I got a problem and I think it is in comparing a char with a number.
String FindCountry = "BB";
Map<String, String> Cont = new HashMap <> ();
Cont.put("BA-BE", "Angola");
Cont.put("9X-92", "Trinidad & Tobago");
for ( String key : Cont.keySet()) {
if (key.charAt(0) == FindCountry.charAt(0) && FindCountry.charAt(1) >= key.charAt(1) && FindCountry.charAt(1) <= key.charAt(4)) {
System.out.println("Country: "+ Cont.get(key));
}
}
In this case the code print "Angola", but if
String FindCountry = "9Z"
it doesn't print anything. I am not sure I think the problem is in that it can't compare that is '2' greater than 'Z'. In that example, I got only two Cont.put(), but in my file, I got much more and a lot of them are not only with chars. I got a problem with them.
What is the smartest and best way to compare char with a number ? Actually, if I set a rule like "1" is greater than "Z" it will be okay because I need this way of greater: A-Z-9-0.
Thanks!
You can use a lookup "table", I used a String:
private static final String LOOKUP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
And then compare the chars with indexOf(), but it seems messy and could probably be achieved more easily, I just can't come up with something easier at the moment:
String FindCountry = "9Z";
Map<String, String> Cont = new HashMap<>();
Cont.put("BA-BE", "Angola");
Cont.put("9X-92", "Trinidad & Tobago");
for (String key : Cont.keySet()) {
if (LOOKUP.indexOf(key.charAt(0)) == LOOKUP.indexOf(FindCountry.charAt(0)) &&
LOOKUP.indexOf(FindCountry.charAt(1)) >= LOOKUP.indexOf(key.charAt(1)) &&
LOOKUP.indexOf(FindCountry.charAt(1)) <= LOOKUP.indexOf(key.charAt(4))) {
System.out.println("Country: " + Cont.get(key));
}
}
If you only use the characters A-Z and 0-9, you could add a conversion method in between which will increase the values of the 0-9 characters so they'll be after A-Z:
int applyCharOrder(char c){
// If the character is a digit:
if(c < 58){
// Add 43 to put it after the 'Z' in terms of decimal unicode value:
return c + 43;
}
// If it's an uppercase letter instead: simply return it as is
return c;
}
Which can be used like this:
if(applyCharOrder(key.charAt(0)) == applyCharOrder(findCountry.charAt(0))
&& applyCharOrder(findCountry.charAt(1)) >= applyCharOrder(key.charAt(1))
&& applyCharOrder(findCountry.charAt(1)) <= applyCharOrder(key.charAt(4))){
System.out.println("Country: "+ cont.get(key));
}
Try it online.
Note: Here is a table with the decimal unicode values. Characters '0'-'9' will have the values 48-57 and 'A'-'Z' will have the values 65-90. So the < 58 is used to check if it's a digit-character, and the + 43 will increase the 48-57 to 91-100, putting their values above the 'A'-'Z' so your <= and >= checks will work as you'd want them to.
Alternatively, you could create a look-up String and use its index for the order:
int applyCharOrder(char c){
return "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789".indexOf(c);
}
Try it online.
PS: As mentioned in the first comment by #Stultuske, variables are usually in camelCase, so they aren't starting with an uppercase letter.
As the others stated in the comments, such mathematical comparison operations on characters are based on the actual ASCII values of each char. So I'd suggest you refactor your logic using the ASCII table as reference.
Related
I'm trying to replace all words (alphabet letters) from JList1 to the number corresponding its place in the alphabet to JList2 with the press of the Run button. (ex. A to 01) And if it's not an English alphabet letter then leaving it as it is. Capitalization doesn't matter (a and A is still 01) and spaces should be kept.
For visual purposes:
"Apple!" should be converted to "0116161205!"
"stack Overflow" to "1920010311 1522051806121523"
"über" to "ü020518"
I have tried a few methods I found on here, but had zero clue how to add the extra 0 in front of the first 9 letters or keep the spaces. Any help is much appreciated.
Here is a solution :
//Create a Map of character and equivalent number
Map<Character, String> lettersToNumber = new HashMap<>();
int i = 1;
for(char c = 'a'; c <= 'z'; c++) {
lettersToNumber.put(c, String.format("%02d", i++));
}
//Loop over the characters of your input and the corresponding number
String result = "";
for(char c : "Apple!".toCharArray()) {
char x = Character.toLowerCase(c);
result+= lettersToNumber.containsKey(x) ? lettersToNumber.get(x) : c;
}
Input, Output
Apple! => 0116161205!
stack Overflow => 1920010311 1522051806121523
über => ü020518
So given...
(ex. A to 01) And if it's not an English alphabet letter then leaving it as it is. Capitalization doesn't matter (a and A is still 01) and spaces should be kept.
This raises some interesting points:
We don't care about non-english characters, so we can dispense with issues around UTF encoding
Capitalization doesn't matter
Spaces should be kept
The reason these points are interesting to me is it means we're only interested in a small subset of characters (1-26). This immediately screams "ASCII" to me!
This provides an immediate lookup table which doesn't require us to produce anything up front, it's immediately accessible.
A quick look at any ascii table provides us with all the information we need. A-Z is in the range of 65-90 (since we don't care about case, we don't need to worry about the lower case range.
But how does that help us!?
Well, this now means the primary question becomes, "How do we convert a char to an int?", which is amazingly simple! A char can be both a "character" and a "number" at the same time, because of the ASCII encoding support!
So if you were to print out (int)'A', it would print 65! And since all the characters are in order, we just need to subtract 64 from 65 to get 1!
That's basically your entire problem solved right there!
Oh, okay, you need to deal with the edge cases of characters not falling between A-Z, but that's just a simple if statement
A solution based on the above "might" look something like...
public static String convert(String text) {
int offset = 64;
StringBuilder sb = new StringBuilder(32);
for (char c : text.toCharArray()) {
char input = Character.toUpperCase(c);
int value = ((int) input) - offset;
if (value < 1 || value > 25) {
sb.append(c);
} else {
sb.append(String.format("%02d", value));
}
}
return sb.toString();
}
Now, there are a number of ways you might approach this, I've chosen a path based on my understanding of the problem and my experience.
And based on your example input...
String[] test = {"Apple!", "stack Overflow", "über"};
for (String value : test) {
System.out.println(value + " = " + convert(value));
}
would produce the following output...
Apple! = 0116161205!
stack Overflow = 1920010311 1522051806121523
über = ü020518
This Java code is giving me trouble:
String word = <Uses an input>
int y = 3;
char z;
do {
z = word.charAt(y);
if (z!='a' || z!='e' || z!='i' || z!='o' || z!='u')) {
for (int i = 0; i==y; i++) {
wordT = wordT + word.charAt(i);
} break;
}
} while(true);
I want to check if the third letter of word is a non-vowel, and if it is I want it to return the non-vowel and any characters preceding it. If it is a vowel, it checks the next letter in the string, if it's also a vowel then it checks the next one until it finds a non-vowel.
Example:
word = Jaemeas then wordT must = Jaem
Example 2:
word=Jaeoimus then wordT must =Jaeoim
The problem is with my if statement, I can't figure out how to make it check all the vowels in that one line.
Clean method to check for vowels:
public static boolean isVowel(char c) {
return "AEIOUaeiou".indexOf(c) != -1;
}
Your condition is flawed. Think about the simpler version
z != 'a' || z != 'e'
If z is 'a' then the second half will be true since z is not 'e' (i.e. the whole condition is true), and if z is 'e' then the first half will be true since z is not 'a' (again, whole condition true). Of course, if z is neither 'a' nor 'e' then both parts will be true. In other words, your condition will never be false!
You likely want &&s there instead:
z != 'a' && z != 'e' && ...
Or perhaps:
"aeiou".indexOf(z) < 0
How about an approach using regular expressions? If you use the proper pattern you can get the results from the Matcher object using groups. In the code sample below the call to m.group(1) should return you the string you're looking for as long as there's a pattern match.
String wordT = null;
Pattern patternOne = Pattern.compile("^([\\w]{2}[AEIOUaeiou]*[^AEIOUaeiou]{1}).*");
Matcher m = patternOne.matcher("Jaemeas");
if (m.matches()) {
wordT = m.group(1);
}
Just a little different approach that accomplishes the same goal.
Actually there are much more efficient ways to check it but since you've asked what is the problem with yours, I can tell that the problem is you have to change those OR operators with AND operators. With your if statement, it will always be true.
So in event anyone ever comes across this and wants a easy compare method that can be used in many scenarios.
Doesn't matter if it is UPPERCASE or lowercase. A-Z and a-z.
bool vowel = ((1 << letter) & 2130466) != 0;
This is the easiest way I could think of. I tested this in C++ and on a 64bit PC so results may differ but basically there's only 32 bits available in a "32 bit integer" as such bit 64 and bit 32 get removed and you are left with a value from 1 - 26 when performing the "<< letter".
If you don't understand how bits work sorry i'm not going go super in depth but the technique of
1 << N is the same thing as 2^N power or creating a power of two.
So when we do 1 << N & X we checking if X contains the power of two that creates our vowel is located in this value 2130466. If the result doesn't equal 0 then it was successfully a vowel.
This situation can apply to anything you use bits for and even values larger then 32 for an index will work in this case so long as the range of values is 0 to 31. So like the letters as mentioned before might be 65-90 or 97-122 but since but we keep remove 32 until we are left with a remainder ranging from 1-26. The remainder isn't how it actually works, but it gives you an idea of the process.
Something to keep in mind if you have no guarantee on the incoming letters it to check if the letter is below 'A' or above 'u'. As the results will always be false anyways.
For example teh following will return a false vowel positive. "!" exclamation point is value 33 and it will provide the same bit value as 'A' or 'a' would.
For starters, you are checking if the letter is "not a" OR "not e" OR "not i" etc.
Lets say that the letter is i. Then the letter is not a, so that returns "True". Then the entire statement is True because i != a. I think what you are looking for is to AND the statements together, not OR them.
Once you do this, you need to look at how to increment y and check this again. If the first time you get a vowel, you want to see if the next character is a vowel too, or not. This only checks the character at location y=3.
String word="Jaemeas";
String wordT="";
int y=3;
char z;
do{
z=word.charAt(y);
if(z!='a'&&z!='e'&&z!='i'&&z!='o'&&z!='u'&&y<word.length()){
for(int i = 0; i<=y;i++){
wordT=wordT+word.charAt(i);
}
break;
}
else{
y++;
}
}while(true);
here is my answer.
I have declared a char[] constant for the VOWELS, then implemented a method that checks whether a char is a vowel or not (returning a boolean value). In my main method, I am declaring a string and converting it to an array of chars, so that I can pass the index of the char array as the parameter of my isVowel method:
public class FindVowelsInString {
static final char[] VOWELS = {'a', 'e', 'i', 'o', 'u'};
public static void main(String[] args) {
String str = "hello";
char[] array = str.toCharArray();
//Check with a consonant
boolean vowelChecker = FindVowelsInString.isVowel(array[0]);
System.out.println("Is this a character a vowel?" + vowelChecker);
//Check with a vowel
boolean vowelChecker2 = FindVowelsInString.isVowel(array[1]);
System.out.println("Is this a character a vowel?" + vowelChecker2);
}
private static boolean isVowel(char vowel) {
boolean isVowel = false;
for (int i = 0; i < FindVowelsInString.getVowel().length; i++) {
if (FindVowelsInString.getVowel()[i] == vowel) {
isVowel = true;
}
}
return isVowel;
}
public static char[] getVowel() {
return FindVowelsInString.VOWELS;
}
}
I"m trying to take a string that represents a full algebraic excpression, such as x = 15 * 6 / 3 which is a string, and tokenize it into its individual components. So the first would be x, then =, then 15, then *, 6, / and finally 3.
The problem I am having is actually parsing through the string and looking at the individual characters. I can't think of a way to do this without a massive amount of if statements. Surely there has to be a better way tan specifically defining each individual case and testing for it.
For each type of token, you'll want to figure out how to identify:
when you're starting to read a particular token
if you're continuing to read the same token, or if you've started a different one
Let's take your example: x=15*6/3. Let's assume that you cannot rely on the fact that there are spaces in between each token. In that case, it's trivial: your new token starts when you reach a space.
You can break down the character types into letters, digits, and symbols. Let's call the token types Variable, Operator, and Number.
A letter indicates a Variable token has started. It continues until you read a non-letter.
A symbol indicates the start of an Operator token. I only see single symbols, but you can have groups of symbols correspond to different Operator tokens.
A digit indicates the start of a Number token. (Let's assume integers for now.) The Number token continues until you read a non-digit.
Basically, that's how a simple symbolic parser works. Now, if you add in negative numbers (where the '-' symbol can have multiple meanings), or parentheses, or function names (like sin(x)) then things get more complicated, but it amounts to the same set of rules, now just with more choices.
create regular expression for each possible element: integer, variable, operator, parentheses.
combine them using the | regular expression operator into one big regular expression with capture groups to identify which one matched.
in a loop match the head of the remaining string and break off the matched part as a token. the type of the token depends on which sub-expression matched as described in 2.
or
use a lexer library, such as the one in antlr or javacc
This is from my early expression evaluator that takes an infix expression like yours and turns it into postfix to evaluate. There are methods that help the parser but I think they're pretty self documenting. Mine uses symbol tables to check tokens against. It also allows for user defined symbols and nested assignments and other things you may not need/want. But it shows how I handled your issue without using niceties like regex which would simplify this task tremendously. In addition everything shown is of my own implementation - stack and queue as well - everything. So if anything looks abnormal (unlike Java imps) that's because it is.
This section of code is important not to answer your immediate question but to show the necessary work to determine the type of token you're dealing with. In my case I had three different types of operators and two different types of operands. Based on either the known rules or rules I chose to enforce (when appropriate) it was easy to know when something was a number (starts with a number), variable/user symbol/math function (starts with a letter), or math operator (is: /,*,-,+) . Note that it only takes seeing the first char to know the correct extraction rules. From your example, if all your cases are as simple, you'd only have to handle two types, operator or operand. Nonetheless the same logic will apply.
protected Queue<Token> inToPostParse(String exp) {
// local vars
inputExp = exp;
offset = 0;
strLength = exp.length();
String tempHolder = "";
char c;
// the program runs in a loop so make sure you're dealing
// with an empty queue
q1.reset();
for (int i = offset; tempHolder != null && i < strLength; ++i) {
c = exp.charAt(i);
// Spaces are useless so skip them
if (c == ' ') { continue; }
// If c is a letter
if ((c >= 'A' && c <= 'Z')
|| (c >= 'a' && c <= 'z')) {
// Here we know it must be a user symbol possibly undefined
// at this point or an function like SIN, ABS, etc
// We extract, based on obvious rules, the op
tempHolder = extractPhrase(i); // Used to be append sequence
if (ut.isTrigOp(tempHolder) || ut.isAdditionalOp(tempHolder)) {
s1.push(new Operator(tempHolder, "Function"));
} else {
// If not some math function it is a user defined symbol
q1.insert(new Token(tempHolder, "User"));
}
i += tempHolder.length() - 1;
tempHolder = "";
// if c begins with a number
} else if (c >= '0' && c <= '9') {
try {
// Here we know that it must be a number
// so we extract until we reach a non number
tempHolder = extractNumber(i);
q1.insert(new Token(tempHolder, "Number"));
i += tempHolder.length() - 1;
tempHolder = "";
}
catch (NumberFormatException nfe) {
return null;
}
// if c is in the math symbol table
} else if (ut.isMathOp(String.valueOf(c))) {
String C = String.valueOf(c);
try {
// This is where the magic happens
// Here we determine the "intersection" of the
// current C and the top of the stack
// Based on the intersection we take action
// i.e., in math do you want to * or + first?
// Depending on the state you may have to move
// some tokens to the queue before pushing onto the stack
takeParseAction(C, ut.findIntersection
(C, s1.showTop().getSymbol()));
}
catch (NullPointerException npe) {
s1(C);
}
// it must be an invalid expression
} else {
return null;
}
}
u2();
s1.reset();
return q1;
}
Basically I have a stack (s1) and a queue (q1). All variables or numbers go into the queue. Any operators trig, math, parens, etc.. go on the stack. If the current token is to be put on the stack you have to check the state (top) to determine what parsing action to take (i.e., what to do based on math precedence). Sorry if this seems like useless information. I imagine if you're parsing a math expression it's because at some point you plan to evaluate it. IMHO, postfix is the easiest so I, regardless of input format, change it to post and evaluate with one method. If your O is different - do what you like.
Edit: Implementations
The extract phrase and number methods, which you may be most interested in, are as follows:
protected String extractPhrase(int it) {
String phrase = new String();
char c;
for ( ; it < inputExp.length(); ++it) {
c = inputExp.charAt(it);
if ((c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z')
|| (c >= '0' && c <= '9')) {
phrase += String.valueOf(c);
} else {
break;
}
}
return phrase;
}
protected String extractNumber(int it) throws NumberFormatException {
String number = new String();
int decimals = 0;
char c;
for ( ; it < strLength; ++it) {
c = inputExp.charAt(it);
if (c >= '0' && c <= '9') {
number += String.valueOf(c);
} else if (c == '.') {
++decimals;
if (decimals < 2) {
number += ".";
} else {
throw new NumberFormatException();
}
} else {
break;
}
}
return number;
}
Remember - By the time they enter these methods I've already been able to deduce what type it is. This allows you to avoid the seemingly endless while-if-else chain.
Are components always separated by space character like in your question? if so, use algebricExpression.split(" ") to get a String[] of components.
If no such restrictions can be assumed, a possible solution can be to iterate over the input, and switch the Character.getType() of the current index, somthing like that:
ArrayList<String> getExpressionComponents(String exp) {
ArrayList<String> components = new ArrayList<String>();
String current = "";
int currentSequenceType = Character.UNASSIGNED;
for (int i = 0 ; i < exp.length() ; i++) {
if (currentSequenceType != Character.getType(exp.charAt(i))) {
if (current.length() > 0) components.add(current);
current = "";
currentSequenceType = Character.getType(exp.charAt(i));
}
switch (Character.getType(exp.charAt(i))) {
case Character.DECIMAL_DIGIT_NUMBER:
case Character.MATH_SYMBOL:
case Character.START_PUNCTUATION:
case Character.END_PUNCTUATION:
case Character.LOWERCASE_LETTER:
case Character.UPPERCASE_LETTER:
// add other required types
current = current.concat(new String(new char[] {exp.charAt(i)}));
currentSequenceType = Character.getType(exp.charAt(i));
break;
default:
current = "";
currentSequenceType = Character.UNASSIGNED;
break;
}
}
return components;
}
You can easily change the cases to meet with other requirements, such as split non-digit chars to separate components etc.
What is the fastest / clearest way to see if a string matches to another string of the same length with X allowed mismatches? Is there a library that can do this, its not in Apache stringUtils (there is only one that also uses insertions / deletions).
So lets say I have 2 string of length for and I want to know if they match with 1 mismatch allowed. Insertions and deletions are not allowed.
So:
ABCD <-> ABCD = Match
ABCC <-> ABCD = Match with 1 mismatch
ACCC <-> ABCD = no match, 2 mismatches is too much.
String str1, str2;
Assuming the lengths of the strings are equal:
int i = 0;
for(char c : str1.toCharArray())
{
if(c != str2.charAt(i++))
counter++;
}
if(counter > 1)
// mismatch
Compare the strings one character at a time.Keep a counter to count the mismatch.When the counter exceeds the limit, return false.If you reach the end of string, return true
Try this to store the strings in a char array (char[] charArray = String.toCharArray()).
char[] stringA = firsString.toCharArray();
char[] stringB = secondString.toCharArray();
int ctr = 0;
if(stringA.length == stringB.length){
for(int i = 0; i<stringA.length; i++){
if(stringA[i] == stringB[i]){
ctr++;
}
}
}
//do the if-else here using the ctr
If you want the FASTEST way, you should code it from an existing algorithm like "Approximate Boyer-Moore String Matching" or Suffix Tree method...
Look at here: https://codereview.stackexchange.com/questions/13383/approximate-string-matching-interview-question
They did the math, you do the code...
Other interesting SO posts are:
Getting the closest string match
Can java.util.regex.Pattern do partial matches?
Generating all permutations of a given string
Similarity Score - Levenshtein
Basically what I'm trying to do is take a String, and replace each letter in the alphabet inside, but preserving any spaces and not converting them to a "null" string, which is the main reason I am opening this question.
If I use the function below and pass the string "a b", instead of getting "ALPHA BETA" I get "ALPHAnullBETA".
I've tried all possible ways of checking if the individual char that is currently iterated through is a space, but nothing seems to work. All these scenarios give false as if it's a regular character.
public String charConvert(String s) {
Map<String, String> t = new HashMap<String, String>(); // Associative array
t.put("a", "ALPHA");
t.put("b", "BETA");
t.put("c", "GAMA");
// So on...
StringBuffer sb = new StringBuffer(0);
s = s.toLowerCase(); // This is my full string
for (int i = 0; i < s.length(); i++) {
char c = s.charAt(i);
String st = String.valueOf(c);
if (st.compareTo(" ") == 1) {
// This is the problematic condition
// The script should just append a space in this case, but nothing seems to invoke this scenario
} else {
sb.append(st);
}
}
s = sb.toString();
return s;
}
compareTo() will return 0 if the strings are equal. It returns a positive number of the first string is "greater than" the second.
But really there's no need to be comparing Strings. You can do something like this instead:
char c = s.charAt(i);
if(c == ' ') {
// do something
} else {
sb.append(c);
}
Or even better for your use case:
String st = s.substring(i,i+1);
if(t.contains(st)) {
sb.append(t.get(st));
} else {
sb.append(st);
}
To get even cleaner code, your Map should from Character to String instead of <String,String>.
String.compareTo() returns 0 if the strings are equal, not 1. Read about it here
Note that for this case you don't need to convert the char to a string, you could do
if(c == ' ')
use
Character.isWhitespace(c)
that solves the issue. Best practice.
First, of all, what is s in this example? It's hard to follow the code. Then, your compareTo seems off:
if (st.compareTo(" ") == 1)
Should be
if (st.compareTo(" ") == 0)
since 0 means "equal" (read up on compareTo)
From the compareTo documentation: The result is a negative integer if this String object lexicographically precedes the argument string. The result is a positive integer if this String object lexicographically follows the argument string. The result is zero if the strings are equal;
You have the wrong condition in if (st.compareTo(" ") == 1) {
The compareTo method of a String returns -1 if the source string precedes the test string, 0 for equality, and 1 if the source string follows. Your code checks for 1, and it should be checking for 0.