different approaches in retrieving Caller method details apart from stack trace [Java] - java

There is a need to pass caller method details in java. I do not want to use StackTrace to find out them.
Are there any alternative means to get them?
I know Aspects will help but there is a concern that it will slow down performance.
Any suggestions will help.

I am not aware of any.
In the end, you are asking for some sort of instrumentation. In other words: you want to tell the jvm to keep track of the call stack and more importantly, make that information available to you programmatically.
And even when you only want that to happen for specific methods, the jvm still has to track all method invocations, as it can't know whether one of the methods to track is called in the end. And the fact that java is interpreted and compiled to native machine code adds to the complexity, too.
So, as said: there is no way of tracking method invocations easily without performance impacts. And the tools I know that can keep that performance impact on a reasonable level, like XRebel are for later evaluation, not for programmatic consumption.
Finally: you should rather look into your requirements. Java is simply not a good language when you really need such information. It isn't meant to keep call stacks around. So: the real solution would be to either select a platform that works better for you, or (recommended) to step back and design a solution that doesn't have this requirement.

Related

In java streams using .peek() is regarded as to be used for debugging purposes only, would logging be considered as debugging? [duplicate]

This question already has answers here:
In Java streams is peek really only for debugging?
(10 answers)
Closed 4 years ago.
So I have a list of objects which I want part or whole to be processed, and I would want to log those objects that were processed.
consider a fictional example:
List<ClassInSchool> classes;
classes
.stream()
.filter(verifyClassInSixthGrade())
.filter(classHasNoClassRoom())
.peek(classInSchool -> log.debug("Processing classroom {} in sixth grade without classroom.", classInSchool)
.forEach(findMatchingClassRoomIfAvailable());
Would using .peek() in this instance be regarded as unintended use of the API?
To further explain, in this question the key takeaway is: "Don't use the API in an unintended way, even if it accomplishes your immediate goal." My question is whether or not every use of peek, short from debugging your stream until you have verified the whole chain works as designed and removed the .peek() again, is unintended use. So if using it as a means to log every object actually processed by the stream is considered unintended use.
The documentation of peek describes the intent as
This method exists mainly to support debugging, where you want to see the elements as they flow past a certain point in a pipeline.
An expression of the form .peek(classInSchool -> log.debug("Processing classroom {} in sixth grade without classroom.", classInSchool) fulfills this intend, as it is about reporting the processing of an element. It doesn’t matter whether you use the logging framework or just print statements, as in the documentation’s example, .peek(e -> System.out.println("Filtered value: " + e)). In either case, the intent matters, not the technical approach. If someone used peek with the intent to print all elements, it would be wrong, even if it used the same technical approach as the documentation’s example (System.out.println).
The documentation doesn’t mandate that you have to distinguish between production environment or debugging environment, to remove the peek usage for the former. Actually, your use would even fulfill that, as the logging framework allows you to mute that action via the configurable logging level.
I would still suggest to keep in mind that for some pipelines, inserting a peek operation may insert more overhead than the actual operation (or hinder the JVM’s loop optimizations to such degree). But if you do not experience performance problems, you may follow the old advice to not try to optimize unless you have a real reason…
Peek should be avoided as for certain terminal operations it may not be called, see this answer. In that example it would probably be better to do the logging inside the action of forEach rather than using peek. Debugging in this situation means temporary code used for fixing a bug or diagnosing an issue.
In java streams using .peek() is regarded as to be used for debugging purposes only, would logging be considered as debugging?
It depends on whether your logging code is going to be a permanent fixture of your code, or not.
Only you can really know the real purpose of your logging ...
Also note that the javadoc says:
In cases where the stream implementation is able to optimize away the production of some or all the elements (such as with short-circuiting operations like findFirst, or in the example described in count()), the action will not be invoked for those elements.
So, you are liable to find that in some circumstances peek won't be a reliable way to log (or debug) your pipeline.
In general, adding peek is liable to change the behavior of the pipeline and / or the JVM's ability to optimize it ... in a current or future generation JVM.
Eh, it's somewhat open to interpretation. Intent is something that's not always easy to determine.
I think the API note was mostly added to discourage an overzealous usage of peek when almost all desirable behaviour can be accomplished without it. It was just too useful for the developers to exclude it completely but they wanted to be clear that its inclusion was not to be taken as an unqualified endorsement; they saw the potential for misuse and they tried to address it.
I suspect - though I'm only speculating - that there were mixed opinions on whether to include it at all, and that including a version with a caveat in the JavaDoc was the compromise.
With that in mind, I think my suggestion for deciding when to use peek would simply be: don't use it unless you have a very good reason to.
In your case, you definitely don't have a good reason to. You're iterating over everything and passing the result to the method findMatchingClassRoomIfAvailable (well, presumably - your example wasn't very good). If you want to log something for each item in the stream then just log it at the top that method.
Is it misuse? I don't think so. Would I write it this way? No.

how can I get the History of an object or trace an Object

I have a requirement, where support in my application a lot of processing is happening, at some point of time an exception occrured, due to an object. Now I would like to know the whole history of that object. I mean whatever happened with that object over the period of time since the application has started.
Is this peeping into this history of Object possible thru anyway using JMX or anything else ?
Thanks
In one word: No
With a few more words:
The JVM does not keep any history on any object past its current state, except for very little information related to garbage collection and perhaps some method call metrics needed for the HotSpot optimizer. Doing otherwise would imply a huge processing and memory overhead. There is also the question of granularity; do you log field changes only? Every method call? Every CPU instruction during a method call? The JVM simply takes the easy way out and does none of the above.
You have to isolate the class and/or specific instance of that object and log any operation that you need on your own. You will probably have to do that manually - I have yet to find a bytecode instrumentation library that would allow me to insert logging code at runtime...
Alternatively, you might be able to use an instrumenting profiler, but be prepared for a huge performance drop when doing that.
That's not possible with standard Java (or any other programming language I'm aware of). You should add sufficient logging to your application, which will allow you to get some idea of what's happened. Also, learn to use your IDE's debugger if you don't already know how.
I generally agree with #thkala and #artbristol (+1 for both).
But you have a requirement and have no choice: you need a solution.
I'd recommend you to try to wrap your objects with dynamic proxies that perform auditing, i.e. write all changes that happen to object.
You can probably use AspectJ for this. The aspect will note what method was called and what are the parameters that were sent. You can also use other, lower level tools, e.g. Javasist or CgLib.
Answer is No.JVM doesn't mainatain the history of object's state.Maximum what you can do you can keep track of states of your object that could be some where in-memory and when you get exception you can serialize that in-memory object and then i think you can do analysis.

Understanding this architecture

I have inherited a massive system from my predecessor and I am beginning to understand how it works but I cant fathom why.
It's in java and uses interfaces which, should add an extra layer, but they add 5 or 6.
Here's how it goes when the user interface button is pressed and that calls a function which looks like this
foo.create(stuff...)
{
bar.create;
}
bar.create is exactly the same except it calls foobar.creat and that in turn calls barfoo.create. this goes on through 9 classes before it finds a function that accessed the database.
as far as I know each extra function call incurs more performance cost so this seems stupid to me.
also in the foo.create all the variables are error checked, this makes sense but in every other call the error checks happen again, it looks like cut and paste code.
This seems like madness as once the variables are checked once they should not need to be re checked as this is just wastinh processor cycles in my opinion.
This is my first project using java and interfaces so im just confused as to whats going on.
can anyone explain why the system was designed like this, what benefits/drawbacks it has and what I can do to improve it if it is bad ?
Thank you.
I suggest you look at design patterns, and see if they are being used in the project. Search for words like factory and abstract factory initially. Only then will the intentions of the previous developer be understood correctly.
Also, in general, unless you are running on a resource constrained device, don't worry about the cost of an extra call or level of indirection. If it helps your design, makes it easier to understand or open to extension, then the extra calls are worth making.
However, if there is copy-paste in the code, then that is not a good sign, and the developer probably did not know what he was doing.
It is very hard to understand what exactly is done in your software. Maybe it even makes sense. But I've seen couple of projects done by some "design pattern maniacs". It looked like they wanted to demonstrate their knowledge of all sorts of delegates, indirections, etc. Maybe it is your case.
I cannot comment on the architecture without carefully examining it, but generally speaking separation of services across different layers is a good idea. That way if you change implementation of one service, other service remains unchanged. However this will be true only if there is loose coupling between different layers.
In addition, it is generally the norm that each service handles exceptions that specifically pertains to the kind of service it provides leaving the rest to others. This also allows us to reduce the coupling between service layers.

Good algorithm for generating call graphs?

I am writing some code to generate call graphs for a particular intermediate representation without executing it by statically scanning the IR code. The IR code itself is not too complex and I have a good understanding of what function call sequences look like so all I need to do is trace the calls. I am currently doing it the obvious way:
Keep track of where we are
If we encounter a function call, branch to that location, execute and come back
While branching put an edge between the caller and the callee
I am satisfied with where I am getting at but I want to make sure that I am not reinventing the wheel here and face corner cases. I am wondering if there are any accepted good algorithms (and/or design patterns) that do this efficiently?
UPDATE:
The IR code is a byte-code disassembly from a homebrewn Java-like language and looks like the Jasmine specification.
From an academic perspective, here are some considerations:
Do you care about being conservative / correct? For example, suppose the code you're analyzing contains a call through a function pointer. If you're just generating documentation, then it's not necessary to deal with this. If you're doing a code optimization that might go wrong, you will need to assume that 'call through pointer' means 'could be anything.'
Beware of exceptional execution paths. Your IR may or may not abstract this away from you, but keep in mind that many operations can throw both language-level exceptions as well as hardware interrupts. Again, it depends on what you want to do with the call graph later.
Consider how you'll deal with cycles (e.g. recursion, mutual recursion). This may affect how you write code for traversing the graphs later on (i.e., they will need some sort of 'visited' set to avoid traversing cycles forever).
Cheers.
Update March 6:
Based on extra information added to the original post:
Be careful about virtual method invocations. Keep in mind that, in general, it is unknowable which method will execute. You may have to assume that the call will go to any of the subclasses of a particular class. The standard example goes a bit like this: suppose you have an ArrayList<A>, and you have class B extends A. Based on a random number generator, you will add instances of A and B to the list. Now you call x.foo() for all x in the list, where foo() is a virtual method in A with an override in B. So, by just looking at the source code, there is no way of knowing whether the loop calls A.foo, B.foo, or both at run time.
I don't know the algorithm, but pycallgraph does a decent job. It is worth checking out the source for it. It is not long and should be good for checking out existing design patterns.

are there any potential issues with obfuscating an application?

I am building a spring mvc web application.
I plan on using hibernate.
I don't have much experience with obfuscating etc.
What are the potential downsides to obfuscating an application?
I understand that there might be issues with debugging the app, and recovering lost source code is also an issue.
Are there any known issues with the actually running of the application? Can bugs be introduced?
Since this is an area I am looking for general guidance, please feel free to open up any issues that I should be aware of.
There are certainly some potential performance/maintenance issues, but a good obfuscator will let you get round at least some of them. Things to look out for:
an obvious one: if your code calls methods by reflection or dynamically loads classes, then this is liable to fail if the class/method names are obfuscated; a good obfuscator will let you select class/method names not to obfuscate to get round this problem;
a similar issue can occur if not all of your application is compiled at the same time;
if it deals directly at the bytecode level, an obfuscator can create code that in principle a Java compiler cannot create (e.g. it can insert arbitrary GOTO instructions, whereas from Java these can only be created as part of a loop)-- this may be a bit theoretical, but if I were writing a JVM, I'd optimise performance for sequences of bytecodes that a Java compiler can create, not ones that it can't...
the obfuscator is liable to make other subtle changes to performance if it significantly alters the number of bytecodes in a method, or in some way changes whether a given method/piece of code hits thresholds for certain JVM optimisations (e.g. "inline methods with fewer than X bytecodes").
But as you can see, some of these effects are a little subtle and theoretical-- so to some extent what you need to do is soak-test your application after obfuscation, just as you would with any other major change.
You should also be careful not to assume that obfuscation hides your code/algorithm (if that is your intention) as much as you want it to-- use a decompiler to have a look at the contents of the resulting obfuscated classes.
Surprised no one has mentioned speed - in general, more obfuscated = slower-running code
[Edit] I can't believe this has -2. It is a correct answer.
Shortening identifiers and removing unused methods will decrease the file-size, but have 0 impact on the running speed (other than the few nanoseconds shaved off the loading time). In the meanwhile, most of the obfuscation of the program comes from added code:
Breaking 1 method into 5; interleaving methods; merging classes [aggregation transformations]
Splitting 1 arithmetic expression into 10; jumbling the control-flow [computation transformations]
And adding chunks of code that do nothing [opaque predicates]
are all common obfuscation techniques that cause a program to run slower.
You may want to look at some of the comments here, to decide if obfuscating makes sense:
https://stackoverflow.com/questions/1988451/net-obfuscation
You may want to express why you want to obfuscate. IMO the best reasons are mainly to have a smaller application, as you can get rid of classes that aren't being used in your project, while obfuscating.
I have never seen bugs introduced, as long as you aren't using reflection, assuming you can find something, as private methods for example will have their names changed.
The biggest problem centers around that fact that obfuscating programs generally make a guarantee of not changing the behavior of their target program. In some cases it proves to be very hard to do this -- for example, imagine a program which checks the value of certain private fields via reflection from a string array. An obfuscator may not be able to tell that this string also needs to be updated correspondingly, and the result will be unexpected access errors that pop up at runtime.
Worse still, it may not be obvious that the behavior of a program has changed subtly -- then you may not know that there's a problem at all, until your customer finds it first and gets upset.
Generally, professional-grade obfuscation products are sophisticated enough to catch some kinds of problems and prevent them, but ultimately it can be challenging to cover all the bases. The best defense is to run unit tests against the obfuscated result and make sure that all your expected behavior continues to hold true.
1 free one you might want to check out is Babel. It is designed to be used on the command line (like many other obfuscators), there is a Reflector addin that will provide a UI for you.
When it comes to obfuscation, you really need to analyze what your goal is. In your case - if you have a web application (mvc) are you planning on selling it as a canned downloadable application? (if not and you keep the source on your web servers then you don't need it).
You might look at the components and pick only certain parts to obfuscate ... not the whole thing. In general ASP.Net apps break pretty easy when you try to add obfuscation after you developed them due to all the reflection used.
Pretty much everything mentioned above is true ... it all depends on how many features you turn on to make it hard to reverse your code:
Renaming of members (fields/methods/events/properties) is most common (comes in different flavors: simple renaming of methods from something like GetId() to a() all the way to unreadable characters and removal of namespaces). BTW: This is where reflection usually breaks. Your assembly file may end up being smaller due to smaller strings being used too.
String encryption: this makes it harder to reverse your static strings used in your code. BTW: this paired with renaming makes it difficult for you to debug your renaming problems ... so you might turn it on after you have that working. This also will have to add code to decrypt the string right before it is used in IL
Code mangling ... this is what BlueRaja was refering to. It makes your code look like spagetti code - to make it harder for someone to figure out. The CLR does not like this ... it can't optimize things as easy and your final code will mostlikely proccess slower due to the additional branching and something not being inlined due to the IL rewriting used for this option. BTW: this option really does raise the bar on what it takes to reverse you source code, but may come with a performance hit.
Removal of unused code. Some obfuscators offer you the option to trim any code that it finds not being used. This may make your assembly a little smaller if you have alot of dead code hanging around ... but it is just a free benefit obfuscators throw in.
My advice is to only use it if you know why you are using it and design with that end in mind ... don't try to add it after you've finished your code (I've done that and it's not fun)

Categories