Java - Making ArrayList Values Rotate for Game - java

I have three global variables:
private PhysicsActor blade;
private PhysicsActor blades;
private ArrayList<PhysicsActors> blades;
I created an actor object from a class I created for my game.
blade = new PhysicsActor();
blade.storeAnimation( "", exTex );
blade.setOriginCenter();
blade.setEllipseBoundary();
blade.setMaxSpeed(50);
blade.setDeceleration(50);
bladesList = new ArrayList<PhysicsActor>();
for (int i = 0; i < 3 ; i++)
{
float xCoord = randomFloatGenerator(425, 50);
float yCoord = randomFloatGenerator(mapHeight - 200, 275);
blades = blade.clone();
blades.setPosition(xCoord, yCoord);
mainStage.addActor(blades);
bladesList.add(blades);
}
The problem is not that they do not spawn. It is that when I call for them to rotate while my game is running in my update(float dt) method, only one of them is rotating:
public void update(float dt)
{
// rotate the blade 70 degrees
blades.rotateBy(70);
// rest of code etc
}
Here is an image to help visualize
I know that this is happening because I am only rotating the blades actor. What I want to do is have them all rotate from the ArrayList. I do not know how to get them from the list however. I have tried bladesList.get(i) using a for loop and a couple other ways I saw online but it would not work. Any tips or instructions for me?
Also, I will post more code to clarify anything confusing if requested.

You can try this
for (PhysicsActor blade : bladesList) {
blade.rotateBy(70);
}
this will make all the blades in your list rotate by 70. Given you can access the array from where you are calling it.

Related

How do I adjust Processing/Minim waveform scale?

I'm a total beginner so forgive me if this is probably silly or improper of me to ask.
I'm trying to make my own virtual oscillograph in processing. I don't really know how to explain it, but I want to "zoom out" from where I am getting the peaks in waveforms, which is the window size. I'm not sure what I'm doing wrong here or what's wrong with my code. I've tried changing the buffer size, and changing the multiplier for x/y. My sketch is adapted from a minim example Sketch.
All Help is greatly appreciated.
import ddf.minim.*;
Minim minim;
AudioInput in;
int frames;
int refresh = 7;
float fade = 32;
void setup()
{
size(800, 800, P3D);
minim = new Minim(this);
ellipseMode(RADIUS);
// use the getLineIn method of the Minim object to get an AudioInput
in = minim.getLineIn(Minim.STEREO);
println (in.bufferSize());
//in.enableMonitoring();
frameRate(1000);
background(0);
}
void draw()
{
frames++; //same saying frames = frames+1
if (frames%refresh == 0){
fill (0, 32, 0, fade);
rect (0, 0, width, height);
}
float x;
float y;
stroke (0, 0);
fill (0,255,0);
// draw the waveforms so we can see what we are monitoring
for(int i = 0; i < in.bufferSize() - 1; i++)
{
x = width/2 + in.left.get(i) * height/2;
y = height/2- in.right.get(i) * height/2;
ellipse(x, y, .5, .5);
}
}
Thanks
Edit: you don't need push and pop matrix here. Guess my understanding of it is lacking too. You can just use translate.
You can use matrices to create a camera object, there is tons of material out there that you can read up on to understand the math behind this and implement it anywhere.
However, there might be an easier solution here. You can use pushMatrix and popMatrix in combination with translate. Push and popping the matrix will manipulate the matrix stack - you create a new "frame" where you can play around with translations, then pop back the original frame (so you don't get lost by applying new translations on each frame).
push the matrix, translate the z coordinate once before drawing everything you want zoomed out, pop the matrix. You can set up a variable for the translation so that you can control this with your mouse.
Here's a crude example (I don't have all those libraries so couldn't add it to your code):
float scroll = 0;
float scroll_multiplier = 10;
void setup()
{
size(800, 800, P3D);
frameRate(1000);
background(0);
}
void draw()
{
background(0);
//draw HUD - things that don't zoom.
fill(255,0,0);
rect(400,300,100,100);
//We don't want to mess up our coordinate system, we push a new "frame" on the matrix stack
pushMatrix();
//We can now safely translate the Y axis, creating a zoom effect. In reality, whatever we pass to translate gets added to the coordinates of draw calls.
translate(0,0,scroll);
//Draw zoomed elements
fill(0,255,0);
rect(400,400,100,100);
//Pop the matrix - if we don't push and pop around our translation, the translation will be applied every frame, making our drawables dissapear in the distance.
popMatrix();
}
void mouseWheel(MouseEvent event) {
scroll += scroll_multiplier * event.getCount();
}

Java/Processing - imported objects disappear close to camera

I've imported an object into Processing that I created in Blender.
The code below works and the object appears but seemingly very small (or distant).
If I try to move close to the object with PeasyCamm it disappears completely before it gets close enough to see properly. The only thing I could figure is that the object itself is very close to the camera but is in fact tiny...
I attempted to scale the object but a call to
myshape.getVertexCount()
indicates my object has no vertices and nothing I do seems to change anything. I have a tiny rendered object that disappears at about a quarter of the screen height.
PShape myshape;
import peasy.test.*;
import peasy.org.apache.commons.math.*;
import peasy.*;
import peasy.org.apache.commons.math.geometry.*;
PeasyCam camera;
void setup(){
size( 640, 480, P3D);
camera = new PeasyCam(this, 0, 0, 0, 50);
frameRate(10);
myshape = loadShape("test.obj");
for (int i = 0; i < myshape.getVertexCount(); i++){
PVector v = myshape.getVertex(i);
println("Inside");
v.x *= 45;
v.y *= 45;
v.z *= 45;
myshape.setVertex(i, v);
}
}
void draw(){
background(0);
shape(myshape);
}
The getVertexCount() and getVertex() functions only work with shapes that you create in the code, using the vertex() function. More info can be found in the reference.
If all you want to do is scale your shape, then you can simply use the scale() function. Here is some example code that scaled your object by a factor of 20:
PShape myshape;
void setup() {
size(500, 500, P3D);
myshape = loadShape("test.obj");
}
void draw() {
background(0);
translate(width/2, height/2, 100);
scale(20);
shape(myshape);
}
Edit: Apparently you can still get to the vertexes inside an object file, it just isn't as straightforward as calling the getVertex() function. First you have to loop through the shape's children and then call getVertex() on the children. More info in this forum post (see jeremydouglass's answer).

How to move an entire GPen object?

In Java using the acm.graphics GPen is there any way to move the entire drawn sequence of lines? I've read the manual thoroughly and I'm beginning to think it's not possible which brings me to my second question. Are there any other graphics objects in Java that work very similar to a pen that can also be moved. The reason I'm asking is because I've been working on a graphing program that allows mouse gestures to be used to pan around and zoom in and out. After building functionality for implicit functions I realized simply clearing the drawing board and redrawing everything is not going to cut it anymore so I really need to work on more efficient ways to handle intermediate changes of the graph without having to recalculate everything. For example with this or similar code:
GPen p = new GPen();
p.setLocation(100,100); //places the pen on the canvas at 100, 100
p.drawLine(-50,0); //draw a line left 50 pixels
p.drawLine(50,-50); //draw a line right and up 50 pixels each
p.drawLine(0,50); //draw a line down 50 pixels
This would result in a simple right triangle who's bottom right most point is at 100, 100 on a particular canvas. What I need to do is be able to move this same drawn sequence of lines relative to one another to another origin. What I hoping for is a class that has separate methods for setLocation() and move() where setLocation() controls pen position and move() would move the entire object around.
Ok so having received almost no attention on here I've came to the conclusion that such a method just needs to be written from scratch and went ahead and did that. I'm not entirely sure how helpful posting my proprietary code would be but in the event that anybody could use it I'll post the basic idea of it. Since Pen utilities are essentially a bunch of lines and lines are a bunch of from and to's I created an object that I called FPen (for FunctionPen) that accepts the instructions for from and to. While defining FPen you pass it where to start and how far to go however many times you need and that's it. Once you've passed these instructions I created another method called returnGPen(Color c) which will on call use the instructions it has on hand and generate the desired GPen object. When you want to move the entire GPen you can then create a method called adjustOrigin(double oX, double oY); which will calculate a change from a previously recorded origin and this new one and go through the list of instructions and adjust them appropriately.
My needs for this Class are strictly for my Graphing program and are not entirely finished either but it does work for most purposes.
import acm.graphics.GPen;
import java.awt.Color;
import java.util.ArrayList;
public class FPen{
private double relativeCenterX;
private double relativeCenterY;
private ArrayList<Double> fromX = new ArrayList<Double>();
private ArrayList<Double> fromY = new ArrayList<Double>();
private ArrayList<Double> distX = new ArrayList<Double>();
private ArrayList<Double> distY = new ArrayList<Double>();
public FPen(double rX, double rY, double z){
relativeCenterX = rX;
relativeCenterY = rY;
}
public void adjustOrigin(double cX, double cY){
double changeX = relativeCenterX-cX;
double changeY = relativeCenterY-cY;
for(int i = 0; i < fromX.size(); i++){
fromX.set(i,fromX.get(i)+changeX*zoom);
fromY.set(i,fromY.get(i)-changeY*zoom);
}
relativeCenterX = cX;
relativeCenterY = cY;
}
public void clear(){
fromX.clear();
fromY.clear();
distX.clear();
distY.clear();
}
public void drawLine(double fX, double fY, double tX, double tY){
fromX.add(fX);
fromY.add(fY);
distX.add(tX);
distY.add(tY);
}
public GPen returnGPen(Color c){
GPen pen = new GPen();
pen.setColor(c);
for(int i = 0; i < fromX.size(); i++){
pen.setLocation(fromX.get(i),fromY.get(i));
pen.drawLine(distX.get(i),distY.get(i));
}
return pen;
}
}
Of course a unexpected nice thing that came out of this was the idea that I can now quickly benchmark different drawing routines by creating different methods for each and calling what I'm interested in.

Slick is getting very slow but only drawin rectangles

I am using slick for java since a few days and got a serious problem.
If i run a completely empty apllication (it just shows the fps) with a solution of 800x600 i get a fps count between 700 and 800.
If I now draw an array with 13300 entries as a grid of green and white rectangles, the fps drop to something around 70.
With more entries in the array it becomes really slow.
For example in a solution of 1024x768 and an array with 21760 entries the fps drop to 40.
How i draw a single entry:
public void draw(Graphics graphics){
graphics.setColor(new Color(getColor().getRed(), getColor().getGreen(), getColor().getBlue(), getColor().getAlpha()));
graphics.fillRect(getPosition().x, getPosition().y, getSize().x, getSize().y);
Color_ARGB white = new Color_ARGB(Color_ARGB.ColorNames.WHITE);
graphics.setColor(new Color(white.getRed(), white.getGreen(), white.getBlue(), white.getAlpha()));
}
And this is how I draw the complete array:
public void draw(Graphics graphics) {
for (int ix = 0; ix < getWidth(); ix++) {
for (int iy = 0; iy < getHeight(); iy++) {
getGameGridAt(ix, iy).draw(graphics);
}
}
}
In my opinion 21760 is not that much.
Is there anything wrong with my code or is slick just too slow to draw so much rectangles?
You only want to draw rectangles that are on the screen. If your screen bounds go from 0 to 1024 in the x direction and from 0 to 768 in the y direction, then you only want to loop through rectangles that are inside those bounds and then only draw those rectangles. I can't imagine you are trying to draw 21760 rectangles inside those bounds.
If you are, then try creating one static rectangle and then just try drawing that ONE in all of the different positions you need to draw it at rather than creating a new one every time. For example, in a game I am making, I might have 1000 tiles that are "grass" tiles, but all 1000 of those share the same static texture. So I only need to reference one image rather than each tile creating its own.
Each rectangle can still have a unique state. Just make your own rectangle class and have a static final Image that holds a 5*5 image. Each rectangle will use this image when it needs to be drawn. You can still have unique properties for each rectangle. For example, private Vector2f position, private boolean isAlive, etc
You're probably not going to be able to draw individual rectangles any faster than that.
Games that render millions of polygons per second do so using vertex buffer objects (VBO). For that, you'll probably need to code against the OpenGL API (LWJGL) itself, not a wrapper.
Not sure if Slick will allow it, but if this thing looks anything like a chessboard grid... you could draw just 4 rectangles, grab them and use the resulting image as a texture for your whole image. I'm not even a java programmer just trying to come up with a solution.
Since you're only repeatedly using just a few colors creating a new Color object for every single one is bound to be slow... use new only once for each different color used and store the re-usable colors somewhere in your class, than call the functions with those, constantly allocating and freeing memory is very slow.
And while this might not be as much a benefit as not using new each time but have you considered caching the results of all those function calls and rewriting code as
public void draw(Graphics graphics) {
int ixmax = getWidth();
int iymax = getHeight();
for (int ix = 0; ix < ixmax; ix++) {
for (int iy = 0; iy < iymax; iy++) {
getGameGridAt(ix, iy).draw(graphics);
}
}
}
Or if you'd prefer not to declare new variables
public void draw(Graphics graphics) {
for (int ix = getWidth() - 1; ix >= 0; ix--) {
for (int iy = getHeight() - 1; iy >= 0; iy--) {
getGameGridAt(ix, iy).draw(graphics);
}
}
}
Just noticed in another answer you have an integral size grid (5x5) ... in this case the fastest way to go about this would seem to be to draw each item a single pixel (you can do this directly in memory using a 2-dimensional array) and scale it to 500% or use it as a texture and draw a single rectangle with it the final size you desire ... should be quite fast. Sorry for all the confusion caused by previous answers, you should have said what you're doing more clearly from the start.
If scaling and textures are not available you can still draw in memory using something like this (written in c++, please translate it to java yourself)
for( int x = 0; x < grid.width(); x++ ) {
for( int y = 0; y < grid.height(); y++ ) {
image[x*5][y*5] = grid.color[x][y];
image[x*5][y*5 + 1] = grid.color[x][y];
image[x*5][y*5 + 2] = grid.color[x][y];
image[x*5][y*5 + 3] = grid.color[x][y];
image[x*5][y*5 + 4] = grid.color[x][y];
}
memcpy(image[x*5+1], image[x*5], grid.height() * sizeof(image[0][0]) );
memcpy(image[x*5+2], image[x*5], grid.height() * sizeof(image[0][0]) );
memcpy(image[x*5+3], image[x*5], grid.height() * sizeof(image[0][0]) );
memcpy(image[x*5+4], image[x*5], grid.height() * sizeof(image[0][0]) );
}
I'm not sure, but perhaps for graphics the x and y might be represented in the reversed order than used here, so change the code accordingly if it that's the case (you'll figure that out as soon as a few iterations run), also your data is probably structured a bit differently but I think the idea should be clear.

User-selected marker in time series data in Java

My code plots 5000 points of time series data in a panel that is 581 pixels wide by default, but this width changes when the user resizes the window. My code also plots several rectangular markers that each identify a local maximum/peak in this same space.
I need to enable the user to right click on any of the rectangular-peak-markers so that the user can manually delete any false peak. The problem is that my code is reporting different x-coordinates than expected when the user right-clicks on a peak-marker. I suspect that the reason may have to do with rounding error in converting from 581 x-pixels back to 5000 data indices. But I am not certain of the reason.
Can anyone suggest a solution that enables my users to manually select one of the above-described peak markers by right-clicking on it?
I am enclosing relevant sections of the code below. My actual code is very, very long, and too complicated to post. But the relevant portions below should be enough for someone to see the logic of my approach, and to then suggest a more effective approach.
The code that declares the class in question is:
class SineDraw extends JPanel implements MouseMotionListener, MouseListener {
// lots of code, including the two segments excerpted below
}
This segment of code overloads the paintComponent of the JPanel so that my data is plotted:
// declare some variables
ArrayList<Double> PeakList = new ArrayList<Double>() // this ArrayList is populated by an extraneous process
visiblePoints = 5000
hstep = getWidth()/visiblePoints //=581/5000 by default, but will change when user resizes window
int numPeaks = PeakList.size();
// scale (y-coordinate) data relative to height of panel
pts = new double[visiblePoints]
for (int i = 0; i < pts.length-1; i++){pts[i]=//data vertical scaled to fill panel;}
// plot the 5000 time-series-data-points within the 581 pixels in x-axis
for (int i = 1; i < visiblePoints; i++) {
int x1 = (int) ((i - 1) * hstep);
int x2 = (int) (i * hstep);
int y1 = (int)pts[i - 1];
int y2 = (int)pts[i];
g2.drawLine(x1, y1, x2, y2);
}
// plot a rectangle for each of the local peaks
for(int m=0;m<=(numPeaks-1);m++){
if(i==(int)(PeakList.get(m)){
int currentVal = (int)pts[(int)(PeakList.get(m)];
g2.drawRect((int)(PeakList.get(m), currentVal, 6, 6);
}
}
This section of code is for handling the right-clicking of the mouse:
public void mousePressed(MouseEvent e){
// check to see if right mouse button was clicked
boolean jones = (e.getModifiers()&InputEvent.BUTTON3_MASK)==InputEvent.BUTTON3_MASK;
if(jones==true){
// test the value returned as x-coordinate when user right-clicks (code always underestimates x-coordinate of local peaks by this test)
double ReverseHstep = visiblePoints/getWidth();
int getX_ConvertedTo_i = (int) (e.getX()*ReverseHstep);
System.out.println("getX_ConvertedTo_i is: "+getX_ConvertedTo_i );
// check to see if peaklist contains a value within the x-coordinates of the user-selected-rectangle
if(PeakList.contains((double)(e.getX()-3))
||PeakList.contains((double)(e.getX()-2))
||PeakList.contains((double)(e.getX()-1))
||PeakList.contains((double)(e.getX()))
||PeakList.contains((double)(e.getX()+1))
||PeakList.contains((double)(e.getX()+2))
||PeakList.contains((double)(e.getX()+3))
){
// handling code will go here, but for now it is a print test that never succeeds because x-coordinate is always underestimated
System.out.println("You just selected a peak!");
}
}
repaint();
}
I suggest you create objects (in this case Rectangles) for each thing you want to be clickable. Here is an over-simplified example of how you can make something you draw clickable. The key thing to take away from this is the mouseClicked method which will display a dialog only if the mouse clicked within the rectangle.
One tricky point is that I wasn't able to figure out how to make the rectangle filled in with color without drawing another rectangle over it. I'll leave that one for you ;-)
public class Canvas extends JPanel implements MouseListener{
private Rectangle rect = new Rectangle(100,100);
public Canvas(){
this.addMouseListener(this);
rect.setSize(100, 100);
}
#Override
public void paintComponent(Graphics g){
g.setClip(rect);
g.setColor(Color.RED);
g.fillRect(0, 0, 100, 100);
}
#Override
public void mouseClicked(MouseEvent e){
if(rect.contains(e.getPoint())){
JOptionPane.showConfirmDialog(this, "Click!");
}
}
// The rest of the MouseListener methods have been cut out
public static void main(String[] a){
JFrame frame = new JFrame("Canvas Thingy");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setBounds(0, 0, 300, 300);
frame.add(new Canvas());
frame.setVisible(true);
}
}

Categories