I have the following piece of code:
public static void main(String[] args) {
...
while(condition.continueListening()) {
}
log.info("Finished");
}
The condition object creates its own thread that after one condition is met, make the method continueListening, to return false.
The thing is that, I want the main thread to not to finish until that method returns false, and the way I implemented it, it's by using this structure that it's quite "hard" for the CPU, do you know any other approach that could work better?
What is continueListening checking? If its just a random piece of state, you don't really have a good choice, best you can do is make your thread sleep for a little bit, say a half second in the while loop.
But if you can change continueListening, then you can have it block until an event happens and it should continue. Java has many options for this, some could be:
You could wait for the other thread to exit using Thread.join().
Wait for the thread to notify on some object that it has done something (similar idea to join but the thread can carry on and do something else). Object.wait(), Object.notify().
Use the Java "executor", this is similar to waiting for a thread to exit, but has built in means to transfer results and errors, and allows Java to use things like thread pools. See ExecutorService and Future.get()
Various other waitable event objects or queues. Such as doing something manually with Future and Promise, or BlockingQueue.
Related
Thread class has many static methods that are called by class name. Some of them are:
But yet, we are provided with method currentThread() that returns currently executing thread object. Some are:
Unfortunately, this created confusion in my head. When I think of a method I want, I have no clue whether I would found it as static or instance. So why did they make such two approaches?
I mean, couldn't they all be grouped in same 'calling'? For example why is sleep() static and not instance method called with Thread.currentThread().sleep()? Another weird example is between interrupted() and isInterrupted() defined in different manner. They do exactly the same thing, just interrupted() additionally clears interrupted flag. Has anyone logic answer to this, so I have no struggle where to find each method?
It's tricky; the answer is different for each method. Let's go through the ones you named:
Thread.sleep
Imagine I called: someOtherThread.sleep(1000L);. What would this mean? Surely that ought to mean: Sleep that other thread, not my thread. Except that's not something java offers: You can sleep your own thread, but you cannot arbitrarily tell some other thread to freeze like they're doing a mime act, mid execution of some arbitrary command. For example, if that thread is currently blocked on, say, waiting for the OS to deliver some bytes from a file read, that definitely cannot just fall asleep, and there are many, many other scenarios where a thread cannot do that.
Thus, java does not offer this functionality - you can't sleep other threads. Only your own. There are two different ways to make this at least somewhat clear in API design:
The first is to have sleep be an instance method (thus, you'd have to write e.g. Thread.currentThread().sleep(1000L);), and spec the method that it will guaranteed, always, immediately throw an IllegalStateException if you invoke it on any thread except your own. This means a compile/write-time detectable error condition would only be caught at runtime (this is bad; catching a problem earlier is obviously better than catching it later), it makes the code you'd have to write to sleep needlessly longer, and the existence of a sleep method you can invoke on thread instances sure suggests that you can sleep other threads. It'd just be crappy API design.
The second is to make sleep static.
Think of it this way: java.lang.Thread is a container for two mostly unrelated batches of methods: One is a set of methods you can use on threads (those'd be the instance methods). The other is a bunch of thread and flow related primitives, such as 'sleep', 'yield', and interrupt interaction. They just happen to be shoved into the same class.
interrupt
This is probably the trickiest. Unlike sleeping, you can in fact ask another thread's interrupt flag status.
The reason there are two methods are because of the more or less intended API design of the interrupt system.
The interrupt system is designed as follows:
If you want some thread to stop what it is doing for some unspecified reason (for example, you want it to re-check some condition, or just cease running, or anything else you can think of) then you need a mechanism to signal this. In particular, you'd want such a mechanism to ensure that any interruptable blocking operations, such as Thread.sleep(100000L) are interrupted. In other words, you can't just say: Whatever, it's up to the code itself, just, um, make an AtomicBoolean and check it a lot.
That's where the 'interrupt' system comes in. The idea is:
To interrupt any thread, raise its interrupt flag, with thatThread.interrupt();
All methods that do interruptable things should check this flag. The procedure is: If it is raised, then [A] clear it, and [B] handle the interruption, doing whatever the programmer intended to happen upon interruption (just stop running, or re-check some condition, re-read some config file, who knows - it's programming, whatever you want it to mean). If you CAN handle the notion of aborting some operation, but you CANNOT handle it, then instead clear that flag and throw InterruptedException, so that the caller can handle it.
As a result, any code that knows what 'I was interrupted!' means should BOTH check the flag (especially if that code has an event loop, which most thread-based code does have), AND catch InterruptedException from any method specced to throw it, and react in the exact same way to either catching that exception or having Thread.interrupted() return true.
Things go all sorts of wrong if you handle the fact that the interrupt flag is up, but you do NOT lower it. For example, if you abort your CPU-bound bitcoin mining or whatnot and just return back to your caller whilst leaving the flag up, then the next time caller invokes Thread.sleep, thread.sleep will notice the flag is up and IMMEDIATELY exit, not sleeping at all (exit by throwing InterruptedException, to be specific). That isn't intended. Hence why it is important that if you respond to an interrupt, you lower that flag.
So, let's go back to API design. There are two strategies:
Hypothetical design A
while (!Thread.currentThread().isInterrupted()) {
mineAnotherBitCoin();
}
Thread.currentThread().clearInterruptFlag();
Design B
while (!Thread.checkAndClearInterruptFlag()) {
mineAnotherBitCoin();
}
Note how design B is conceptually a lot shorter, does not have a 'gap' between checking the flag and clearing it, and therefore is fundamentally less error prone. Furthermore, for, well, reasons, it has been decided that raising an interrupt flag is something you can do to other threads (there is no point interrupting yourself, after all), but clearing one is a thing you can only do to your own thread.
B is what java actually has, except the method is somewhat strangely named interrupted(), and not checkAndClearInterruptFlag(). If you want an explanation of why some methods in java are somewhat suspectly named, it's because java does not like breaking backwards compatibility.
Fundamentally then, while they sound real similar, isInterrupted() and interrupted() do two very different things.
isInterrupted() is to check if some thread has already been interrupted and its response to this interruption is still pending (nothing has yet handled it).
interrupted() is something you put in the condition in your while loops that define the core body of your thread implementation (your 'event loop').
*) It doesn't help that the vast majority of examples of how to make threads in java are erroneous in that they don't properly do this. They tend to be while (true) or while (!running) {} or similar, either ignoring interruptions entirely or with a handrolled interrupt-esque 'running' concept.
So how do I know where to look?
Simple enough: If it's a thing that conceptually doesn't belong to any particular thread (such as 'how many threads are active right now'), or it is a utility concept (such as 'sleep'), or it is a thing that from a VM design principle can only be done to your own thread and not to anything else, then it is a static method in Thread.
If it's a thing that does belong to a particular thread AND the VM would let you do it to other threads (such as interrupting it, asking for its name, id, or priority, getting a stack dump, freezing this thread until the other thread completes, or setting its priority), then it's an instance method.
In many ways you can reverse this logic: If you want to do some thread related business, check the Thread class for something that seems to describe what you want. Then check if the method is static or not. If it is static, you don't get to do it to any other thread (such as clearing the interrupt flag, or sleep). If it's instance, you CAN do that to other threads (such as changing its priority level).
Because you can't make another thread sleep that is not the thread you are on. Even when you call Thread.currentThread().sleep(), you are calling the static method 'sleep'. If you were to call the sleep method on a different Thread object, it would still make the current thread sleep.
If you want to make a different thread sleep, you should set a flag that the other thread reads, which causes it to sleep.
and excuse the lack of knowledge on multithreaded apps, but I am new to the field.
Is there a pattern or common used methodology for monitoring the 'job completion' or 'job status' of worker threads from a monitor (a class that acts as a monitor)?
What I have currently done is create a list of workers and create one thread for each worker. After all threads have started i am looping over the worker list and 'checking their status' by making a call to a method.
At that time I couldn't come up with a different solution, but being new to the field, I don't know if this is the way to go, or if there are other solutions or patterns that I should study.
Depending on what you want, there are many ways that you can do this.
If you just want to wait until all the threads finish (i.e. all you care about is having everything finish before moving on), you can use Thread.join():
try {
for (Thread t: threadsIWaitOn)
t.join();
} catch (InterruptedException iex) {
/* ... handle error ...
}
If you want a more fine-grained control over the thread status and want to be able, at any time, to know what threads are doing, you can use the Thread.getState() function. This returns a Thread.State object that describes whether the thread is running, blocked, new, etc., and the Javadoc specifically says that it's designed for monitoring the state of a thread rather than trying to synchronize on it. This might be want you want to do.
If you want even more information than that - say, how to get a progress indicator for each thread that counts up from 0 to 100 as the thread progresses - then another option might be to create a Map from Threads to AtomicIntegers associating each thread with a counter, then pass the AtomicInteger into the constructor of each thread. That way, each thread can continuously increment the counters, and you can have another thread that continuously polls the progress.
In short, you have a lot of options based on what it is that you're trying to accomplish. Hopefully something in here helps out!
Use a ThreadPool and Executor, then you get a Future<> and you can poll for their completion and some more nice stuff, too. I can appreciate this book for you: Java Concurrency in Practice
Try to use any kind of synchronization. For example, wait on some kind of monitor/semaphore until job is done / whatever you need.
I've got some code that looks like the following:
while (this.conditionIsNotYetMet){
if (timeout()) break;
// Don't do anything, just wait till the condition is
// filled by a different thread or timeout occurs.
}
performSomeCode(); // this code relies on the condition having been met
The code works - eventually the other thread fills the condition, and the code executes.
I'm curious as to whether or not it would be a good idea to throw in a Thread.yield() - it seems to be correct either way, and at this stage I can't feel a performance difference - but I'm concerned that in the future it might make a difference, e.g. on a different platform.
i.e. code would become
while (this.conditionIsNotYetMet){
if (timeout()) break;
Thread.yield(); // <---- CHANGE IS HERE!!!!
// Don't do anything, just wait till the condition is
// filled by a different thread or timeout occurs.
}
performSomeCode(); // this code relies on the condition having been met
I'm aware that there's probably a much more formal way to achieve this pattern using locks or AsynchronousTasks, but this solution works well at the moment and is clear enough, so why change?
yield() is useful in the cases where you are seeing stagnation on other threads. In other words, you have a very active thread that's somehow always taking priority over some other thread that never really gets to do anything. Calling yield() from your active thread forces it to give change to another running thread.
If your program is as simple as your example, you probably do not need to call yield, plus depending on how timeout() is implemented (if it has a Thread.sleep() or Object.wait() inside) it will also implicitly result a context switch just like yield would.
So, you do not need to write it, but you're probably getting the effects of it already anyway.
PS: As Extreme Coders points out, you probably want to use a wait-notify pattern, here's an example
No, you should almost never use yield() at all, and definitely not for waiting on a condition to become true. You should instead look into a "real" concurrency control mechanism like a Condition (which causes the thread to sleep until awoken by another thread) or a CountDownLatch (which causes the thread to sleep until a certain number of signals have happened).
Calling yield() is just a hint to the OS and unless there is a thread waiting it is likely to do nothing. If you want to give the CPU a break you can call Thread.sleep(10); for 10 ms, or shorter if you like.
BTW Given you are waiting for a timeout you could call
Thread.sleep(timeUntilTimeoutInMilliSeconds);
I have the following situation. I have an application that runs mostly on one thread. It has grown large, so I would like to run a watchdog thread that gets called whenever the main thread changes into a different block of code / method / class so I can see there is "movement" in the code. If the watchdog gets called by the same area for more than a second or a few, it shall set a volatile boolean that the main thread reads at the next checkpoint and terminate / restart.
Now the problem is getting either of the threads to run somewhat at the same time. As soon as the main thread is running, it will not let the watchdog timer count properly. I was therefore thinking of yielding every time it calls the watchdog (so it could calculate time passed and set the value) but to no avail. Using Thread.sleep(1) instead of Thread.yield() works. But I don't want to have several areas of code just wasting calculation time, I am sure I am not doing it the way it is meant to be used.
Here a very simple example of how I would use Thread.yield(). I do not understand why the Threads here will not switch (they do, after a "long" and largely unpredictable time). Please give me an advice on how to make this simple example output ONE and TWO after each other. Like written before, if I switch yield() with sleep(1), it will work just like I'd need it to (in spite of waiting senselessly).
Runnable run1 = new Runnable(){
public void run(){
while(true){
System.out.println("ONE");
Thread.yield();
}
}
};
Runnable run2 = new Runnable(){
public void run(){
while(true){
System.out.println("TWO");
Thread.yield();
}
}
};
Thread tr1 = new Thread(run1);
Thread tr2 = new Thread(run2);
tr1.start();
tr2.start();
Thread.yield()
This static method is essentially used to notify the system that the
current thread is willing to "give up the CPU" for a while. The
general idea is that:
The thread scheduler will select a different thread to run instead of
the current one.
However, the details of how yielding is implemented by the thread
scheduler differ from platform to platform. In general, you shouldn't
rely on it behaving in a particular way. Things that differ include:
when, after yielding, the thread will get an opportunity to run again;
whether or not the thread foregoes its remaining quantum.
The take away is this behavior is pretty much optional and not guaranteed to actually do anything deterministically.
What you are trying to do is serialize the output of two threads in your example and synchronize the output in your stated problem ( which is a different problem ), and that will require some sort of lock or mutex to block the second thread until the first thread is done, which kind of defeats the point of concurrency which is usually the reason threads are used.
Solution
What you really want is a shared piece of data for a flag status that the second thread can react to the first thread changing. Preferably and event driven message passing pattern would be even easier to implement in a concurrently safe manner.
The second thread would be spawned by the first thread and a method called on it to increment the counter for which block it is in, you would just use pure message passing and pass in a state flag Enum or some other notification of a state change.
What you don't want to do is do any kind of polling. Make it event driven and just have the second thread running always and checking the state of its instance variable that gets set by the parent thread.
I do not understand why the Threads here will not switch (they do, after a "long" and largely unpredictable time). Please give me an advice on how to make this simple example output ONE and TWO after each other. Like written before, if I switch yield() with sleep(1), it will work just like I'd need it to (in spite of waiting senselessly).
I think this is more about the difference between ~1000 println calls in a second (when you use sleep(1)) and many, many more without the sleep. I think the Thread is actually yielding but it may be that it is on a multiple processor box so the yield is effectively a no-op.
So what you are seeing is purely a race condition high volume blast to System.out. If you ran this for a minute with the results going to a file I think you'd see a similar number of "ONE" and "TWO" messages in the output. Even if you removed the yield() you would see this behavior.
I just ran a quick trial with your code sending the output to /tmp/x. The program with yield() ran for 5 seconds, generated 1.9m/483k lines, with the output sort | uniq -c of:
243152 ONE
240409 TWO
This means that each thread is generating upwards of 40,000 lines/second. Then I removed the yield() statements and I got just about the same results with different counts of lines like you'd expect with the race conditions -- but the same order of magnitude.
I have a thread:
class Foo extends Thread
{
boolean active = true;
public void run()
{
while(active)
{
//do stuff
}
}
public void end()
{
active = false;
}
public void hibernate()
{
synchronized(this)
{
wait();
}
}
}
If another thread calls end(), will Foo immediately see that active is now false? Specifically, because active isn't volatile, I'm not sure that it will. I initially created end() as a clever way of avoiding volatile, but now I'm unsure that it will actually do what I intend.
Additionally, if another thread calls hibernate(), which thread will go to sleep? I'm intending Foo to sleep, so if this doesn't do what I intend, an alternative suggestion would be very welcome.
If another thread calls end(), will Foo immediately see that active is now false?
No it won't. Or at least, it won't see it all of the time.
If you want run to always see the new value immediately, there has to be a "comes after" relationship between the thread assigning to the variable and the thread reading it. This can be achieved:
by declaring active volatile,
by putting synchronized blocks around the statements that read and write the variable,
by making the variable an "atomic" type; e.g. AtomicBoolean, or
by using some other appropriate concurrency class; see the java.util.concurrent.* packages.
... a clever way of avoiding volatile ...
Declaring the variable to be volatile is one way of ensuring proper synchronization. It is a fact that proper synchronization imposes a performance overhead. However, proper synchronization is essential for your application to work reliably, and it is NOT "clever" to avoid it.
(Without proper synchronization, your program will probably still work most of the time, and it might even always work on some machines. However, occasionally it won't work, and the actual behavior is likely to depend on what machine you run the program on, what the machine load is, and other things.)
Additionally, if another thread calls hibernate(), which thread will go to sleep?
The thread that makes the call will go to sleep. And it won't wake up unless some other thread does a notify or notifyAll on the same Foo object.
If you simply want the application to go to sleep and wake up a bit later, use Thread.sleep. But beware that using sleep in the wrong way can make your application slow and unresponsive.
Your suspicion is correct: because active isn't volatile, there is no guarantee that run() will ever see the change made on another thread.
Generally speaking, “clever” ways of avoiding volatile are almost always a bad idea. In fact, even volatile is something you should prefer not to resort to. Most of the time it's safer to stick to locks, monitors, or higher-level synchronization mechanisms.
For your second question, the thread that will go to sleep is the one that called hibernate(). That thread will sleep until it is interrupted, it experiences a spurious wakeup, or some other thread calls notify()/notifyAll() on the Foo instance's monitor. It is usually a mistake to call Object#wait() without surrounding it with a loop that checks the condition being waited for.
You also seem to be confused about the idea of a Foo instance “going to sleep”. A Foo instance isn't a Thread (or even a Runnable), and doesn't create its own thread, so the idea of it going to sleep doesn't make a lot of sense. What you are probably trying to achieve is putting the thread calling Foo#run() to sleep.
Regarding your first question of avoiding volatile , you should try using Thread interruption to signal a running thread to stop.
Use interrupt() instance method from another thread to interrupt running thread.
Use isInterrupted() method in your running thread to check for interruption.
while(!this.isInterrupted()){
//do your work here.
}
Not sure why you want to extend Thread class. If you implements Runnable in that case you should use interrupted in your run method to check for interruption . Please read javadocs to know about some caveats of this method.