I have a maven java project in the latest Intellij IDEA with Testng plugin. I want to run specific groups in a test class without manually creating an xml config file for this.
Can I do that through the run configuration menu instead ? Unfortunately, the menu only lets me select groups, classes, methods etc. but not the groups inside a particular class.
Let's assume you have the following code sample:
import org.testng.annotations.*;
public class Test1 {
#Test(groups = { "functest", "checkintest" })
public void testMethod1() {
}
#Test(groups = {"functest", "checkintest"} )
public void testMethod2() {
}
#Test(groups = { "functest" })
public void testMethod3() {
}
}
To run only checkintest group go to Run Configuration, create new TestNG config -> select Test kind "Group" -> select checkintest group.
Only testMethod1, testMethod2 will be run.
Related
I have been experiencing something really weird. Maybe someone can explain me where I am making mistake.
I have a following scenario in a feature file
#DeleteUserAfterTest
Scenario: Testing a functionality
Given admin exists
When a user is created
Then the user is verified
My #After method in Hooks class looks like following
#After
public void tearDown(Scenario scenario) {
if (scenario.isFailed()) {
final byte[] screenshot = ((TakesScreenshot) driver)
.getScreenshotAs(OutputType.BYTES);
scenario.embed(screenshot, "image/png"); //stick it in the report
}
driver.quit();
}
I am using the following method in my step definition to delete the created user based on tag passed in the Test Scenario as follows:
#After("#DeleteUserAfterTest")
public void deleteUser(){
//Do fucntionalities to delete user
}
My test runner looks something like this:
import io.cucumber.testng.AbstractTestNGCucumberTests;
import io.cucumber.testng.CucumberOptions;
#CucumberOptions(
plugin = {"pretty","com.aventstack.extentreports.cucumber.adapter.ExtentCucumberAdapter:", "json:target/cucumber-report/TestResult.json"},
monochrome = false,
features = "src/test/resources/features/IntegrationScenarios.feature",
tags="#DeleteUserAfterTest",
glue="Steps")
public class IntegrationTest extends AbstractTestNGCucumberTests {
}
However, when I launch the test case, sometimes my user is deleted in the After("#DeleteUserAfterTest") but sometimes my test does not recognises the tagged After at all. It directly goes to After method in my Hooks class and quits the driver. Maybe someone has encountered this problem or knows a workaround!
Method order is not defined in Java. So you have to tell Cucumber in which order you hooks should be executed. Higher numbers are run first (before hooks are the other way around).
#After(order = 500)
public void tearDown(Scenario scenario) {
}
#After(value = "#DeleteUserAfterTest", order = 1000)
public void deleteUser(){
}
I am pretty new to java, still a lot learn. I have created an interface class called FailedTest. After all of the tests run, I would like to add the failed tests classes to the FailedTest interface class. Once I have all of the failed tests, I would like to create a gradle task to run all of the failed tests again. I am using Junit, Intellij and Gradle.
FailedTest interface class in categories package:------
package myPackage.categories;
public interface FailedTests {
}
TestExecutionListener in listeners:----------
#Category(FailedTests.class)
public void afterTestExecution(TestContext testContext) {
if (testContext.getTestException() != null) {
// i would like to add failed tests to the FailedTest interface class here
FailedTests = testContext.getTestClass();
}
}
In build.gradle I would like create following task:----------
task testFailedTests(type: Test) {ext.getTestMethodsFromStorage = { ->
//return a string array of the test classes/methods from the file:FailedTest
}
useJUnit {
include getTestMethodsFromStorage()
}
}
I would appreciate any help or feedback. Thank you!
Suppose I develop an extension which disallows test method names to start with an uppercase character.
public class DisallowUppercaseLetterAtBeginning implements BeforeEachCallback {
#Override
public void beforeEach(ExtensionContext context) {
char c = context.getRequiredTestMethod().getName().charAt(0);
if (Character.isUpperCase(c)) {
throw new RuntimeException("test method names should start with lowercase.");
}
}
}
Now I want to test that my extension works as expected.
#ExtendWith(DisallowUppercaseLetterAtBeginning.class)
class MyTest {
#Test
void validTest() {
}
#Test
void TestShouldNotBeCalled() {
fail("test should have failed before");
}
}
How can I write a test to verify that the attempt to execute the second method throws a RuntimeException with a specific message?
Another approach could be to use the facilities provided by the new JUnit 5 - Jupiter framework.
I put below the code which I tested with Java 1.8 on Eclipse Oxygen. The code suffers from a lack of elegance and conciseness but could hopefully serve as a basis to build a robust solution for your meta-testing use case.
Note that this is actually how JUnit 5 is tested, I refer you to the unit tests of the Jupiter engine on Github.
public final class DisallowUppercaseLetterAtBeginningTest {
#Test
void testIt() {
// Warning here: I checked the test container created below will
// execute on the same thread as used for this test. We should remain
// careful though, as the map used here is not thread-safe.
final Map<String, TestExecutionResult> events = new HashMap<>();
EngineExecutionListener listener = new EngineExecutionListener() {
#Override
public void executionFinished(TestDescriptor descriptor, TestExecutionResult result) {
if (descriptor.isTest()) {
events.put(descriptor.getDisplayName(), result);
}
// skip class and container reports
}
#Override
public void reportingEntryPublished(TestDescriptor testDescriptor, ReportEntry entry) {}
#Override
public void executionStarted(TestDescriptor testDescriptor) {}
#Override
public void executionSkipped(TestDescriptor testDescriptor, String reason) {}
#Override
public void dynamicTestRegistered(TestDescriptor testDescriptor) {}
};
// Build our test container and use Jupiter fluent API to launch our test. The following static imports are assumed:
//
// import static org.junit.platform.engine.discovery.DiscoverySelectors.selectClass
// import static org.junit.platform.launcher.core.LauncherDiscoveryRequestBuilder.request
JupiterTestEngine engine = new JupiterTestEngine();
LauncherDiscoveryRequest request = request().selectors(selectClass(MyTest.class)).build();
TestDescriptor td = engine.discover(request, UniqueId.forEngine(engine.getId()));
engine.execute(new ExecutionRequest(td, listener, request.getConfigurationParameters()));
// Bunch of verbose assertions, should be refactored and simplified in real code.
assertEquals(new HashSet<>(asList("validTest()", "TestShouldNotBeCalled()")), events.keySet());
assertEquals(Status.SUCCESSFUL, events.get("validTest()").getStatus());
assertEquals(Status.FAILED, events.get("TestShouldNotBeCalled()").getStatus());
Throwable t = events.get("TestShouldNotBeCalled()").getThrowable().get();
assertEquals(RuntimeException.class, t.getClass());
assertEquals("test method names should start with lowercase.", t.getMessage());
}
Though a little verbose, one advantage of this approach is it doesn't require mocking and execute the tests in the same JUnit container as will be used later for real unit tests.
With a bit of clean-up, a much more readable code is achievable. Again, JUnit-Jupiter sources can be a great source of inspiration.
If the extension throws an exception then there's not much a #Test method can do since the test runner will never reach the #Test method. In this case, I think, you have to test the extension outside of its use in the normal test flow i.e. let the extension be the SUT.
For the extension provided in your question, the test might be something like this:
#Test
public void willRejectATestMethodHavingANameStartingWithAnUpperCaseLetter() throws NoSuchMethodException {
ExtensionContext extensionContext = Mockito.mock(ExtensionContext.class);
Method method = Testable.class.getMethod("MethodNameStartingWithUpperCase");
Mockito.when(extensionContext.getRequiredTestMethod()).thenReturn(method);
DisallowUppercaseLetterAtBeginning sut = new DisallowUppercaseLetterAtBeginning();
RuntimeException actual =
assertThrows(RuntimeException.class, () -> sut.beforeEach(extensionContext));
assertThat(actual.getMessage(), is("test method names should start with lowercase."));
}
#Test
public void willAllowTestMethodHavingANameStartingWithAnLowerCaseLetter() throws NoSuchMethodException {
ExtensionContext extensionContext = Mockito.mock(ExtensionContext.class);
Method method = Testable.class.getMethod("methodNameStartingWithLowerCase");
Mockito.when(extensionContext.getRequiredTestMethod()).thenReturn(method);
DisallowUppercaseLetterAtBeginning sut = new DisallowUppercaseLetterAtBeginning();
sut.beforeEach(extensionContext);
// no exception - good enough
}
public class Testable {
public void MethodNameStartingWithUpperCase() {
}
public void methodNameStartingWithLowerCase() {
}
}
However, your question suggests that the above extension is only an example so, more generally; if your extension has a side effect (e.g. sets something in an addressable context, populates a System property etc) then your #Test method could assert that this side effect is present. For example:
public class SystemPropertyExtension implements BeforeEachCallback {
#Override
public void beforeEach(ExtensionContext context) {
System.setProperty("foo", "bar");
}
}
#ExtendWith(SystemPropertyExtension.class)
public class SystemPropertyExtensionTest {
#Test
public void willSetTheSystemProperty() {
assertThat(System.getProperty("foo"), is("bar"));
}
}
This approach has the benefit of side stepping the potentially awkward setup steps of: creating the ExtensionContext and populating it with the state required by your test but it may come at the cost of limiting the test coverage since you can really only test one outcome. And, of course, it is only feasible if the extension has a side effect which can be evaulated in a test case which uses the extension.
So, in practice, I suspect you might need a combination of these approaches; for some extensions the extension can be the SUT and for others the extension can be tested by asserting against its side effect(s).
After trying the solutions in the answers and the question linked in the comments, I ended up with a solution using the JUnit Platform Launcher.
class DisallowUppercaseLetterAtBeginningTest {
#Test
void should_succeed_if_method_name_starts_with_lower_case() {
TestExecutionSummary summary = runTestMethod(MyTest.class, "validTest");
assertThat(summary.getTestsSucceededCount()).isEqualTo(1);
}
#Test
void should_fail_if_method_name_starts_with_upper_case() {
TestExecutionSummary summary = runTestMethod(MyTest.class, "InvalidTest");
assertThat(summary.getTestsFailedCount()).isEqualTo(1);
assertThat(summary.getFailures().get(0).getException())
.isInstanceOf(RuntimeException.class)
.hasMessage("test method names should start with lowercase.");
}
private TestExecutionSummary runTestMethod(Class<?> testClass, String methodName) {
SummaryGeneratingListener listener = new SummaryGeneratingListener();
LauncherDiscoveryRequest request = request().selectors(selectMethod(testClass, methodName)).build();
LauncherFactory.create().execute(request, listener);
return listener.getSummary();
}
#ExtendWith(DisallowUppercaseLetterAtBeginning.class)
static class MyTest {
#Test
void validTest() {
}
#Test
void InvalidTest() {
fail("test should have failed before");
}
}
}
JUnit itself will not run MyTest because it is an inner class without #Nested. So there are no failing tests during the build process.
Update
JUnit itself will not run MyTest because it is an inner class without #Nested. So there are no failing tests during the build process.
This is not completly correct. JUnit itself would also run MyTest, e.g. if "Run All Tests" is started within the IDE or within a Gradle build.
The reason why MyTest was not executed is because I used Maven and I tested it with mvn test. Maven uses the Maven Surefire Plugin to execute tests. This plugin has a default configuration which excludes all nested classes like MyTest.
See also this answer about "Run tests from inner classes via Maven" and the linked issues in the comments.
JUnit 5.4 introduced the JUnit Platform Test Kit which allows you to execute a test plan and inspect the results.
To take a dependency on it from Gradle, it might look something like this:
testImplementation("org.junit.platform:junit-platform-testkit:1.4.0")
And using your example, your extension test could look something like this:
import org.junit.jupiter.api.extension.ExtendWith
import org.junit.jupiter.api.fail
import org.junit.platform.engine.discovery.DiscoverySelectors
import org.junit.platform.testkit.engine.EngineTestKit
import org.junit.platform.testkit.engine.EventConditions
import org.junit.platform.testkit.engine.TestExecutionResultConditions
internal class DisallowUpperCaseExtensionTest {
#Test
internal fun `succeed if starts with lower case`() {
val results = EngineTestKit
.engine("junit-jupiter")
.selectors(
DiscoverySelectors.selectMethod(ExampleTest::class.java, "validTest")
)
.execute()
results.tests().assertStatistics { stats ->
stats.finished(1)
}
}
#Test
internal fun `fail if starts with upper case`() {
val results = EngineTestKit
.engine("junit-jupiter")
.selectors(
DiscoverySelectors.selectMethod(ExampleTest::class.java, "TestShouldNotBeCalled")
)
.execute()
results.tests().assertThatEvents()
.haveExactly(
1,
EventConditions.finishedWithFailure(
TestExecutionResultConditions.instanceOf(java.lang.RuntimeException::class.java),
TestExecutionResultConditions.message("test method names should start with lowercase.")
)
)
}
#ExtendWith(DisallowUppercaseLetterAtBeginning::class)
internal class ExampleTest {
#Test
fun validTest() {
}
#Test
fun TestShouldNotBeCalled() {
fail("test should have failed before")
}
}
}
I have 2 test methods, and i need to run them with different configurations
myTest() {
.....
.....
}
#Test
myTest_c1() {
setConf1();
myTest();
}
#Test
myTest_c2() {
setConf2();
myTest();
}
//------------------
nextTest() {
.....
.....
}
#Test
nextTest_c1() {
setConf1();
nextTest();
}
#Test
nextTest_c2() {
setConf2();
nextTest();
}
I cannot run them both from one config (as in code below) because i need separate methods for tosca execution.
#Test
tests_c1() {
setConf1();
myTest()
nextTest();
}
I don't want to write those 2 methods to run each test, how can i solve this?
First i thought to write custom annotation
#Test
#RunWithBothConf
myTest() {
....
}
But maybe there are any other solutions for this?
What about using Theories?
#RunWith(Theories.class)
public class MyTest{
private static enum Configs{
C1, C2, C3;
}
#DataPoints
public static Configs[] configValues = Configs.values();
private void doConfig(Configs config){
swich(config){...}
}
#Theory
public void test1(Config config){
doConfig(config);
// rest of test
}
#Theory
public void test2(Config config){
doConfig(config);
// rest of test
}
Not sure why formatting if off.
I have a similar issue in a bunch of test cases I have, where certain tests need to be run with different configurations. Now, 'configuration' in your case might be more like settings, in which case maybe this isn't the best option, but for me it's more like a deployment model, so it fits.
Create a base class containing the tests.
Extend the base class with one that represents the different configuration.
As you execute each of the derived classes, the tests in the base class will be run with the configuration setup in its own class.
To add new tests, you just need to add them to the base class.
Here is how I would approach it:
Create two test classes
The first class configures to conf1 but uses the #Before attribute trigger the setup
The second class extends the first but overrides the configure method
In the example below I have a single member variable conf. If no configuration is run it stays at its default value 0. setConf1 is now setConf in the Conf1Test class which sets this variable to 1. setConf2 is now setConf in the Conf2Test class.
Here is the main test class:
public class Conf1Test
{
protected int conf = 0;
#Before
public void setConf()
{
conf = 1;
}
#Test
public void myTest()
{
System.out.println("starting myTest; conf=" + conf);
}
#Test
public void nextTest()
{
System.out.println("starting nextTest; conf=" + conf);
}
}
And the second test class
public class Conf2Test extends Conf1Test
{
// override setConf to do "setConf2" function
public void setConf()
{
conf = 2;
}
}
When I configure my IDE to run all tests in the package I get the following output:
starting myTest; conf=1
starting nextTest; conf=1
starting myTest; conf=2
starting nextTest; conf=2
I think this gives you what. Each test only has to be written once. Each test gets run twice, once with conf1 and once with conf2
The way you have it right now seems fine to me. You aren't duplicating any code, and each test is clear and easy to understand.
I have a requirement of reading a text file which contains list of all the testmethods in yes/no value and to pick the "yes" marked testmethods only for a TestCase Class,and to execute in Junit.
So I have written a script to read the file and to group it in a map< TestCaseName,ArrayList_ofEnabledTestMethods > . To run that I found one option is to use Assume.assumeTrue().
But I wanted to try some otherway... instead of writting extra lines before each test methods , So I tried to write a custom runner (ABCSuite which extends ParentRunner) and planned to use it in my TestSuite file like below :
import org.junit.runner.RunWith;
import org.junit.runners.Suite;
#RunWith(ABCSuite.class)
#Suite.SuiteClasses({TestCalc.class})
public class BatTest{
}
Here TestCalc.class contains all the test methods some of which is marked "yes" in the earlier mentioned text file .
Please let me know how I can use of extending the ParentRunner class/Junit Libraries to achieve this . If any good tutorial is there or any link which addressed this before please.. share
You can do this by extending BlockJUnit4ClassRunner:
public class FilterRunner extends BlockJUnit4ClassRunner {
private List<String> testsToRun = Arrays.asList(new String[] { "test1" });
public FilterRunner(Class<?> klass) throws InitializationError {
super(klass);
}
#Override
protected void runChild(final FrameworkMethod method, RunNotifier notifier) {
Description description= describeChild(method);
if (method.getAnnotation(Ignore.class) != null || !testsToRun.contains(method.getName())) {
notifier.fireTestIgnored(description);
} else {
runLeaf(methodBlock(method), description, notifier);
}
}
}
You can fill in testsToRun as you like. The above will mark the other tests as Ignored. You use this like:
#RunWith(Suite.class)
#SuiteClasses({Class1Test.class})
public class TestSuite {
}
#RunWith(FilterRunner.class)
public class Class1Test {
#Test
public void test1() {
System.out.println("test1");
}
#Test
public void test2() {
System.out.println("test2");
}
}
This produces the following output:
test1
If you don't want to add the #FilterRunner to each test class, look at my answer to How to define JUnit method rule in a suite?.
The JUnit way of implementing this would be an implementation of a Filter. It must be instantiated by the Runner that implements Filterable. Filters are applied recursively through the tree of tests. So you only need to apply that filter once in your base suite.
You need to extend a runner and in the constructor apply the filter. To make things more flexible, you could configure the filters that should be applied with annotations.
I had the same requirement and that worked out well.