Many to Many relation with dependency inversion - java

I have a multimodule application with two modules:
department-management
communication-management
now in my department-management i have an entity Department and in communication-management module i have MailingGroup entity.
Also the communication-management depends on department-management module.
Now i want to have bidirectional ManyToOne relation between Department and MailingGroup
#Entity
public class Department {
#OneToMany(mappedBy = "department")
List<MailingGroup> mailingGroups;
}
#Entity
public class MailingGroup{
#ManyToOne
#JoinColumn(name = "DEPARTMENT_ID")
Department department;
}
This, of course, is not archiveable the way above, but can i archive this bidirectional relation using interfaces? My initial idea was to solve it like this:
public interface MailingGroupProvider {
Department getDepartment()
}
#Entity
public class Department {
#OneToMany(mappedBy = "department")
List<MailingGroupProvider> mailingGroups;
}
#Entity
public class MailingGroup implements MailingGroupProvider {
#ManyToOne
#JoinColumn(name = "DEPARTMENT_ID")
Department department;
}
But it raises questions:
Is this prefered solution in such cases?
What methods should my interface provide to be treated as Entity by JPA?
is this even possible what im trying to do?

First Approach is Perfect: You need to add a Relationship in Both Entity Sides.
departmentid is the foreign key of the mailing group Table. Apply Relationship in both entity sides it will work.
#OneToMany Relationship means u can have one Department can have Many Communication.
Bidirectional means suppose if u do any operation in Communication Management like deleting Communication it will affect on Department Table Also. It will Remove Departmentid matched in the Department Table

Related

Why does hibernate save two #OneToMany lists in one table?

Imagine having following simplified code using Hibernate and JPA:
#Entity
class C {
#Id #GeneratedValue public long id;
}
#MappedSuperclass
abstract class A {
#Id #GeneratedValue public long id;
#OneToMany(cascade = CascadeType.ALL)
public List<C> list1;
#OneToMany(cascade = CascadeType.ALL)
public List<C> list2;
}
#Entity
class B extends A { }
Using a PostgreSQL database, this leads to a table b_c with columns
b_id | list1_id | list2_id
Now, trying to persist any B leads to following exception:
org.postgresql.util.PSQLException: FEHLER: NULL-Wert in Spalte „list2_id“ verletzt Not-Null-Constraint
Detail: Fehlgeschlagene Zeile enthält (779, 827, null).
Which roughly translates to
NULL-Value in column "list2_id" violates Non-Null-Constraint. Contents: (770, 827, null)
Why does this happen and how can I avoid it?
Merging the lists into one is not an option. Using Sets instead does not change anything.
This is happening because of the unidirectional #OneToMany association. You need to first determine if your association is unidirectional or bidirectional.
If your association is unidirectional then you need to use #JoinColumn to fix the extra join table problem. If your association is bidirectional, then you will rely on the #ManyToOne side to propagate all entity state changes, with the use of mappedBy on the #OneToMany side. You can find good explanation about different ways of #OneToMany association here.

Do I have to have to let Hibernate create table1_table2 schemas or can this be disabled? [duplicate]

What is the difference between:
#Entity
public class Company {
#OneToMany(cascade = CascadeType.ALL , fetch = FetchType.LAZY)
#JoinColumn(name = "companyIdRef", referencedColumnName = "companyId")
private List<Branch> branches;
...
}
and
#Entity
public class Company {
#OneToMany(cascade = CascadeType.ALL , fetch = FetchType.LAZY,
mappedBy = "companyIdRef")
private List<Branch> branches;
...
}
The annotation #JoinColumn indicates that this entity is the owner of the relationship (that is: the corresponding table has a column with a foreign key to the referenced table), whereas the attribute mappedBy indicates that the entity in this side is the inverse of the relationship, and the owner resides in the "other" entity. This also means that you can access the other table from the class which you've annotated with "mappedBy" (fully bidirectional relationship).
In particular, for the code in the question the correct annotations would look like this:
#Entity
public class Company {
#OneToMany(mappedBy = "company",
orphanRemoval = true,
fetch = FetchType.LAZY,
cascade = CascadeType.ALL)
private List<Branch> branches;
}
#Entity
public class Branch {
#ManyToOne(fetch = FetchType.LAZY)
#JoinColumn(name = "companyId")
private Company company;
}
#JoinColumn could be used on both sides of the relationship. The question was about using #JoinColumn on the #OneToMany side (rare case). And the point here is in physical information duplication (column name) along with not optimized SQL query that will produce some additional UPDATE statements.
According to documentation:
Since many to one are (almost) always the owner side of a bidirectional relationship in the JPA spec, the one to many association is annotated by #OneToMany(mappedBy=...)
#Entity
public class Troop {
#OneToMany(mappedBy="troop")
public Set<Soldier> getSoldiers() {
...
}
#Entity
public class Soldier {
#ManyToOne
#JoinColumn(name="troop_fk")
public Troop getTroop() {
...
}
Troop has a bidirectional one to many relationship with Soldier through the troop property. You don't have to (must not) define any physical mapping in the mappedBy side.
To map a bidirectional one to many, with the one-to-many side as the owning side, you have to remove the mappedBy element and set the many to one #JoinColumn as insertable and updatable to false. This solution is not optimized and will produce some additional UPDATE statements.
#Entity
public class Troop {
#OneToMany
#JoinColumn(name="troop_fk") //we need to duplicate the physical information
public Set<Soldier> getSoldiers() {
...
}
#Entity
public class Soldier {
#ManyToOne
#JoinColumn(name="troop_fk", insertable=false, updatable=false)
public Troop getTroop() {
...
}
Unidirectional one-to-many association
If you use the #OneToMany annotation with #JoinColumn, then you have a unidirectional association, like the one between the parent Post entity and the child PostComment in the following diagram:
When using a unidirectional one-to-many association, only the parent side maps the association.
In this example, only the Post entity will define a #OneToMany association to the child PostComment entity:
#OneToMany(cascade = CascadeType.ALL, orphanRemoval = true)
#JoinColumn(name = "post_id")
private List<PostComment> comments = new ArrayList<>();
Bidirectional one-to-many association
If you use the #OneToMany with the mappedBy attribute set, you have a bidirectional association. In our case, both the Post entity has a collection of PostComment child entities, and the child PostComment entity has a reference back to the parent Post entity, as illustrated by the following diagram:
In the PostComment entity, the post entity property is mapped as follows:
#ManyToOne(fetch = FetchType.LAZY)
private Post post;
The reason we explicitly set the fetch attribute to FetchType.LAZY is because, by default, all #ManyToOne and #OneToOne associations are fetched eagerly, which can cause N+1 query issues.
In the Post entity, the comments association is mapped as follows:
#OneToMany(
mappedBy = "post",
cascade = CascadeType.ALL,
orphanRemoval = true
)
private List<PostComment> comments = new ArrayList<>();
The mappedBy attribute of the #OneToMany annotation references the post property in the child PostComment entity, and, this way, Hibernate knows that the bidirectional association is controlled by the #ManyToOne side, which is in charge of managing the Foreign Key column value this table relationship is based on.
For a bidirectional association, you also need to have two utility methods, like addChild and removeChild:
public void addComment(PostComment comment) {
comments.add(comment);
comment.setPost(this);
}
public void removeComment(PostComment comment) {
comments.remove(comment);
comment.setPost(null);
}
These two methods ensure that both sides of the bidirectional association are in sync. Without synchronizing both ends, Hibernate does not guarantee that association state changes will propagate to the database.
Which one to choose?
The unidirectional #OneToMany association does not perform very well, so you should avoid it.
You are better off using the bidirectional #OneToMany which is more efficient.
I disagree with the accepted answer here by Óscar López. That answer is inaccurate!
It is NOT #JoinColumn which indicates that this entity is the owner of the relationship. Instead, it is the #ManyToOne annotation which does this (in his example).
The relationship annotations such as #ManyToOne, #OneToMany and #ManyToMany tell JPA/Hibernate to create a mapping. By default, this is done through a seperate Join Table.
#JoinColumn
The purpose of #JoinColumn is to create a join column if one does
not already exist. If it does, then this annotation can be used to
name the join column.
MappedBy
The purpose of the MappedBy parameter is to instruct JPA: Do NOT
create another join table as the relationship is already being mapped
by the opposite entity of this relationship.
Remember: MappedBy is a property of the relationship annotations whose purpose is to generate a mechanism to relate two entities which by default they do by creating a join table. MappedBy halts that process in one direction.
The entity not using MappedBy is said to be the owner of the relationship because the mechanics of the mapping are dictated within its class through the use of one of the three mapping annotations against the foreign key field. This not only specifies the nature of the mapping but also instructs the creation of a join table. Furthermore, the option to suppress the join table also exists by applying #JoinColumn annotation over the foreign key which keeps it inside the table of the owner entity instead.
So in summary: #JoinColumn either creates a new join column or renames an existing one; whilst the MappedBy parameter works collaboratively with the relationship annotations of the other (child) class in order to create a mapping either through a join table or by creating a foreign key column in the associated table of the owner entity.
To illustrate how MapppedBy works, consider the code below. If MappedBy parameter were to be deleted, then Hibernate would actually create TWO join tables! Why? Because there is a symmetry in many-to-many relationships and Hibernate has no rationale for selecting one direction over the other.
We therefore use MappedBy to tell Hibernate, we have chosen the other entity to dictate the mapping of the relationship between the two entities.
#Entity
public class Driver {
#ManyToMany(mappedBy = "drivers")
private List<Cars> cars;
}
#Entity
public class Cars {
#ManyToMany
private List<Drivers> drivers;
}
Adding #JoinColumn(name = "driverID") in the owner class (see below), will prevent the creation of a join table and instead, create a driverID foreign key column in the Cars table to construct a mapping:
#Entity
public class Driver {
#ManyToMany(mappedBy = "drivers")
private List<Cars> cars;
}
#Entity
public class Cars {
#ManyToMany
#JoinColumn(name = "driverID")
private List<Drivers> drivers;
}
The annotation mappedBy ideally should always be used in the Parent side (Company class) of the bi directional relationship, in this case it should be in Company class pointing to the member variable 'company' of the Child class (Branch class)
The annotation #JoinColumn is used to specify a mapped column for joining an entity association, this annotation can be used in any class (Parent or Child) but it should ideally be used only in one side (either in parent class or in Child class not in both) here in this case i used it in the Child side (Branch class) of the bi directional relationship indicating the foreign key in the Branch class.
below is the working example :
parent class , Company
#Entity
public class Company {
private int companyId;
private String companyName;
private List<Branch> branches;
#Id
#GeneratedValue
#Column(name="COMPANY_ID")
public int getCompanyId() {
return companyId;
}
public void setCompanyId(int companyId) {
this.companyId = companyId;
}
#Column(name="COMPANY_NAME")
public String getCompanyName() {
return companyName;
}
public void setCompanyName(String companyName) {
this.companyName = companyName;
}
#OneToMany(fetch=FetchType.LAZY,cascade=CascadeType.ALL,mappedBy="company")
public List<Branch> getBranches() {
return branches;
}
public void setBranches(List<Branch> branches) {
this.branches = branches;
}
}
child class, Branch
#Entity
public class Branch {
private int branchId;
private String branchName;
private Company company;
#Id
#GeneratedValue
#Column(name="BRANCH_ID")
public int getBranchId() {
return branchId;
}
public void setBranchId(int branchId) {
this.branchId = branchId;
}
#Column(name="BRANCH_NAME")
public String getBranchName() {
return branchName;
}
public void setBranchName(String branchName) {
this.branchName = branchName;
}
#ManyToOne(fetch=FetchType.LAZY)
#JoinColumn(name="COMPANY_ID")
public Company getCompany() {
return company;
}
public void setCompany(Company company) {
this.company = company;
}
}
I'd just like to add that #JoinColumn does not always have to be related to the physical information location as this answer suggests. You can combine #JoinColumn with #OneToMany even if the parent table has no table data pointing to the child table.
How to define unidirectional OneToMany relationship in JPA
Unidirectional OneToMany, No Inverse ManyToOne, No Join Table
It seems to only be available in JPA 2.x+ though. It's useful for situations where you want the child class to just contain the ID of the parent, not a full on reference.
Let me make it simple.
You can use #JoinColumn on either sides irrespective of mapping.
Let's divide this into three cases.
1) Uni-directional mapping from Branch to Company.
2) Bi-direction mapping from Company to Branch.
3) Only Uni-directional mapping from Company to Branch.
So any use-case will fall under this three categories. So let me explain how to use #JoinColumn and mappedBy.
1) Uni-directional mapping from Branch to Company.
Use JoinColumn in Branch table.
2) Bi-direction mapping from Company to Branch.
Use mappedBy in Company table as describe by #Mykhaylo Adamovych's answer.
3)Uni-directional mapping from Company to Branch.
Just use #JoinColumn in Company table.
#Entity
public class Company {
#OneToMany(cascade = CascadeType.ALL , fetch = FetchType.LAZY)
#JoinColumn(name="courseId")
private List<Branch> branches;
...
}
This says that in based on the foreign key "courseId" mapping in branches table, get me list of all branches. NOTE: you can't fetch company from branch in this case, only uni-directional mapping exist from company to branch.
JPA is a layered API, the different levels have their own annotations. The highest level is the (1) Entity level which describes persistent classes then you have the (2) relational database level which assume the entities are mapped to a relational database and (3) the java model.
Level 1 annotations: #Entity, #Id, #OneToOne, #OneToMany, #ManyToOne, #ManyToMany.
You can introduce persistency in your application using these high level annotations alone. But then you have to create your database according to the assumptions JPA makes. These annotations specify the entity/relationship model.
Level 2 annotations: #Table, #Column, #JoinColumn, ...
Influence the mapping from entities/properties to the relational database tables/columns if you are not satisfied with JPA's defaults or if you need to map to an existing database. These annotations can be seen as implementation annotations, they specify how the mapping should be done.
In my opinion it is best to stick as much as possible to the high level annotations and then introduce the lower level annotations as needed.
To answer the questions: the #OneToMany/mappedBy is nicest because it only uses the annotations from the entity domain. The #oneToMany/#JoinColumn is also fine but it uses an implementation annotation where this is not strictly necessary.
#Entity
public class Company {
#OneToMany(cascade = CascadeType.ALL, fetch = FetchType.LAZY)
#JoinColumn(name = "company_id_ref", referencedColumnName = "company_id")
private List<Branch> branches;
...
}
That Will give below Hibernate logs
Hibernate: select nextval ('hibernate_sequence')
Hibernate: select nextval ('hibernate_sequence')
Hibernate: insert into company (name, company_id) values (?, ?)
Hibernate: insert into branch (company_id_ref, name, id) values (?, ?, ?)
Hibernate: update branch set company_id_ref=? where id=?
And
#Entity
public class Company {
#OneToMany(cascade = CascadeType.ALL , fetch = FetchType.LAZY,
mappedBy = "company")
private List<Branch> branches;
...
}
That will give below Hibernate logs
Hibernate: select nextval ('hibernate_sequence')
Hibernate: select nextval ('hibernate_sequence')
Hibernate: insert into company (name, company_id) values (?, ?)
Hibernate: insert into branch (company_id_ref, name, id) values (?, ?, ?)
We can clearly see that #joinColumn will cause additional update queries.
so you do not need to set parent entity explicitly to child entity,
That we have to do while using mappedBy
to save children with a parent

JPA 2.0 / Hibernate InheritanceType TABLE_PER_CLASS and OneToMany/ManyToOne bidirectional relation

We have 2 tables (an active table and an archive table) which have the same structure (ex. Employee and EmployeeArchive). To be able to leverage common code to use results for both tables we have an abstract parent class that defines all the methods and annotations.
We like to be able to perform queries that will use the same query for both tables and union the results together.
We have another entity/table (ex. Organization) with a onetomany/manytoone bidirectional relationship with Employee; Organization has a List of Employees and every employee has an organization.
When getting the employees of an organization via the association we only want the employees from the active table not the archive.
Is there a way to achieve what we are attempting or a viable workaround?
We have tried various implementations of #MappedSuperclass, #Entity/#InheritanceType.TABLE_PER_CLASS to try to achieve what we want. Each implementation would nearly achieve what we want but not completely. For example to be able to query both tables we could have an abstract parent Entity with InheritanceType.TABLE_PER_CLASS but then we could not have the mappedBy relationship to Employee in the Organization. We can use a MappedSuperclass as the parent to be able to have the correct relationship but then we cannot query both the Archive and Active tables via the union.
Here is basically what we are trying to layout:
#Entity
#Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public abstract class AbstractEmployee {
#ManyToOne
#JoinColumn(name="employeeId", nullable=false)
Organization org;
...
}
#Entity
public class Employee extends AbstractEmployee {
}
#Entity
public class EmployeeArchive extends AbstractEmployee {
}
#Entity
public class Organization {
#OneToMany(cascade=ALL, mappedBy="org")
List<Employee> employees;
...
}
Code
public List<AbstractEmployee> getAllEmployees()
{
Query query = em.createQuery("SELECT e FROM AbstractEmployee e where e.name = ‘John’", AbstractEmployee.class);
return query.getResultList();
}
public List<Organization> getOrganizations()
{
Query query = em.createQuery("SELECT e FROM Organization o ", Organization.class);
List<Organization> orgs = query.getResultList();
// fetch or eager fetch the Employees but only get the ones from the active employee table
return orgs;
}
We also tried to have the parent class extend the MappedSuperclass and put the implementation and annotations in the MappedSuperclass but we get an AnnotationException for the relationship of the Organization
#MappedSuperclass
public abstract class AbstractMapped {
#ManyToOne
#JoinColumn(name="employeeId", nullable=false)
Organization org;
}
#Entity
#Inheritance(#Inheritance(strategy = InheritanceType.TABLE_PER_CLASS))
public abstract class AbstractEmployee extends AbstractMapped {
... `Constructors` ...
}
On deployment we get the following exception:
Caused by org.hibernate.AnnotationException: mappedBy reference an unknown target entity property: Employee.org in Organizaztion.employees
at org.hibernate.cfg.annotations.CollectionBinder.bindStarToManySecondPass(CollectionBinder.java:685)
You can do this by changing the mapping of Organization to Employee so that it uses a relationship table, rather than having the org field in the Employee table. See the example in the Hibernate documentation, which for you would look something like:
#Entity
public class Organization {
#OneToMany(cascade=ALL)
#JoinTable(
name="ACTIVE_EMPLOYEES",
joinColumns = #JoinColumn( name="ORGANIZATION_ID"),
inverseJoinColumns = #JoinColumn( name="EMPLOYEE_ID")
)
List<Employee> employees;
...
}
However, I have to say that I think having two tables to represent current vs archived Employees is a bad idea. This sounds to me like a 'soft delete' kind of situation, which is better handled with an in-table flag (IS_ACTIVE, or something). Then you don't have these odd abstract classes to do your queries, multiple tables with the same kind of data, etc etc. A bit of a description of this strategy is here.
Then you can use the non-join table mapping that you've already got, and use the #Where annotation to limit the employees in an organization to ones that have IS_ACTIVE set to true. An example of this approach is here.
This is one of the annoying things about hibernate. The way to do this is to have another abstract class, AbstractMapped, which simply looks like this:
#MappedSuperclass
public abstract class AbstractMapped {
}
and then have AbstractEmployee extend AbstractMapped. Then you have AbstractEmployee as both an Entity and a Mapped Superclass, even though the two tags are mutually exclusive.
AbstractEmployee should be the #MappedSuperClass, and should not be an #Entity, which creates a table for the class.
Organization should contain a List<AbstractEmployee> not of Employee.

JPA JoinColumn vs mappedBy

What is the difference between:
#Entity
public class Company {
#OneToMany(cascade = CascadeType.ALL , fetch = FetchType.LAZY)
#JoinColumn(name = "companyIdRef", referencedColumnName = "companyId")
private List<Branch> branches;
...
}
and
#Entity
public class Company {
#OneToMany(cascade = CascadeType.ALL , fetch = FetchType.LAZY,
mappedBy = "companyIdRef")
private List<Branch> branches;
...
}
The annotation #JoinColumn indicates that this entity is the owner of the relationship (that is: the corresponding table has a column with a foreign key to the referenced table), whereas the attribute mappedBy indicates that the entity in this side is the inverse of the relationship, and the owner resides in the "other" entity. This also means that you can access the other table from the class which you've annotated with "mappedBy" (fully bidirectional relationship).
In particular, for the code in the question the correct annotations would look like this:
#Entity
public class Company {
#OneToMany(mappedBy = "company",
orphanRemoval = true,
fetch = FetchType.LAZY,
cascade = CascadeType.ALL)
private List<Branch> branches;
}
#Entity
public class Branch {
#ManyToOne(fetch = FetchType.LAZY)
#JoinColumn(name = "companyId")
private Company company;
}
#JoinColumn could be used on both sides of the relationship. The question was about using #JoinColumn on the #OneToMany side (rare case). And the point here is in physical information duplication (column name) along with not optimized SQL query that will produce some additional UPDATE statements.
According to documentation:
Since many to one are (almost) always the owner side of a bidirectional relationship in the JPA spec, the one to many association is annotated by #OneToMany(mappedBy=...)
#Entity
public class Troop {
#OneToMany(mappedBy="troop")
public Set<Soldier> getSoldiers() {
...
}
#Entity
public class Soldier {
#ManyToOne
#JoinColumn(name="troop_fk")
public Troop getTroop() {
...
}
Troop has a bidirectional one to many relationship with Soldier through the troop property. You don't have to (must not) define any physical mapping in the mappedBy side.
To map a bidirectional one to many, with the one-to-many side as the owning side, you have to remove the mappedBy element and set the many to one #JoinColumn as insertable and updatable to false. This solution is not optimized and will produce some additional UPDATE statements.
#Entity
public class Troop {
#OneToMany
#JoinColumn(name="troop_fk") //we need to duplicate the physical information
public Set<Soldier> getSoldiers() {
...
}
#Entity
public class Soldier {
#ManyToOne
#JoinColumn(name="troop_fk", insertable=false, updatable=false)
public Troop getTroop() {
...
}
Unidirectional one-to-many association
If you use the #OneToMany annotation with #JoinColumn, then you have a unidirectional association, like the one between the parent Post entity and the child PostComment in the following diagram:
When using a unidirectional one-to-many association, only the parent side maps the association.
In this example, only the Post entity will define a #OneToMany association to the child PostComment entity:
#OneToMany(cascade = CascadeType.ALL, orphanRemoval = true)
#JoinColumn(name = "post_id")
private List<PostComment> comments = new ArrayList<>();
Bidirectional one-to-many association
If you use the #OneToMany with the mappedBy attribute set, you have a bidirectional association. In our case, both the Post entity has a collection of PostComment child entities, and the child PostComment entity has a reference back to the parent Post entity, as illustrated by the following diagram:
In the PostComment entity, the post entity property is mapped as follows:
#ManyToOne(fetch = FetchType.LAZY)
private Post post;
The reason we explicitly set the fetch attribute to FetchType.LAZY is because, by default, all #ManyToOne and #OneToOne associations are fetched eagerly, which can cause N+1 query issues.
In the Post entity, the comments association is mapped as follows:
#OneToMany(
mappedBy = "post",
cascade = CascadeType.ALL,
orphanRemoval = true
)
private List<PostComment> comments = new ArrayList<>();
The mappedBy attribute of the #OneToMany annotation references the post property in the child PostComment entity, and, this way, Hibernate knows that the bidirectional association is controlled by the #ManyToOne side, which is in charge of managing the Foreign Key column value this table relationship is based on.
For a bidirectional association, you also need to have two utility methods, like addChild and removeChild:
public void addComment(PostComment comment) {
comments.add(comment);
comment.setPost(this);
}
public void removeComment(PostComment comment) {
comments.remove(comment);
comment.setPost(null);
}
These two methods ensure that both sides of the bidirectional association are in sync. Without synchronizing both ends, Hibernate does not guarantee that association state changes will propagate to the database.
Which one to choose?
The unidirectional #OneToMany association does not perform very well, so you should avoid it.
You are better off using the bidirectional #OneToMany which is more efficient.
I disagree with the accepted answer here by Óscar López. That answer is inaccurate!
It is NOT #JoinColumn which indicates that this entity is the owner of the relationship. Instead, it is the #ManyToOne annotation which does this (in his example).
The relationship annotations such as #ManyToOne, #OneToMany and #ManyToMany tell JPA/Hibernate to create a mapping. By default, this is done through a seperate Join Table.
#JoinColumn
The purpose of #JoinColumn is to create a join column if one does
not already exist. If it does, then this annotation can be used to
name the join column.
MappedBy
The purpose of the MappedBy parameter is to instruct JPA: Do NOT
create another join table as the relationship is already being mapped
by the opposite entity of this relationship.
Remember: MappedBy is a property of the relationship annotations whose purpose is to generate a mechanism to relate two entities which by default they do by creating a join table. MappedBy halts that process in one direction.
The entity not using MappedBy is said to be the owner of the relationship because the mechanics of the mapping are dictated within its class through the use of one of the three mapping annotations against the foreign key field. This not only specifies the nature of the mapping but also instructs the creation of a join table. Furthermore, the option to suppress the join table also exists by applying #JoinColumn annotation over the foreign key which keeps it inside the table of the owner entity instead.
So in summary: #JoinColumn either creates a new join column or renames an existing one; whilst the MappedBy parameter works collaboratively with the relationship annotations of the other (child) class in order to create a mapping either through a join table or by creating a foreign key column in the associated table of the owner entity.
To illustrate how MapppedBy works, consider the code below. If MappedBy parameter were to be deleted, then Hibernate would actually create TWO join tables! Why? Because there is a symmetry in many-to-many relationships and Hibernate has no rationale for selecting one direction over the other.
We therefore use MappedBy to tell Hibernate, we have chosen the other entity to dictate the mapping of the relationship between the two entities.
#Entity
public class Driver {
#ManyToMany(mappedBy = "drivers")
private List<Cars> cars;
}
#Entity
public class Cars {
#ManyToMany
private List<Drivers> drivers;
}
Adding #JoinColumn(name = "driverID") in the owner class (see below), will prevent the creation of a join table and instead, create a driverID foreign key column in the Cars table to construct a mapping:
#Entity
public class Driver {
#ManyToMany(mappedBy = "drivers")
private List<Cars> cars;
}
#Entity
public class Cars {
#ManyToMany
#JoinColumn(name = "driverID")
private List<Drivers> drivers;
}
The annotation mappedBy ideally should always be used in the Parent side (Company class) of the bi directional relationship, in this case it should be in Company class pointing to the member variable 'company' of the Child class (Branch class)
The annotation #JoinColumn is used to specify a mapped column for joining an entity association, this annotation can be used in any class (Parent or Child) but it should ideally be used only in one side (either in parent class or in Child class not in both) here in this case i used it in the Child side (Branch class) of the bi directional relationship indicating the foreign key in the Branch class.
below is the working example :
parent class , Company
#Entity
public class Company {
private int companyId;
private String companyName;
private List<Branch> branches;
#Id
#GeneratedValue
#Column(name="COMPANY_ID")
public int getCompanyId() {
return companyId;
}
public void setCompanyId(int companyId) {
this.companyId = companyId;
}
#Column(name="COMPANY_NAME")
public String getCompanyName() {
return companyName;
}
public void setCompanyName(String companyName) {
this.companyName = companyName;
}
#OneToMany(fetch=FetchType.LAZY,cascade=CascadeType.ALL,mappedBy="company")
public List<Branch> getBranches() {
return branches;
}
public void setBranches(List<Branch> branches) {
this.branches = branches;
}
}
child class, Branch
#Entity
public class Branch {
private int branchId;
private String branchName;
private Company company;
#Id
#GeneratedValue
#Column(name="BRANCH_ID")
public int getBranchId() {
return branchId;
}
public void setBranchId(int branchId) {
this.branchId = branchId;
}
#Column(name="BRANCH_NAME")
public String getBranchName() {
return branchName;
}
public void setBranchName(String branchName) {
this.branchName = branchName;
}
#ManyToOne(fetch=FetchType.LAZY)
#JoinColumn(name="COMPANY_ID")
public Company getCompany() {
return company;
}
public void setCompany(Company company) {
this.company = company;
}
}
I'd just like to add that #JoinColumn does not always have to be related to the physical information location as this answer suggests. You can combine #JoinColumn with #OneToMany even if the parent table has no table data pointing to the child table.
How to define unidirectional OneToMany relationship in JPA
Unidirectional OneToMany, No Inverse ManyToOne, No Join Table
It seems to only be available in JPA 2.x+ though. It's useful for situations where you want the child class to just contain the ID of the parent, not a full on reference.
Let me make it simple.
You can use #JoinColumn on either sides irrespective of mapping.
Let's divide this into three cases.
1) Uni-directional mapping from Branch to Company.
2) Bi-direction mapping from Company to Branch.
3) Only Uni-directional mapping from Company to Branch.
So any use-case will fall under this three categories. So let me explain how to use #JoinColumn and mappedBy.
1) Uni-directional mapping from Branch to Company.
Use JoinColumn in Branch table.
2) Bi-direction mapping from Company to Branch.
Use mappedBy in Company table as describe by #Mykhaylo Adamovych's answer.
3)Uni-directional mapping from Company to Branch.
Just use #JoinColumn in Company table.
#Entity
public class Company {
#OneToMany(cascade = CascadeType.ALL , fetch = FetchType.LAZY)
#JoinColumn(name="courseId")
private List<Branch> branches;
...
}
This says that in based on the foreign key "courseId" mapping in branches table, get me list of all branches. NOTE: you can't fetch company from branch in this case, only uni-directional mapping exist from company to branch.
JPA is a layered API, the different levels have their own annotations. The highest level is the (1) Entity level which describes persistent classes then you have the (2) relational database level which assume the entities are mapped to a relational database and (3) the java model.
Level 1 annotations: #Entity, #Id, #OneToOne, #OneToMany, #ManyToOne, #ManyToMany.
You can introduce persistency in your application using these high level annotations alone. But then you have to create your database according to the assumptions JPA makes. These annotations specify the entity/relationship model.
Level 2 annotations: #Table, #Column, #JoinColumn, ...
Influence the mapping from entities/properties to the relational database tables/columns if you are not satisfied with JPA's defaults or if you need to map to an existing database. These annotations can be seen as implementation annotations, they specify how the mapping should be done.
In my opinion it is best to stick as much as possible to the high level annotations and then introduce the lower level annotations as needed.
To answer the questions: the #OneToMany/mappedBy is nicest because it only uses the annotations from the entity domain. The #oneToMany/#JoinColumn is also fine but it uses an implementation annotation where this is not strictly necessary.
#Entity
public class Company {
#OneToMany(cascade = CascadeType.ALL, fetch = FetchType.LAZY)
#JoinColumn(name = "company_id_ref", referencedColumnName = "company_id")
private List<Branch> branches;
...
}
That Will give below Hibernate logs
Hibernate: select nextval ('hibernate_sequence')
Hibernate: select nextval ('hibernate_sequence')
Hibernate: insert into company (name, company_id) values (?, ?)
Hibernate: insert into branch (company_id_ref, name, id) values (?, ?, ?)
Hibernate: update branch set company_id_ref=? where id=?
And
#Entity
public class Company {
#OneToMany(cascade = CascadeType.ALL , fetch = FetchType.LAZY,
mappedBy = "company")
private List<Branch> branches;
...
}
That will give below Hibernate logs
Hibernate: select nextval ('hibernate_sequence')
Hibernate: select nextval ('hibernate_sequence')
Hibernate: insert into company (name, company_id) values (?, ?)
Hibernate: insert into branch (company_id_ref, name, id) values (?, ?, ?)
We can clearly see that #joinColumn will cause additional update queries.
so you do not need to set parent entity explicitly to child entity,
That we have to do while using mappedBy
to save children with a parent

JPA (hibernate) onetomany relation

I am not sure what I am missing to make a bidirectional onetomany relationship (hibernate engine). A scaled down version of the domain model:
class Person {
#OneToMany(mappedBy="personFrom", cascade = CascadeType.PERSIST)
public List<Relationship> relationships;
}
class Relationship {
#ManyToOne
public Person personFrom;
#ManyToOne
public Person personTo;
}
Some of the observations:
1. with the above mapping, there is no join table created.
2. When I remove the mappedBy (#OneToMany(cascade = CascadeType.PERSIST) ), the join table is created and i could persist Relationship through Person. "personFrom" field is empty, but I think that is normal as the relation is maintained through the join table.
I also tried by specifying join column at Relationship, didn't make any difference. Any help, highly appreciated.
thanks.
Edit:1
As per Dan's comment, if it matters to see the full content of the domain class, I have expanded them below.
class Relationship extends Model{
#ManyToOne
public RelationshipType relationshipType;
#ManyToOne
public Person personFrom;
#ManyToOne
public Person personTo;
#ManyToOne
public Person createdBy;
#ManyToOne
public Role roleFrom;
#ManyToOne
public Role roleTo;
#Override
public String toString() {
return relationshipType.toString();
}
}
class Person extends Model {
public Date dateCreated;
#Lob
public String description;
#OneToMany(cascade = CascadeType.ALL)
public List<Role> roles;
#OneToMany(mappedBy="personFrom", cascade = CascadeType.PERSIST)
public List<Relationship> relationships;
}
Role also related to Person, but I think keeping the personFrom, personTo helps to optimize my queries.
Role extends Model {
#ManyToOne
public RoleType roleType;
#ManyToOne
public Person createdBy;
}
with the above mapping, there is no join table created.
A join table is not required for a OneToMany, you'll get foreign key column in the Many side. And this is what I get when using your code:
create table Person (
id bigint not null,
primary key (id)
)
create table Relationship (
id bigint not null,
personFrom_id bigint,
personTo_id bigint,
primary key (id)
)
alter table Relationship
add constraint FK499B69164A731563
foreign key (personTo_id)
references Person
alter table Relationship
add constraint FK499B691698EA8314
foreign key (personFrom_id)
references Person
Which is the expected result (at least for me). Maybe what you actually want is a ManyToMany.
When I remove the mappedBy (#OneToMany(cascade = CascadeType.PERSIST) ), the join table is created and i could persist Relationship through Person. "personFrom" field is empty, but I think that is normal as the relation is maintained through the join table.
I wrote a small unit test using the provided code (with Hibernate's API but this doesn't change anything) and I don't get what the problem is (the session is created before the test method and the method runs inside a transaction):
Person p1 = new Person();
Person p2 = new Person();
Relationship r = new Relationship();
// create the personFrom bi-directional association
r.setPersonFrom(p1);
List<Relationship> relationships = new ArrayList<Relationship>();
relationships.add(r);
p1.setRelationships(relationships); // these four lines should be moved to some
// link management method (see update below).
// create the personTo uni-directional association
r.setPersonTo(p2);
session.persist(p2);
session.persist(p1);
assertNotNull(p2.getId());
assertNotNull(p1.getId());
assertNotNull(r.getId());
The above code results in two insert in the Person table and one insert in the Relationship table (valuing the 3 columns).
As I said, I don't get the problem. Maybe you should explain what the expected result is (both the relational model and the queries).
Update: To be totally clear, when working with bi-directional associations, you have to set both sides of the link and a common pattern is to use defensive link management methods to correctly set both sides of the association. Something like this:
public void addToRelationships(Relationship relationship) {
if (this.relationships == null) {
this.relationships = new ArrayList<Relationship>();
}
this.relationships.add(relationship);
relationship.setPersonFrom(this);
}
This is detailed in the section 1.2.6. Working bi-directional links of the Hibernate documentation.
Did you specify the foreign key column name as the name of your join column? Assuming the foreign key column is named PERSON_ID, the code should look something like this:
class Relationship {
#ManyToOne
#JoinColumn(name="PERSON_ID")
public Person personFrom;
...
}

Categories