How to release a guava cache object - java

In my application, I build a Guava Cache object by CacheBuilder.newBuilder() method, and now I need to dynamically adjust some initialization parameters for it.
As I don't find any rebuild method for a guava cache, I have to rebuild a new one.
My question is :
Anybody teach me how to release the old one ? I don't find any useful method either.I just call cache.invalidateAll() for the old one to invalidate all the keys. Is there any risk for OOM ?
As the cache maybe used in multi-threads, is it necessary to declare the cache as volatile ?
my codes is as belows:
private volatile LoadingCache<Long, String> cache = null;
private volatile LoadingCache<Long, String> oldCache = null;
public void rebuildCache(int cacheSize, int expireSeconds) {
logger.info("rebuildCache start: cacheSize: {}, expireSeconds: {}", cacheSize, expireSeconds);
oldCache = cache;
cache = CacheBuilder.newBuilder()
.maximumSize(cacheSize)
.recordStats()
.expireAfterWrite(expireSeconds, TimeUnit.SECONDS)
.build(
new CacheLoader<Long, String>() {
#Override
public String load(Long id) {
// some codes here
}
}
);
if (oldCache != null) {
oldCache.invalidateAll();
}
logger.info("rebuildCache end");
}
public String getByCache(Long id) throws ExecutionException {
return cache.get(id);
}

You don't need to do anything special to release the old one; it'll get garbage collected like any other object. You probably should mark the cache as volatile, or even better, an AtomicReference so multiple threads don't replace the cache at the same time. That said, oldCache should be a variable inside the method, not the class.

Related

JAVA Guava cache refresh existing elements

I am using Guava to handle caching in my web application; I want to auto refresh the existing elements in my cache every 10 minutes.
this is my snippet code:
private Cache<String, Integer> cache = CacheBuilder.newBuilder.build();
//my main method
public Integer load(String key){
Integer value = cache.getIfPresent(key)
if(value == null){
value = getKeyFromServer(key);
//insert in my cache
cache.put(key, value);
}
return value;
}
I want to enhance the above code in order to refresh the elements gathered in my cache map as bellow:
//1. iterate over cache map
for(e in cache){
//2. get new element value from the server
value = getKeyFromServer(e.getKey());
//3. update the cache
cache.put(key, value);
}
You have to use Guava Cache a bit more. There is no need to call getIfPresent or put as the mechanism is handled automatically.
LoadingCache<String, Integer> cache = CacheBuilder.newBuilder()
.expireAfterWrite(10, TimeUnit.MINUTES)
.build(
new CacheLoader<String, Integer>() {
#Override
public Integer load(Key key) throws Exception {
return getKeyFromServer(key);
}
});
Source: https://github.com/google/guava/wiki/CachesExplained
Please note that Guava Cache is deprecated in Spring 5: https://stackoverflow.com/a/44218055/8230378 (you labeled the question with spring-boot).

How to populate map of string and another map in a thread safe way?

I am working on measuing my application metrics using below class in which I increment and decrement metrics.
public class AppMetrics {
private final AtomicLongMap<String> metricCounter = AtomicLongMap.create();
private static class Holder {
private static final AppMetrics INSTANCE = new AppMetrics();
}
public static AppMetrics getInstance() {
return Holder.INSTANCE;
}
private AppMetrics() {}
public void increment(String name) {
metricCounter.getAndIncrement(name);
}
public AtomicLongMap<String> getMetricCounter() {
return metricCounter;
}
}
I am calling increment method of AppMetrics class from multithreaded code to increment the metrics by passing the metric name.
Problem Statement:
Now I want to have metricCounter for each clientId which is a String. That means we can also get same clientId multiple times and sometimes it will be a new clientId, so somehow then I need to extract the metricCounter map for that clientId and increment metrics on that particular map (which is what I am not sure how to do that).
What is the right way to do that keeping in mind it has to be thread safe and have to perform atomic operations. I was thinking to make a map like that instead:
private final Map<String, AtomicLongMap<String>> clientIdMetricCounterHolder = Maps.newConcurrentMap();
Is this the right way? If yes then how can I populate this map by passing clientId as it's key and it's value will be the counter map for each metric.
I am on Java 7.
If you use a map then you'll need to synchronize on the creation of new AtomicLongMap instances. I would recommend using a LoadingCache instead. You might not end up using any of the actual "caching" features but the "loading" feature is extremely helpful as it will synchronizing creation of AtomicLongMap instances for you. e.g.:
LoadingCache<String, AtomicLongMap<String>> clientIdMetricCounterCache =
CacheBuilder.newBuilder().build(new CacheLoader<String, AtomicLongMap<String>>() {
#Override
public AtomicLongMap<String> load(String key) throws Exception {
return AtomicLongMap.create();
}
});
Now you can safely start update metric counts for any client without worrying about whether the client is new or not. e.g.
clientIdMetricCounterCache.get(clientId).incrementAndGet(metricName);
A Map<String, Map<String, T>> is just a Map<Pair<String, String>, T> in disguise. Create a MultiKey class:
class MultiKey {
public String clientId;
public String name;
// be sure to add hashCode and equals
}
Then just use an AtomicLongMap<MultiKey>.
Edited:
Provided the set of metrics is well defined, it wouldn't be too hard to use this data structure to view metrics for one client:
Set<String> possibleMetrics = // all the possible values for "name"
Map<String, Long> getMetricsForClient(String client) {
return Maps.asMap(possibleMetrics, m -> metrics.get(new MultiKey(client, m));
}
The returned map will be a live unmodifiable view. It might be a bit more verbose if you're using an older Java version, but it's still possible.

synchronized cache service implementation

I am developing a java application where need to implement cache service to serve the requests. The requirement is like:
1) 1 or more threads come to fetch some data and if data is null is
cache then only one thread goes to DB to load the data in cache.
2) Once done , all subsequent threads will be served from cache.
So for this the implementation is like:
public List<Tag> getCachedTags() throws Exception
{
// get data from cache
List<Tag> tags = (List<Tag>) CacheUtil.get(Config.tagCache,Config.tagCacheKey);
if(tags == null) // if data is null
{
// one thread will go to DB and others wait here
synchronized(Config.tagCacheLock)
{
// first thread get this null and go to db, subsequent threads returns from here.
tags = (List<Tag>) CacheUtil.get(Config.tagCache,Config.tagCacheKey);
if(tags == null)
{
tags = iTagService.getTags(null);
CacheUtil.put(Config.tagCache, Config.tagCacheKey, tags);
}
}
}
return tags;
}
Now is this the correct approach, and as I am making lock in a static String, then is not it will be a class level lock? please suggest me some better approach
If you want to globally synchronize, just use custom object for this purpose:
private static final Object lock = new Object();
Do not use the String constant as they are interned, so the string constant with the same content declared in completely different part of your program will be the same String object. And in general avoid locking on the static fields. Better to instantiate your class and declare the lock as non-static. Currently you may use it as singleton (with some method like Cache.getInstance()), but later when you realize that you have to support several independent caches you will need less refactoring to achieve this.
In Java-8 preferred way to fetch object once is using the ConcurrentHashMap.computeIfAbsent like this:
private final ConcurrentHashMap<String, Object> cache = new ConcurrentHashMap<>();
public List<Tag> getCachedTags() throws Exception
List<Tag> tags = (List<Tag>)cache.computeIfAbsent(Config.tagCacheKey,
k -> iTagService.getTags(null));
return tags;
}
This is simple and robust. In previous Java versions you may probably use AtomicReference to wrap the objects:
private final ConcurrentHashMap<String, AtomicReference<Object>> cache =
new ConcurrentHashMap<>();
public List<Tag> getCachedTags() throws Exception
AtomicReference<Object> ref = cache.get(key);
if(ref == null) {
ref = new AtomicReference<>();
AtomicReference<Object> oldRef = cache.putIfAbsent(key, ref);
if(oldRef != null) {
ref = oldRef;
}
synchronized(ref) {
if(ref.get() == null) {
ref.set(iTagService.getTags(null));
}
}
}
return (List<Tag>)ref.get();
}

Guava cache - How do I loadAll on any miss?

I have a use case where the method to load my cache's data is a bulk call, but I'm never going to use getAll to get data from the cache. Is there a way to have multiple concurrent gets all block on a single loadAll? I don't want individual gets on different keys to result in multiple calls to the data source.
cache.get(key1); // missing entry, starts refresh
cache.get(key2); // separate thread, already getting reloaded due to key1 miss
I think I'll have to implement my own synchronization after looking into the LocalCache, using something like a local cache in my data accessor that only allows a call through every so many units of time. When a call does go through, update the local copy with a single assignment statement.
Am I missing something from Guava's cache library?
Edit:
I'm considering something like the following. However, it could potentially continue returning stale data while loadAll finishes. I'd prefer everything blocks at load, and only the first request causes loadAll to proceed.
public class DataCacheLoader extends CacheLoader<String, Double>
{
private final Cache<String, Double> cache;
private ConcurrentMap<String, Double> currentData;
private final AtomicBoolean isloading;
public DataCacheLoader( final Cache<String, Double> cache )
{
this.cache = cache;
isLoading = new AtomicBoolean( false );
}
#Override
public Double load( final String key ) throws Exception
{
if ( isLoading.compareAndSet( false, true ) )
{
cache.putAll( loadAll( Lists.newArrayList( key ) ) ) );
}
return currentData.get( key );
}
#Override
public Map<String, Double> loadAll(Iterable<? extends String> keys) throws Exception
{
currentData = source.getAllData();
return currentData;
}
}
Here's a solution that should do the trick. The idea is that instead of caching each individual key you cache the whole map with a single fixed key. The one drawback is that you won't be able to expire individual parts of the underlying map (at least not easily), but that may not be a requirement.
class MyCache {
private static final Object KEY = new Object();
private final LoadingCache<Object, Map<String, Double>> delegate =
new CacheBuilder()
// configure cache
.build(new CacheLoader<Object, Map<String, Double>>() {
public Map<String, Double> load(Object key) {
return source.load();
}
};
double get(String key) {
return cache.get(KEY).get(key);
}
}

Thread-safe cache of one object in java

let's say we have a CountryList object in our application that should return the list of countries. The loading of countries is a heavy operation, so the list should be cached.
Additional requirements:
CountryList should be thread-safe
CountryList should load lazy (only on demand)
CountryList should support the invalidation of the cache
CountryList should be optimized considering that the cache will be invalidated very rarely
I came up with the following solution:
public class CountryList {
private static final Object ONE = new Integer(1);
// MapMaker is from Google Collections Library
private Map<Object, List<String>> cache = new MapMaker()
.initialCapacity(1)
.makeComputingMap(
new Function<Object, List<String>>() {
#Override
public List<String> apply(Object from) {
return loadCountryList();
}
});
private List<String> loadCountryList() {
// HEAVY OPERATION TO LOAD DATA
}
public List<String> list() {
return cache.get(ONE);
}
public void invalidateCache() {
cache.remove(ONE);
}
}
What do you think about it? Do you see something bad about it? Is there other way to do it? How can i make it better? Should i look for totally another solution in this cases?
Thanks.
google collections actually supplies just the thing for just this sort of thing: Supplier
Your code would be something like:
private Supplier<List<String>> supplier = new Supplier<List<String>>(){
public List<String> get(){
return loadCountryList();
}
};
// volatile reference so that changes are published correctly see invalidate()
private volatile Supplier<List<String>> memorized = Suppliers.memoize(supplier);
public List<String> list(){
return memorized.get();
}
public void invalidate(){
memorized = Suppliers.memoize(supplier);
}
Thanks you all guys, especially to user "gid" who gave the idea.
My target was to optimize the performance for the get() operation considering the invalidate() operation will be called very rare.
I wrote a testing class that starts 16 threads, each calling get()-Operation one million times. With this class I profiled some implementation on my 2-core maschine.
Testing results
Implementation Time
no synchronisation 0,6 sec
normal synchronisation 7,5 sec
with MapMaker 26,3 sec
with Suppliers.memoize 8,2 sec
with optimized memoize 1,5 sec
1) "No synchronisation" is not thread-safe, but gives us the best performance that we can compare to.
#Override
public List<String> list() {
if (cache == null) {
cache = loadCountryList();
}
return cache;
}
#Override
public void invalidateCache() {
cache = null;
}
2) "Normal synchronisation" - pretty good performace, standard no-brainer implementation
#Override
public synchronized List<String> list() {
if (cache == null) {
cache = loadCountryList();
}
return cache;
}
#Override
public synchronized void invalidateCache() {
cache = null;
}
3) "with MapMaker" - very poor performance.
See my question at the top for the code.
4) "with Suppliers.memoize" - good performance. But as the performance the same "Normal synchronisation" we need to optimize it or just use the "Normal synchronisation".
See the answer of the user "gid" for code.
5) "with optimized memoize" - the performnce comparable to "no sync"-implementation, but thread-safe one. This is the one we need.
The cache-class itself:
(The Supplier interfaces used here is from Google Collections Library and it has just one method get(). see http://google-collections.googlecode.com/svn/trunk/javadoc/com/google/common/base/Supplier.html)
public class LazyCache<T> implements Supplier<T> {
private final Supplier<T> supplier;
private volatile Supplier<T> cache;
public LazyCache(Supplier<T> supplier) {
this.supplier = supplier;
reset();
}
private void reset() {
cache = new MemoizingSupplier<T>(supplier);
}
#Override
public T get() {
return cache.get();
}
public void invalidate() {
reset();
}
private static class MemoizingSupplier<T> implements Supplier<T> {
final Supplier<T> delegate;
volatile T value;
MemoizingSupplier(Supplier<T> delegate) {
this.delegate = delegate;
}
#Override
public T get() {
if (value == null) {
synchronized (this) {
if (value == null) {
value = delegate.get();
}
}
}
return value;
}
}
}
Example use:
public class BetterMemoizeCountryList implements ICountryList {
LazyCache<List<String>> cache = new LazyCache<List<String>>(new Supplier<List<String>>(){
#Override
public List<String> get() {
return loadCountryList();
}
});
#Override
public List<String> list(){
return cache.get();
}
#Override
public void invalidateCache(){
cache.invalidate();
}
private List<String> loadCountryList() {
// this should normally load a full list from the database,
// but just for this instance we mock it with:
return Arrays.asList("Germany", "Russia", "China");
}
}
Whenever I need to cache something, I like to use the Proxy pattern.
Doing it with this pattern offers separation of concerns. Your original
object can be concerned with lazy loading. Your proxy (or guardian) object
can be responsible for validation of the cache.
In detail:
Define an object CountryList class which is thread-safe, preferably using synchronization blocks or other semaphore locks.
Extract this class's interface into a CountryQueryable interface.
Define another object, CountryListProxy, that implements the CountryQueryable.
Only allow the CountryListProxy to be instantiated, and only allow it to be referenced
through its interface.
From here, you can insert your cache invalidation strategy into the proxy object. Save the time of the last load, and upon the next request to see the data, compare the current time to the cache time. Define a tolerance level, where, if too much time has passed, the data is reloaded.
As far as Lazy Load, refer here.
Now for some good down-home sample code:
public interface CountryQueryable {
public void operationA();
public String operationB();
}
public class CountryList implements CountryQueryable {
private boolean loaded;
public CountryList() {
loaded = false;
}
//This particular operation might be able to function without
//the extra loading.
#Override
public void operationA() {
//Do whatever.
}
//This operation may need to load the extra stuff.
#Override
public String operationB() {
if (!loaded) {
load();
loaded = true;
}
//Do whatever.
return whatever;
}
private void load() {
//Do the loading of the Lazy load here.
}
}
public class CountryListProxy implements CountryQueryable {
//In accordance with the Proxy pattern, we hide the target
//instance inside of our Proxy instance.
private CountryQueryable actualList;
//Keep track of the lazy time we cached.
private long lastCached;
//Define a tolerance time, 2000 milliseconds, before refreshing
//the cache.
private static final long TOLERANCE = 2000L;
public CountryListProxy() {
//You might even retrieve this object from a Registry.
actualList = new CountryList();
//Initialize it to something stupid.
lastCached = Long.MIN_VALUE;
}
#Override
public synchronized void operationA() {
if ((System.getCurrentTimeMillis() - lastCached) > TOLERANCE) {
//Refresh the cache.
lastCached = System.getCurrentTimeMillis();
} else {
//Cache is okay.
}
}
#Override
public synchronized String operationB() {
if ((System.getCurrentTimeMillis() - lastCached) > TOLERANCE) {
//Refresh the cache.
lastCached = System.getCurrentTimeMillis();
} else {
//Cache is okay.
}
return whatever;
}
}
public class Client {
public static void main(String[] args) {
CountryQueryable queryable = new CountryListProxy();
//Do your thing.
}
}
Your needs seem pretty simple here. The use of MapMaker makes the implementation more complicated than it has to be. The whole double-checked locking idiom is tricky to get right, and only works on 1.5+. And to be honest, it's breaking one of the most important rules of programming:
Premature optimization is the root of
all evil.
The double-checked locking idiom tries to avoid the cost of synchronization in the case where the cache is already loaded. But is that overhead really causing problems? Is it worth the cost of more complex code? I say assume it is not until profiling tells you otherwise.
Here's a very simple solution that requires no 3rd party code (ignoring the JCIP annotation). It does make the assumption that an empty list means the cache hasn't been loaded yet. It also prevents the contents of the country list from escaping to client code that could potentially modify the returned list. If this is not a concern for you, you could remove the call to Collections.unmodifiedList().
public class CountryList {
#GuardedBy("cache")
private final List<String> cache = new ArrayList<String>();
private List<String> loadCountryList() {
// HEAVY OPERATION TO LOAD DATA
}
public List<String> list() {
synchronized (cache) {
if( cache.isEmpty() ) {
cache.addAll(loadCountryList());
}
return Collections.unmodifiableList(cache);
}
}
public void invalidateCache() {
synchronized (cache) {
cache.clear();
}
}
}
I'm not sure what the map is for. When I need a lazy, cached object, I usually do it like this:
public class CountryList
{
private static List<Country> countryList;
public static synchronized List<Country> get()
{
if (countryList==null)
countryList=load();
return countryList;
}
private static List<Country> load()
{
... whatever ...
}
public static synchronized void forget()
{
countryList=null;
}
}
I think this is similar to what you're doing but a little simpler. If you have a need for the map and the ONE that you've simplified away for the question, okay.
If you want it thread-safe, you should synchronize the get and the forget.
What do you think about it? Do you see something bad about it?
Bleah - you are using a complex data structure, MapMaker, with several features (map access, concurrency-friendly access, deferred construction of values, etc) because of a single feature you are after (deferred creation of a single construction-expensive object).
While reusing code is a good goal, this approach adds additional overhead and complexity. In addition, it misleads future maintainers when they see a map data structure there into thinking that there's a map of keys/values in there when there is really only 1 thing (list of countries). Simplicity, readability, and clarity are key to future maintainability.
Is there other way to do it? How can i make it better? Should i look for totally another solution in this cases?
Seems like you are after lazy-loading. Look at solutions to other SO lazy-loading questions. For example, this one covers the classic double-check approach (make sure you are using Java 1.5 or later):
How to solve the "Double-Checked Locking is Broken" Declaration in Java?
Rather than just simply repeat the solution code here, I think it is useful to read the discussion about lazy loading via double-check there to grow your knowledge base. (sorry if that comes off as pompous - just trying teach to fish rather than feed blah blah blah ...)
There is a library out there (from atlassian) - one of the util classes called LazyReference. LazyReference is a reference to an object that can be lazily created (on first get). it is guarenteed thread safe, and the init is also guarenteed to only occur once - if two threads calls get() at the same time, one thread will compute, the other thread will block wait.
see a sample code:
final LazyReference<MyObject> ref = new LazyReference() {
protected MyObject create() throws Exception {
// Do some useful object construction here
return new MyObject();
}
};
//thread1
MyObject myObject = ref.get();
//thread2
MyObject myObject = ref.get();
This looks ok to me (I assume MapMaker is from google collections?) Ideally you wouldn't need to use a Map because you don't really have keys but as the implementation is hidden from any callers I don't see this as a big deal.
This is way to simple to use the ComputingMap stuff. You only need a dead simple implementation where all methods are synchronized, and you should be fine. This will obviously block the first thread hitting it (getting it), and any other thread hitting it while the first thread loads the cache (and the same again if anyone calls the invalidateCache thing - where you also should decide whether the invalidateCache should load the cache anew, or just null it out, letting the first attempt at getting it again block), but then all threads should go through nicely.
Use the Initialization on demand holder idiom
public class CountryList {
private CountryList() {}
private static class CountryListHolder {
static final List<Country> INSTANCE = new List<Country>();
}
public static List<Country> getInstance() {
return CountryListHolder.INSTANCE;
}
...
}
Follow up to Mike's solution above. My comment didn't format as expected... :(
Watch out for synchronization issues in operationB, especially since load() is slow:
public String operationB() {
if (!loaded) {
load();
loaded = true;
}
//Do whatever.
return whatever;
}
You could fix it this way:
public String operationB() {
synchronized(loaded) {
if (!loaded) {
load();
loaded = true;
}
}
//Do whatever.
return whatever;
}
Make sure you ALWAYS synchronize on every access to the loaded variable.

Categories