HackerRank Mininum Difference RunTimeError - java

My code throws a run-time error, can anyone explain why? My solution envolves adding to an array the differences between j and i, and then find the minimum of the two, only to return it. But for some reason it gives me a timeout error. The question is question is this:
We define the distance between two array values as the number of indices between the two values. Given A find the minimum distance between any pair of equal elements in the array. If no such value exists, print -1 The minimum difference is calculated by the difference between index j and index i
static int minimumDistances(int[] a) {
int[] difference = new int[a.length];
int lowest = 0;
boolean pairFound = false;
for(int i = 0; i < a.length; i++) {
for(int j = i + 1; j < a.length; j++) {
for(int l = 0; l < difference.length; l++) {
if(a[i] == a[j]) {
difference[l] = j - i;
pairFound = true;
} else if(pairFound == false) {
lowest = -1;
}
}
}
}
if(pairFound == true) {
lowest = difference[0];
for(int i = 0; i < difference.length; i++) {
if(difference[i] < lowest) {
lowest = difference[i];
}
}
}
return lowest;
}

Give this a try and check to see if this works:
int[] difference = new int[a.length];

You are looping 3 times, that is 𝓞(n³) too slow. Try a different approach.
Here is my code using streams.
static int minimumDistances(int[] a) {
Map<Integer,List<Integer>> map = IntStream.range(0, a.length).boxed()
.collect(Collectors.groupingBy(i -> a[i]));
return map.entrySet().stream().filter(m -> m.getValue().size() > 1)
.map(m -> m.getValue().stream()
.reduce((acc,val)-> Math.abs(acc - val)).get())
.mapToInt(Integer::valueOf).min().orElse(-1);
}

Related

dynamic programming - subset sum - reconstruct paths

Given a set of non-negative integers, and a value sum, determine if there is a subset of the given set with sum equal to given sum.
For example:
set = {1,2,5,7}
sum = 8
=> true
I actually solved the problem with this code:
public boolean isSubsetSum(int[] set, int sum) {
Arrays.sort(set);
boolean[][] memo = new boolean[set.length+1][sum+1];
for (int i = 0; i < memo.length; i++) {
memo[i][0] = true;
}
for (int i = 1; i < memo.length; i++) {
for (int j = 1; j < memo[i].length; j++) {
if (set[i-1] > j) {
memo[i][j] = memo[i-1][j];
} else {
memo[i][j] = memo[i-1][j] || memo[i-1][j-set[i-1]];
}
}
}
return memo[memo.length-1][memo[memo.length-1].length-1];
}
However, now I want to reconstruct all the possible combinations that form the given sum.
Is it possible to do that from my memoization matrix or do I have to do it differently?
Make a new DP table called take[i][j] which is boolean. It is true if you take the i-th element for subset sum j. You fill it concurrently with your normal memo table:
for (int i = 1; i < memo.length; i++) {
for (int j = 1; j < memo[i].length; j++) {
if (memo[i-1][j]){
//no need to take ith elements, first i-1 have sum j
take[i][j] = false;
memo[i][j] = true;
}
else if (j-set[i-1] >= 0 && memo[i-1][j-set[i-1]]){
//take ith element, and search for set of size j-set[i-1] in 1..i-1
take[i][j] = true;
memo[i][j] = true;
}
else{
//neither memo[i-1][j] or memo[i-1][j-set[i-1]] valid, so no way to make sum
take[i][j]=false;
memo[i][j]=false;
}
}
}
Finally, to reconstruct a solution, you start with:
int i =set.length
int j = sum
while (i>=0 && j>=0){
if (take[i][j]){
print(set[i])
j = j - set[i]
i=i-1
}
else{
i=i-1
}
}
You can generalize this for all sets of solutions.

Function takes a martix (2d array) and prints the max number of the even numbers in each line

I am defining a function to accept a matrix (2d array), for example x[][]; and the function should print the biggest even number in each line
public static void biggestEvenNumOfEachLine(int x[][]){
int even,t=0,max;
int arr[] = new int [x.length];
for(int i = 0; i < x.length;i++){
for(int j = 0; j < x[i].length;j++,t++){
if(x[i][j] % 2 == 0){
even = x[i][j];
arr[j] = even;
}
}
}
}
What am I missing?
I would start by finding the biggest even number in a single line array. Start with the smallest possible value, and then iterate the array. Test for even, and then set the max (and then return it). Something like,
private static int biggestEvenNum(int[] x) {
int max = Integer.MIN_VALUE;
for (int i = 0; i < x.length; i++) {
if (x[i] % 2 == 0) {
max = Math.max(max, x[i]);
}
}
return max;
}
But, in Java 8+, I would prefer to filter for even values and get the max like
private static int biggestEvenNum(int[] x) {
return IntStream.of(x).filter(v -> v % 2 == 0).max().getAsInt();
}
Then your method is as simple as iterating the line(s) in your matrix, printing the result. Like,
public static void biggestEvenNumOfEachLine(int[][] x) {
for (int[] line : x) {
System.out.println(biggestEvenNum(line));
}
}
public static void biggestEvenNumOfEachLine(int x[][])
{
int arr[] = new int [x.length];
for(int i = 0; i < x.length;i++)
for(int j = 0; j < x[i].length;j++)
if(x[i][j] % 2 == 0 && x[i][j] > arr[i]){
arr[i] = x[i][j];
System.out.println(arr[i]);
}
}
This will work but if there is no even number at particular line then corresponding number to that line will be zero.

Find majority number in an array

This question has been asked before. However I just want to know what is wrong with my code. It passes most of the test cases but not all of them on lintcode.
Given an array of integers, the majority number is the number that occurs more than half of the size of the array. Find it.
public class Solution {
/**
* #param nums: a list of integers
* #return: find a majority number
*/
public int majorityNumber(ArrayList<Integer> nums) {
// write your code
Collections.sort(nums);
int j = 0, count = 0, out = 0, size = nums.size();
for(int i = 0; i < size; i++) {
if(nums.get(j) == nums.get(i)) {
count++;
if(count > size/2){
out = nums.get(i);
}
} else {
count = 1;
j = i;
}
}
return out;
}
}
EDIT
I changed the code to j = i & count = 1 as suggested by an answer.
For example for the input [1,1,1,2,2,2,2] the output should be 2.
My code works in this case. It doesn't work in large input cases.
I don't want another solution, as I have already found many O(n) solutions on other sites. I just want to fix my own code and know what I am doing wrong.
There's a smart solution that runs in O(n) worst case time, and no additional space:
public static int majorityNumber(List<Integer> nums) {
int candidate = 0;
int count = 0;
for (int num : nums) {
if (count == 0)
candidate = num;
if (num == candidate)
count++;
else
count--;
}
return candidate;
}
Note that it assumes the existence of a majority value, otherwise it returns an arbitrary value.
In your else block do:
...
else {
count = 1;
j = i;
}
Debug your code and print the values of i and j. I'm sure that will not be what you wanted to do.
You wanted to read each element and count it's frequency. That would be a O(n*n)(because the array is sorted O(n log(n))) solution.
ArrayList<Integer> readNums = new ArrayList();
for(int i = 0; i < a.length; ++i)
{
int currentNum = a[i];
if(list.contains(currentNum)
continue;//to check if you already processed that num
else
list.add(currentNum);
int count = 0;
for(int j = i + 1; j < a.length; ++j)
{
if(currentNum == a[j])
count ++;
}
if(count > size / 2)
reqNum = currentNum;
}
This is what you wanted to do.
A better method would be to use a space of O(n) and track the frequencies and then process the array in O(n).
HashMap<Integer, Intege> map = new HashMap();
for(int i = 0; i < a.length; ++i)
{
int currentNum = a[i];
int count = 1;
if(map.containsKey(currentNum))
{
count = map.getValue(currentNum);
map.put(currentNum, count + 1);
count ++;
}
else
{
map.put(currentNum, count);
}
if(count > size / 2)
reqNum = currentNum;
}

How can i find the positions to the three lowest integers in an array?

I how can I find the positions of the three lowest integers in an array?
I've tried to reverse it, but when I add a third number, it all goes to hell :p
Does anybody manage to pull this one off and help me? :)
EDIT: It would be nice to do it without changing or sorting the original array a.
public static int[] lowerThree(int[] a) {
int n = a.length;
if (n < 2) throw
new java.util.NoSuchElementException("a.length(" + n + ") < 2!");
int m = 0; // position for biggest
int nm = 1; // position for second biggest
if (a[1] > a[0]) { m = 1; nm = 0; }
int biggest = a[m]; // biggest value
int secondbiggest = a[nm]; // second biggest
for (int i = 2; i < n; i++) {
if (a[i] > secondbiggest) {
if (a[i] > biggest) {
nm = m;
secondbiggest = biggest;
m = i;
biggest = a[m];
}
else {
nm = i;
secondbiggest = a[nm];
}
}
} // for
return new int[] {m,nm};
}
EDIT: I've tried something here but it still doesn't work. I get wrong output + duplicates...
public static int[] lowerthree(int[] a) {
int n= a.length;
if(n < 3)
throw new IllegalArgumentException("wrong");
int m = 0;
int nm = 1;
int nnm= 2;
int smallest = a[m]; //
int secondsmallest = a[nm]; /
int thirdsmallest= a[nnm];
for(int i= 0; i< lengde; i++) {
if(a[i]< smallest) {
if(smalles< secondsmallest) {
if(secondsmallest< thirdsmallest) {
nnm= nm;
thirdsmallest= secondsmallest;
}
nm= m;
secondsmallest= smallest;
}
m= i;
smallest= a[m];
}
else if(a[i] < secondsmallest) {
if(secondsmallest< thirdsmallest) {
nnm= nm;
thirdsmallest= secondsmallest;
}
nm= i;
secondsmallest= a[nm];
}
else if(a[i]< thirdsmallest) {
nnm= i;
thirdsmallest= a[nnm];
}
}
return new int[] {m, nm, nnm};
}
Getting the top or bottom k is usually done with a partial sort. There are versions that change the original array and those that dont.
If you only want the bottom (exactly) 3 and want to get their positions, not the values, your solution might be the best fit. This is how I would change it to support the bottom three. (I have not tried to compile and run, there may be little mistakes but the genereal idea should fit)
public static int[] lowerThree(int[] a) {
if (a.length < 3) throw
new java.util.NoSuchElementException("...");
int indexSmallest = 0;
int index2ndSmallest = 0;
int index3rdSmallest = 0;
int smallest = Integer.MAX_VALUE;
int sndSmallest = Integer.MAX_VALUE;
int trdSmallest = Integer.MAX_VALUE;
for (size_t i = 0; i < a.length; ++i) {
if (a[i] < trdSmallest) {
if (a[i] < sndSmallest) {
if (a[i] < smallest) {
trdSmallest = sndSmallest;
index3rdSmallest = index2ndSmallest;
sndSmallest = smallest;
index2ndSmallest = indexSmallest;
smallest = a[i];
indexSmallest = i;
continue;
}
trdSmallest = sndSmallest;
index3rdSmallest = index2ndSmallest;
sndSmallest = a[i];
index2ndSmallest = i;
continue;
}
trdSmallest = a[i];
index3rdSmallest = i;
}
}
return new int[] {indexSmallest, index2ndSmallest, index3rdSmallest};
}
This will have the three lowest numbers, need to add some test cases..but here is the idea
int[] arr = new int[3];
arr[0] = list.get(0);
if(list.get(1) <= arr[0]){
int temp = arr[0];
arr[0] = list.get(1);
arr[1] = temp;
}
else{
arr[1] = list.get(1);
}
if(list.get(2) < arr[1]){
if(list.get(2) < arr[0]){
arr[2] = arr[1];
arr[1] = arr[0];
arr[0] = list.get(2);
}
else{
arr[2] = arr[1];
arr[1] = list.get(2);
}
}else{
arr[2] = list.get(2);
}
for(int integer = 3 ; integer < list.size() ; integer++){
if(list.get(integer) < arr[0]){
int temp = arr[0];
arr[0] = list.get(integer);
arr[2] = arr[1];
arr[1] = temp;
}
else if(list.get(integer) < arr[1]){
int temp = arr[1];
arr[1] = list.get(integer);
arr[2] = temp;
}
else if(list.get(integer) <= arr[2]){
arr[2] = list.get(integer);
}
}
I'd store the lowest elements in a LinkedList, so it is not fixed on the lowest 3 elements. What do you think?
public static int[] lowest(int[] arr, int n) {
LinkedList<Integer> res = new LinkedList();
for(int i = 0; i < arr.length; i++) {
boolean added = false;
//iterate over all elements in the which are of interest (n first)
for(int j = 0; !added && j < n && j < res.size(); j++) {
if(arr[i] < res.get(j)) {
res.add(j, i); //the element is less than the element currently considered
//one of the lowest n, so insert it
added = true; //help me get out of the loop
}
}
//Still room in the list, so let's append it
if(!added && res.size() < n) {
res.add(i);
}
}
//copy first n indices to result array
int[] r = new int[n];
for(int i = 0; i < n && i < res.size(); i++) {
r[i] = res.get(i);
}
return r;
}
In simple words, you need to compare every new element with the maximum of the three you have at hand, and swap them if needed (and if you swap, max of the three has to be recalculated).
I would use 2 arrays of size 3 each:
arrValues = [aV1 aV2 aV3] (reals)
arrPointers = [aP1 aP2 aP3] (integers)
and a 64 bit integer type, call it maxPointer.
I will outline the algorithm logic, since I am not familiar with Java:
Set arrValues = array[0] array[1] array[2] (three first elements of your array)
Set arrPointers = [0 1 2] (or [1 2 3] if your array starts from 1)
Iterate over the remaining elements. In each loop:
Compare the Element scanned in this iteration with arrValues[maxPointer]
If Element <= arrValues[maxPointer],
remove the maxPointer element,
find the new max element and reset the maxPointer
Else
scan next element
End If
Loop
At termination, arrPointers should have the positions of the three smallest elements.
I hope this helps?
There is an easy way to find the positions of three lowest number in an Array
Example :
int[] arr={3,5,1,2,9,7};
int[] position=new int[arr.length];
for(int i=0;i<arr.length;i++)
{
position[i]=i;
}
for(int i=0;i<arr.length;i++)
{
for(int j=i+1;j<arr.length;j++)
{
if(arr[i]>arr[j]){
int temp=arr[i];
arr[i]=arr[j];
arr[j]=temp;
int tem=position[i];
position[i]=position[j];
position[j]=tem;
}
}
}
System.out.println("Lowest numbers in ascending order");
for(int i=0;i<arr.length;i++)
{
System.out.println(arr[i]);
}
System.out.println("And their previous positions ");
for(int i=0;i<arr.length;i++)
{
System.out.println(position[i]);
}
Output
you can do it in 3 iterations.
You need two extra memory, one for location and one for value.
First iteration, you will keep the smallest value in one extra memory and its location in the second. As you are iterating, you compare every value in the slot with the value slot you keep in the memory, if the item you are visiting is smaller than what you have in your extra value slot, you replace the value as well as the location.
At the end of your first iteration, you will find the smallest element and its corresponding location.
You do the same for second and third smallest.

How can I find the smallest covering prefix of an array in Java?

Find the first covering prefix of a given array.
A non-empty zero-indexed array A consisting of N integers is given. The first covering
prefix of array A is the smallest integer P such that and such that every value that
occurs in array A also occurs in sequence.
For example, the first covering prefix of array A with
A[0]=2, A[1]=2, A[2]=1, A[3]=0, A[4]=1 is 3, because sequence A[0],
A[1], A[2], A[3] equal to 2, 2, 1, 0 contains all values that occur in
array A.
My solution is
int ps ( int[] A )
{
int largestvalue=0;
int index=0;
for(each element in Array){
if(A[i]>largestvalue)
{
largestvalue=A[i];
index=i;
}
}
for(each element in Array)
{
if(A[i]==index)
index=i;
}
return index;
}
But this only works for this input, this is not a generalized solution.
Got 100% with the below.
public int ps (int[] a)
{
var length = a.Length;
var temp = new HashSet<int>();
var result = 0;
for (int i=0; i<length; i++)
{
if (!temp.Contains(a[i]))
{
temp.Add(a[i]);
result = i;
}
}
return result;
}
I would do this
int coveringPrefixIndex(final int[] arr) {
Map<Integer,Integer> indexes = new HashMap<Integer,Integer>();
// start from the back
for(int i = arr.length - 1; i >= 0; i--) {
indexes.put(arr[i],i);
}
// now find the highest value in the map
int highestIndex = 0;
for(Integer i : indexes.values()) {
if(highestIndex < i.intValue()) highestIndex = i.intValue();
}
return highestIndex;
}
Your question is from Alpha 2010 Start Challenge of Codility platform. And here is my solution which got score of 100. The idea is simple, I track an array of counters for the input array. Traversing the input array backwards, decrement the respective counter, if that counter becomes zero it means we have found the first covering prefix.
public static int solution(int[] A) {
int size = A.length;
int[] counters = new int[size];
for (int a : A)
counters[a]++;
for (int i = size - 1; i >= 0; i--) {
if (--counters[A[i]] == 0)
return i;
}
return 0;
}
here's my solution in C#:
public static int CoveringPrefix(int[] Array1)
{
// Step 1. Get length of Array1
int Array1Length = 0;
foreach (int i in Array1) Array1Length++;
// Step 2. Create a second array with the highest value of the first array as its length
int highestNum = 0;
for (int i = 0; i < Array1Length; i++)
{
if (Array1[i] > highestNum) highestNum = Array1[i];
}
highestNum++; // Make array compatible for our operation
int[] Array2 = new int[highestNum];
for (int i = 0; i < highestNum; i++) Array2[i] = 0; // Fill values with zeros
// Step 3. Final operation will determine unique values in Array1 and return the index of the highest unique value
int highestIndex = 0;
for (int i = 0; i < Array1Length; i++)
{
if (Array2[Array1[i]] < 1)
{
Array2[Array1[i]]++;
highestIndex = i;
}
}
return highestIndex;
}
100p
public static int ps(int[] a) {
Set<Integer> temp = new HashSet<Integer>();
int p = 0;
for (int i = 0; i < a.length; i++) {
if (temp.add(a[i])) {
p = i+1;
}
}
return p;
}
You can try this solution as well
import java.util.HashSet;
import java.util.Set;
class Solution {
public int ps ( int[] A ) {
Set set = new HashSet();
int index =-1;
for(int i=0;i<A.length;i++){
if(set.contains(A[i])){
if(index==-1)
index = i;
}else{
index = i;
set.add(A[i]);
}
}
return index;
}
}
Without using any Collection:
search the index of the first occurrence of each element,
the prefix is the maximum of that index. Do it backwards to finish early:
private static int prefix(int[] array) {
int max = -1;
int i = array.length - 1;
while (i > max) {
for (int j = 0; j <= i; j++) { // include i
if (array[i] == array[j]) {
if (j > max) {
max = j;
}
break;
}
}
i--;
}
return max;
}
// TEST
private static void test(int... array) {
int prefix = prefix(array);
int[] segment = Arrays.copyOf(array, prefix+1);
System.out.printf("%s = %d = %s%n", Arrays.toString(array), prefix, Arrays.toString(segment));
}
public static void main(String[] args) {
test(2, 2, 1, 0, 1);
test(2, 2, 1, 0, 4);
test(2, 0, 1, 0, 1, 2);
test(1, 1, 1);
test(1, 2, 3);
test(4);
test(); // empty array
}
This is what I tried first. I got 24%
public int ps ( int[] A ) {
int n = A.length, i = 0, r = 0,j = 0;
for (i=0;i<n;i++) {
for (j=0;j<n;j++) {
if ((long) A[i] == (long) A[j]) {
r += 1;
}
if (r == n) return i;
}
}
return -1;
}
//method must be public for codility to access
public int solution(int A[]){
Set<Integer> set = new HashSet<Integer>(A.length);
int index= A[0];
for (int i = 0; i < A.length; i++) {
if( set.contains(A[i])) continue;
index = i;
set.add(A[i]);
}
return index;
}
this got 100%, however detected time was O(N * log N) due to the HashSet.
your solutions without hashsets i don't really follow...
shortest code possible in java:
public static int solution(int A[]){
Set<Integer> set = new HashSet<Integer>(A.length);//avoid resizing
int index= -1; //value does not matter;
for (int i = 0; i < A.length; i++)
if( !set.contains(A[i])) set.add(A[index = i]); //assignment + eval
return index;
}
I got 100% with this one:
public int solution (int A[]){
int index = -1;
boolean found[] = new boolean[A.length];
for (int i = 0; i < A.length; i++)
if (!found [A[i]] ){
index = i;
found [A[i]] = true;
}
return index;
}
I used a boolean array which keeps track of the read elements.
This is what I did in Java to achieve 100% correctness and 81% performance, using a list to store and compare the values with.
It wasn't quick enough to pass random_n_log_100000 random_n_10000 or random_n_100000 tests, but it is a correct answer.
public int solution(int[] A) {
int N = A.length;
ArrayList<Integer> temp = new ArrayList<Integer>();
for(int i=0; i<N; i++){
if(!temp.contains(A[i])){
temp.add(A[i]);
}
}
for(int j=0; j<N; j++){
if(temp.contains(A[j])){
temp.remove((Object)A[j]);
}
if(temp.isEmpty()){
return j;
}
}
return -1;
}
Correctness and Performance: 100%:
import java.util.HashMap;
class Solution {
public int solution(int[] inputArray)
{
int covering;
int[] A = inputArray;
int N = A.length;
HashMap<Integer, Integer> map = new HashMap<>();
covering = 0;
for (int i = 0; i < N; i++)
{
if (map.get(A[i]) == null)
{
map.put(A[i], A[i]);
covering = i;
}
}
return covering;
}
}
Here is my Objective-C Solution to PrefixSet from Codility. 100% correctness and performance.
What can be changed to make it even more efficient? (without out using c code).
HOW IT WORKS:
Everytime I come across a number in the array I check to see if I have added it to the dictionary yet.
If it is in the dictionary then I know it is not a new number so not important in relation to the problem. If it is a new number that we haven't come across already, then I need to update the indexOftheLastPrefix to this array position and add it to the dictionary as a key.
It only used one for loop so takes just one pass. Objective-c code is quiet heavy so would like to hear of any tweaks to make this go faster. It did get 100% for performance though.
int solution(NSMutableArray *A)
{
NSUInteger arraySize = [A count];
NSUInteger indexOflastPrefix=0;
NSMutableDictionary *myDict = [[NSMutableDictionary alloc] init];
for (int i=0; i<arraySize; i++)
{
if ([myDict objectForKey:[[A objectAtIndex:i]stringValue]])
{
}
else
{
[myDict setValue:#"YES" forKey:[[A objectAtIndex:i]stringValue]];
indexOflastPrefix = i;
}
}
return indexOflastPrefix;
}
int solution(vector &A) {
// write your code in C++11 (g++ 4.8.2)
int max = 0, min = -1;
int maxindex =0,minindex = 0;
min = max =A[0];
for(unsigned int i=1;i<A.size();i++)
{
if(max < A[i] )
{
max = A[i];
maxindex =i;
}
if(min > A[i])
{
min =A[i];
minindex = i;
}
}
if(maxindex > minindex)
return maxindex;
else
return minindex;
}
fwiw: Also gets 100% on codility and it's easy to understand with only one HashMap
public static int solution(int[] A) {
// write your code in Java SE 8
int firstCoveringPrefix = 0;
//HashMap stores unique keys
HashMap hm = new HashMap();
for(int i = 0; i < A.length; i++){
if(!hm.containsKey(A[i])){
hm.put( A[i] , i );
firstCoveringPrefix = i;
}
}
return firstCoveringPrefix;
}
I was looking for the this answer in JavaScript but didn't find it so I convert the Java answer to javascript and got 93%
function solution(A) {
result=0;
temp = [];
for(i=0;i<A.length;i++){
if (!temp.includes(A[i])){
temp.push(A[i]);
result=i;
}
}
return result;
}
// you can also use imports, for example:
import java.util.*;
// you can use System.out.println for debugging purposes, e.g.
// System.out.println("this is a debug message");
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
Set<Integer> s = new HashSet<Integer>();
int index = 0;
for (int i = 0; i < A.length; i++) {
if (!s.contains(A[i])) {
s.add(A[i]);
index = i;
}
}
return index;
}
}

Categories