscape is a spatial landscape consisting of tiles (of sugar), and agents moving and consuming sugar. For simplicity, I have only one agent and no sugar- I just want to see the agent moving.
For the past 2 weeks I have read into painting in java, concurrency in java, concurrency in swing, I have read filthy rich clients and countless StackOverflow threads, but I must resort to asking a question here.
I need my model separate from the GUI. This presents a problem since 99% of tutorials suggest to call for repaint within other methods. My idea was to run one "tick" of the simulation: all agents move, and then send an Event (my GUI class extends Observer) which then triggers a repaint(); request and update the GUI. However the problem (the misunderstanding) lies with the SwingUtilities.InvokeLater method. My code is:
public void setupGUI()
{
SwingUtilities.invokeLater(new Runnable()
{
public void run() {
System.out.println("GUI is being setup, on EDT now? " + SwingUtilities.isEventDispatchThread());
SugarFrame frame = new SugarFrame(simulation.getWorld());
frame.setVisible(true);
}
});
}
For understanding what is happening I have inserted println's everywhere. The order of events is what confuses me:
Console output:
1.Agent created. Starting Position: X= 19 Y= 46 // This is in the Agent constructor
2.Simulation start. Experiment number: 0
GUI is being setup, on EDT now? true // As you see above, this is WITHIN the SwingUtilities.InvokeLater section. But then the EDT pauses and the real model continues:
Tick number 0
Invoke Agent Actions, fire TickStart Event
TickStartEvent created
Invoke Agent Actions, for-loop starting now
Agent number 0 moving now:
Consuming Sugar now.
Moving now.
Sleeping now.
The Sugarframe has been created and Grid added. All on EDT? true // And there it is back again. The paint component follows and the window with the Agent visible appears.
paintComponent called, on EDT? true
Now, I have read that by putting the main thread to sleep, you give the EDT time to run the repaint. However, this only happens once. Repaint is never called again, and I only ever see one iteration of the model.
I simply do not understand what piece of information I am missing to work with the EDT properly. Swingworker and Swingtimer are suggested regularly, but for every suggestion there is a notion that they are not needed for a model such as mine. Either paintComponent is not called at all, or queued up until the end (and then still not repainting, even if I use thread.sleep).
I'd appreciate any help. Apologies for the long post.
//Edit: as per request some more code.
The entire main method:
public class SimulationController {
static Simulation simulation;
public static final int NUM_EXPERIMENTS = 1;
public SimulationController()
{
Random prng = new Random();
SimulationController.simulation = new Simulation(prng);
}
public void run() {
setupGUI();
for(int i=0; i<NUM_EXPERIMENTS; i++) {
System.out.println("Simulation start. Experiment number: " + i);
simulation.getWorld().addObserver(simulation);
simulation.addObserver(simulation.getWorld());
simulation.run();
}
}
public void setupGUI()
{
SwingUtilities.invokeLater(new Runnable()
{
public void run() {
System.out.println("GUI is being setup, on EDT now? " + SwingUtilities.isEventDispatchThread());
SugarFrame frame = new SugarFrame(simulation.getWorld());
frame.setVisible(true);
}
});
}
public static void main(String[] args) {
SimulationController controller = new SimulationController();
controller.run();
}
}
The paint override in my JPanel class:
#Override
public void paintComponent(Graphics g) {
System.out.println(">>>>>>>>paintComponent called, on EDT? " + SwingUtilities.isEventDispatchThread()+"<<<<<<<<<<");
super.paintComponent(g);
//g.clearRect(0, 0, getWidth(), getHeight());
rectWidth = getWidth() / world.getSizeX();
rectHeight = getHeight() / world.getSizeY();
for (int i = 0; i < world.getSizeX(); i++)
{
for (int j = 0; j < world.getSizeY(); j++)
{
// Upper left corner of this terrain rect
x = i * rectWidth;
y = j * rectHeight;
Tile tile = world.getTile(new Position(i, j));
if (tile.hasAgent())
{
g.setColor(Color.red);
} else
{
g.setColor(Color.black);
}
g.fillRect(x, y, rectWidth, rectHeight);
}
}
}
JPanel class again, update methods:
public void update(Observable o, Object arg)
{
if (arg instanceof TickEnd)
{
TickEvent tickEndevent = new TickEvent();
this.addTickEvent(tickEndevent);
}
}
}
private final BlockingQueue<TickEvent> TICK_EVENTS = new LinkedBlockingQueue<TickEvent>();
/**Runnable object that updates the GUI (I think)**/
private final Runnable processEventsRunnable = new Runnable()
{
public void run()
{
TickEvent event = new TickEvent();
while ((event = TICK_EVENTS.poll()) != null)
{
System.out.println("This is within processEventsRunnable, inside the While loop. Repaint is called now.");
repaint();
}
}
};
/**Add Event to the processing-Events-queue**/
public void addTickEvent(TickEvent event)
{
//System.out.println("This is in the Add TickEvent method, but before the adding. "+TICK_EVENTS.toString());
TICK_EVENTS.add(event);
System.out.println("TickEvent has been added! "+TICK_EVENTS.toString() + "On EDT?" + SwingUtilities.isEventDispatchThread());
if (TICK_EVENTS.size() >= 1)
{
SwingUtilities.invokeLater(processEventsRunnable);
}
}
And last but not least, the JFrame constructor:
/** Sugarframe Constructor**/
public SugarFrame(World world)
{
super("Sugarscape"); // creates frame, the constructor uses a string argument for the frame title
grid = new Grid(world); // variable is declared in the class
add(grid);
setDefaultCloseOperation(EXIT_ON_CLOSE); // specifies what happens when user closes the frame. exit_on_close means the program will stop
this.setContentPane(grid);
this.getContentPane().setPreferredSize(new Dimension(500, 500));
this.pack(); // resizes frame to its content sizes (rather than fixed height/width)
System.out.println("The Sugarframe has been created and Grid added. All on EDT? "+ SwingUtilities.isEventDispatchThread());
this.setVisible(true); // makes the Frame appear on screen
}
The sentences,
I need my model separate from the GUI. This presents a problem since 99% of tutorials suggest to call for repaint within other methods.
and
Now, I have read that by putting the main thread to sleep, you give the EDT time to run the repaint.
don't sound quite right to me, so I'll try to clear things up a bit and maybe If you reevaluate the fundamental ideas you had behind those statements you can find the piece of information that you were missing.
First of all, always keep in mind this scheduling model that we were talking about. You can not say "EDT do this for me now!". It is always "EDT here's one more task you need to do, do it when you are done with whatever you are doing". So the EDT has a queue of "tasks" to do and goes through it consuming one by one.
These tasks are usually created by events: pressing a button gives the EDT a task to do, when the state of a component of the GUI changes some listeners may be notified and enqueue some work in the EDT. However, you can also straight up say "EDT execute this piece of code, later". This is what you do with invokeLater, you schedule a work to do in the EDT whenever it's free. Even if you call invokeLater from the EDT the task is scheduled, not executed at the moment.
The same happens with invokeAndWait yes, the code is executed sequentially as if it was executed at the moment, but it is still an scheduled work. So repaint() is no exception to this. repaint() doesn't repaint the GUI, but rather schedules the repainting of the GUI.
However repaint() is exceptional in the sense that it can be called from outside the EDT! This is not surprising now that we know that the only thing that does is scheduling a certain work, it does not actually mess with the GUI so you can call it wherever you want.
This means that the line
SwingUtilities.invokeLater(processEventsRunnable);
where processEventsRunnable basically executes a repaint() is meaningless and the whole tick system overly complex and unnecesary. You just have to call repaint() when you change something on the GUI or on the data that the GUI feeds on so the changes are reflected on the screen.
Furthermore, if you wanted to do something that needs to be executed in the EDT (like changing the text of a Label with the score) you can just put that code in an invokeLater block in your main thread. That will queue and execute the task properly, you don't need to do your own event queue system.
Keeping all this in mind the following makes no sense:
I have read that by putting the main thread to sleep, you give the EDT time to run the repaint
The GUI will be updated on its own shortly after you call repaint(). The main doing a lot of things and calling a lot of repaints does not prevent the GUI from being updated. However, if you want to "sleep" the main so the pace of the changes is slow so the user can appreciate it on the screen, you should use a timer.
So, as long as your main is not accessing GUI values and methods, feel free to call repaint whenever you are done changing the data, periodically or not.
Edit: Also it sounds a little bit weird that you have a main thread doing things. As you read in the concurrency chapter, usually you just create the GUI in the EDT and then the application is mostly event-driven when buttons are pressed and such. If you need to do changes periodically use a timer. You can use auxiliar threads to do specific non-GUI related heavy work, like reading a file. But you don't usually have an auxiliar thread permanently active as part of the design.
The following is a very simple program that moves an square periodically. I just use a timer to change the data and call repaint(). Note that I'm using a SwingTimer (it is executed in the EDT) since I wanted to check the panel width. Otherwise I could run the code of the timer in any thread.
In your case you probably have your "map" stored independently of the GUI, so you just need to check that data to properly move the coordinates of the agent whenever you want (on keyboard press, periodically...).
It looks like this:
Full code:
import java.awt.Graphics;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.SwingUtilities;
import javax.swing.Timer;
public class MovingSquareTest
{
int x, y, size, step;
MyPanel panel;
Timer timer;
public static final void main(String[] args)
{
SwingUtilities.invokeLater(new Runnable() {
public void run()
{
MovingSquareTest app = new MovingSquareTest();
app.createAndShowGUI();
app.timer.start();
}
});
}
public MovingSquareTest()
{
x = 0;
y = 150;
size = 50;
step = 50;
timer = new Timer(500, new ActionListener()
{
#Override
public void actionPerformed(ActionEvent e)
{
x += step;
if (x < 0) x = 0;
if (x + size > panel.getWidth()) x = panel.getWidth() - size;
if (x == 0 || x + size == panel.getWidth()) step *= -1;
panel.repaint();
}
});
}
public void createAndShowGUI()
{
JFrame frame = new JFrame("Dance, my square!");
panel = new MyPanel();
frame.add(panel);
frame.setSize(600, 400);
frame.setLocationRelativeTo(null);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);
}
private class MyPanel extends JPanel
{
#Override
protected void paintComponent(Graphics g)
{
super.paintComponent(g);
g.drawRect(x, y, size, size);
}
}
}
I would like to re-paint a square after a mouse click but the re-paint method will be invoiked 10 times.
For example in the square is in x,y it will be repainted after a mouse click in:
x+1,y+1
x+2,y+2
x+3,y+3
...
...
x+10,y+10
I tried to loop the repaint method 10 times but the result was the final paint instead of the whole process.
public MyPanel()
{
setBorder(BorderFactory.createLineBorder(Color.black));
addMouseListener(new MouseAdapter()
{
public void mousePressed(MouseEvent e)
{
for(int i=0;i<10;i++)
moveSquare(redSquare.getX(),redSquare.getY());
}
});
}
private void moveSquare(int x, int y)
{
final int CURR_X = redSquare .getX();
final int CURR_Y = redSquare.getY();
final int CURR_W = redSquare.getWidth();
final int CURR_H = redSquare.getHeight();
final int OFFSET = 1;
// The square is moving, repaint background
// over the old square location.
repaint(CURR_X,CURR_Y,CURR_W+OFFSET,CURR_H+OFFSET);
// Update coordinates.
redSquare.setX(x+1);
redSquare.setY(y+1);
// Repaint the square at the new location.
repaint(redSquare.getX(), redSquare.getY(),
redSquare.getWidth()+OFFSET,
redSquare.getHeight()+OFFSET);
}
If I understand correctly, you want to click somewhere, and have the square move there, but have the square have some type of moving animation towards that new location.
You're moving your square and repainting it too fast that it will seem as if the square has only moved from it's initial position to it's new final position. You can if you want, set x and y pixel velocities, and update the square's position in a loop that moves the square towards it's final spot you want it to based on how much time has elapsed between the last loop iteration times those x and y velocities.
Use a Swing Timer to schedule animation. Read the section from the Swing tutorial on How to Use Timers for more information.
The call to repaint will not immediately cause the component to be repainted. It only tells the rendering system: "Repaint this area as soon as possible". But the rendering system is busy with iterating through your for loop.
The reason is that the mousePressed method is executed by the same thread that is also responsible for repainting - namely by the Swing Event Dispatch Thread (EDT). So this thread is running through your for loop and triggering repaints, but only after it has finished the for loop it is able to actually execute the repaint - and then, only the last state will be visible.
The solution here should be to execute the movement in an own thread. The straightforward solution could look like this
public void mousePressed(MouseEvent e)
{
moveInOwnThread();
}
private void moveInOwnThread()
{
Thread t = new Thread(new Runnable()
{
#Override
public void run()
{
move();
}
});
t.setDaemon(true);
t.start();
}
private void move()
{
for(int i=0;i<10;i++)
{
moveSquare(redSquare.getX(),redSquare.getY());
try
{
Thread.sleep(20);
}
catch (InterruptedException e)
{
Thread.currentThread().interrupt();
return;
}
}
}
But you should read something about concurrency in swing: http://docs.oracle.com/javase/tutorial/uiswing/concurrency/