Angular Encryption with AES has different result with old Java Code - java

So usually i use one java file to encrypt and decrypt a string to hex with AES,
then my angular app want to consume api, that use the result of it.
this is my old java code
package decryptoor;
import java.io.UnsupportedEncodingException;
import java.security.MessageDigest;
import java.util.Formatter;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
public class CryptoAndroidKoplak {
private static final String TEXT_ENCODING = "UTF-8";
private static final String CIPHER_TRANSFORMATION = "AES/CBC/PKCS5Padding";
private static final String ENCRYPTION_ALGORITM = "AES";
private static final String TAG = "Crypto";
private Cipher cipher;
private IvParameterSpec initialVector;
// private static void DEBUG(String msg){
// if(IDefines.DEBUG_LOG_TRACE){
// Log.i(TAG, msg);
// }
// }
public CryptoAndroidKoplak() {
try {
cipher = Cipher.getInstance(CIPHER_TRANSFORMATION);
initialVector = new IvParameterSpec(new byte[16]);
} catch (Exception e) {
System.out.println(e.toString());
}
}
public String encryptString(String plainText, String key) throws Exception {
return toHexString(encrypt(plainText, key)).toUpperCase();
}
public byte[] encrypt(String plainText, String key) throws Exception {
byte[] byteKey = getKeyBytes(key);
byte[] plainData = plainText.getBytes(TEXT_ENCODING);
SecretKeySpec keySpec = new SecretKeySpec(byteKey, ENCRYPTION_ALGORITM);
cipher.init(Cipher.ENCRYPT_MODE, keySpec, initialVector);
return cipher.doFinal(plainData);
}
public String decryptString(String encryptedText, String key) throws Exception {
return new String(decrypt(encryptedText, key));
}
public byte[] decrypt(String encryptedText, String key) throws Exception {
byte[] byteKey = getKeyBytes(key);
byte[] encryptData = hexToAscii(encryptedText);
SecretKeySpec keySpec = new SecretKeySpec(byteKey, ENCRYPTION_ALGORITM);
cipher.init(Cipher.DECRYPT_MODE, keySpec, initialVector);
return cipher.doFinal(encryptData);
}
public static String toMD5(String text) throws Exception {
MessageDigest md = MessageDigest.getInstance("MD5");
byte[] data = text.getBytes(TEXT_ENCODING);
return toHexString(md.digest(data));
}
public static String toSHA1(String text) throws Exception {
MessageDigest md = MessageDigest.getInstance("SHA-1");
byte[] data = text.getBytes(TEXT_ENCODING);
return toHexString(md.digest(data));
}
private static String toHexString(byte[] bytes) {
StringBuilder sb = new StringBuilder(bytes.length * 2);
Formatter formatter = new Formatter(sb);
for (byte b : bytes) {
formatter.format("%02x", b);
}
return sb.toString();
}
private static byte[] hexToAscii(String hexStr) {
byte[] buff = new byte[hexStr.length() / 2];
int offset = 0;
for (int i = 0; i < hexStr.length(); i += 2) {
String str = hexStr.substring(i, i + 2);
buff[offset++] = (byte) Integer.parseInt(str, 16);
}
return buff;
}
private static byte[] getKeyBytes(String key) throws UnsupportedEncodingException {
byte[] keyBytes = new byte[16];
byte[] parameterKeyBytes = key.getBytes("UTF-8");
System.arraycopy(parameterKeyBytes, 0, keyBytes, 0, Math.min(parameterKeyBytes.length, keyBytes.length));
return keyBytes;
}
}
and this is my code in angular
import { Injectable } from '#angular/core';
import * as CryptoJS from 'crypto-js';
#Injectable({
providedIn: 'root'
})
export class Encryption {
constructor() {}
encryptAesToString(stringToEncrypt: string, key: string): string {
// first way
// let encrypted;
// try {
// encrypted = CryptoJS.AES.encrypt(JSON.stringify(stringToEncrypt), key);
// } catch (e) {
// console.log(e);
// }
// encrypted = CryptoJS.enc.Hex.stringify(encrypted.ciphertext);
// return encrypted;
// second way
// var b64 = CryptoJS.AES.encrypt(stringToEncrypt, key).toString();
// var e64 = CryptoJS.enc.Base64.parse(b64);
// var eHex = e64.toString(CryptoJS.enc.Hex);
// return eHex;
// third way
const key2 = CryptoJS.enc.Utf8.parse(key);
const iv = CryptoJS.enc.Utf8.parse(key);
const encrypted = CryptoJS.AES.encrypt(stringToEncrypt, key2, {
keySize: 16,
iv: iv,
mode: CryptoJS.mode.ECB,
padding: CryptoJS.pad.Pkcs7,
});
let eHex = CryptoJS.enc.Hex.stringify(encrypted.ciphertext);
return encrypted;
}
decryptAesformString(stringToDecrypt: string, key: string): string {
let decrypted: string = '';
try {
const bytes = CryptoJS.AES.decrypt(stringToDecrypt, key);
if (bytes.toString()) {
decrypted = JSON.parse(bytes.toString(CryptoJS.enc.Utf8));
}
} catch (e) {
console.log(e);
}
return decrypted;
}
}
i have try three code, the first one doesn't return hex, so i try 2 more ways but it doesn't show same encrypted string with the old java code so i cant consume the api.
any idea why this happen?
if you have better way to encrypt and decrypt with key that more simple both in angular and java, it will really help.
many thanks

after give up on how to make it same with my old java code, finally i try to make a new one hehe...
so after i read this answer, then i understand CryptoJS (library that i use in angular) implements the same key derivation function as OpenSSL. so i choose to use basic CryptoJS function to encrypt my string like this
var text = "The quick brown fox jumps over the lazy dog. đŸ‘» đŸ‘»";
var secret = "RenĂ© Über";
var encrypted = CryptoJS.AES.encrypt(text, secret);
encrypted = encrypted.toString();
console.log("Cipher text: " + encrypted);
after that, what i need to do is make new java file to encrypt and decrypt aes OpenSsl, and i get what i need here in this answer. i use robert answer, cause accepted answer not really give me what i need.
but like the first answer mentioned, to encrypt and decrypt in this way, we have to install the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy. Otherwise, AES with key size of 256 won't work and throw an exception:(you won't need JCE with up-to-date java version)
so i add some functionality to force using AES with key size of 256 without to install JCE here. note to use this, actually isnt recomended, please read the comment in ericson answer
then this is my final code to encrypt and decrypt like OpenSsl
package decryptoor;
import groovy.transform.CompileStatic;
import java.io.UnsupportedEncodingException;
import java.lang.reflect.Field;
import java.lang.reflect.Modifier;
import java.net.URLEncoder;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import java.security.MessageDigest;
import java.security.SecureRandom;
import static java.nio.charset.StandardCharsets.*;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.Permission;
import java.security.PermissionCollection;
import java.util.Arrays;
import java.util.Base64;
import java.util.Map;
import javax.crypto.BadPaddingException;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
/**
* Mimics the OpenSSL AES Cipher options for encrypting and decrypting messages using a shared key (aka password) with symetric ciphers.
*/
#CompileStatic
class OpenSslAes {
/** OpenSSL's magic initial bytes. */
private static final String SALTED_STR = "Salted__";
private static final byte[] SALTED_MAGIC = SALTED_STR.getBytes(US_ASCII);
static String encryptAndURLEncode(String password, String clearText) throws NoSuchAlgorithmException, NoSuchPaddingException, InvalidKeyException, IllegalBlockSizeException, InvalidAlgorithmParameterException, BadPaddingException, UnsupportedEncodingException {
String encrypted = encrypt(password, clearText);
return URLEncoder.encode(encrypted, UTF_8.name() );
}
/**
*
* #param password The password / key to encrypt with.
* #param data The data to encrypt
* #return A base64 encoded string containing the encrypted data.
*/
static String encrypt(String password, String clearText) throws NoSuchAlgorithmException, NoSuchPaddingException, InvalidKeyException, IllegalBlockSizeException, InvalidAlgorithmParameterException, BadPaddingException {
removeCryptographyRestrictions();
final byte[] pass = password.getBytes(US_ASCII);
final byte[] salt = (new SecureRandom()).generateSeed(8);
final byte[] inBytes = clearText.getBytes(UTF_8);
final byte[] passAndSalt = array_concat(pass, salt);
byte[] hash = new byte[0];
byte[] keyAndIv = new byte[0];
for (int i = 0; i < 3 && keyAndIv.length < 48; i++) {
final byte[] hashData = array_concat(hash, passAndSalt);
final MessageDigest md = MessageDigest.getInstance("MD5");
hash = md.digest(hashData);
keyAndIv = array_concat(keyAndIv, hash);
}
final byte[] keyValue = Arrays.copyOfRange(keyAndIv, 0, 32);
final byte[] iv = Arrays.copyOfRange(keyAndIv, 32, 48);
final SecretKeySpec key = new SecretKeySpec(keyValue, "AES");
final Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
cipher.init(Cipher.ENCRYPT_MODE, key, new IvParameterSpec(iv));
byte[] data = cipher.doFinal(inBytes);
data = array_concat(array_concat(SALTED_MAGIC, salt), data);
return Base64.getEncoder().encodeToString( data );
}
/**
* #see http://stackoverflow.com/questions/32508961/java-equivalent-of-an-openssl-aes-cbc-encryption for what looks like a useful answer. The not-yet-commons-ssl also has an implementation
* #param password
* #param source The encrypted data
* #return
*/
static String decrypt(String password, String source) throws NoSuchAlgorithmException, NoSuchPaddingException, InvalidKeyException, InvalidAlgorithmParameterException, IllegalBlockSizeException, BadPaddingException {
removeCryptographyRestrictions();
final byte[] pass = password.getBytes(US_ASCII);
final byte[] inBytes = Base64.getDecoder().decode(source);
final byte[] shouldBeMagic = Arrays.copyOfRange(inBytes, 0, SALTED_MAGIC.length);
if (!Arrays.equals(shouldBeMagic, SALTED_MAGIC)) {
throw new IllegalArgumentException("Initial bytes from input do not match OpenSSL SALTED_MAGIC salt value.");
}
final byte[] salt = Arrays.copyOfRange(inBytes, SALTED_MAGIC.length, SALTED_MAGIC.length + 8);
final byte[] passAndSalt = array_concat(pass, salt);
byte[] hash = new byte[0];
byte[] keyAndIv = new byte[0];
for (int i = 0; i < 3 && keyAndIv.length < 48; i++) {
final byte[] hashData = array_concat(hash, passAndSalt);
final MessageDigest md = MessageDigest.getInstance("MD5");
hash = md.digest(hashData);
keyAndIv = array_concat(keyAndIv, hash);
}
final byte[] keyValue = Arrays.copyOfRange(keyAndIv, 0, 32);
final SecretKeySpec key = new SecretKeySpec(keyValue, "AES");
final byte[] iv = Arrays.copyOfRange(keyAndIv, 32, 48);
final Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
cipher.init(Cipher.DECRYPT_MODE, key, new IvParameterSpec(iv));
final byte[] clear = cipher.doFinal(inBytes, 16, inBytes.length - 16);
return new String(clear, UTF_8);
}
private static byte[] array_concat(final byte[] a, final byte[] b) {
final byte[] c = new byte[a.length + b.length];
System.arraycopy(a, 0, c, 0, a.length);
System.arraycopy(b, 0, c, a.length, b.length);
return c;
}
private static void removeCryptographyRestrictions() {
if (!isRestrictedCryptography()) {
return;
}
try {
/*
* Do the following, but with reflection to bypass access checks:
*
* JceSecurity.isRestricted = false; JceSecurity.defaultPolicy.perms.clear();
* JceSecurity.defaultPolicy.add(CryptoAllPermission.INSTANCE);
*/
final Class<?> jceSecurity = Class.forName("javax.crypto.JceSecurity");
final Class<?> cryptoPermissions = Class.forName("javax.crypto.CryptoPermissions");
final Class<?> cryptoAllPermission = Class.forName("javax.crypto.CryptoAllPermission");
Field isRestrictedField = jceSecurity.getDeclaredField("isRestricted");
isRestrictedField.setAccessible(true);
setFinalStatic(isRestrictedField, true);
isRestrictedField.set(null, false);
final Field defaultPolicyField = jceSecurity.getDeclaredField("defaultPolicy");
defaultPolicyField.setAccessible(true);
final PermissionCollection defaultPolicy = (PermissionCollection) defaultPolicyField.get(null);
final Field perms = cryptoPermissions.getDeclaredField("perms");
perms.setAccessible(true);
((Map<?, ?>) perms.get(defaultPolicy)).clear();
final Field instance = cryptoAllPermission.getDeclaredField("INSTANCE");
instance.setAccessible(true);
defaultPolicy.add((Permission) instance.get(null));
}
catch (final Exception e) {
e.printStackTrace();
}
}
static void setFinalStatic(Field field, Object newValue) throws Exception {
field.setAccessible(true);
Field modifiersField = Field.class.getDeclaredField("modifiers");
modifiersField.setAccessible(true);
modifiersField.setInt(field, field.getModifiers() & ~Modifier.FINAL);
field.set(null, newValue);
}
private static boolean isRestrictedCryptography() {
// This simply matches the Oracle JRE, but not OpenJDK.
return "Java(TM) SE Runtime Environment".equals(System.getProperty("java.runtime.name"));
}
}

Related

got AEADBadTagException while trying to decrypt message in GCM mode

I'm writing an app which got a lot of security constraints:
It needs to store files securely encrypted, and must be able to decrypt them. Also, an Operator needs to be able to decrypt the file without the app.
To archive this, I generated a KeyPair on my PC, put the public part in my app, generate an AES SecretKey Key inside the app, encrypt and save it with my public key (for operator purposes), and put the unencrypted key in AndroidKeyStore.
To Encrypt a message, I receive the SecretKey from KeyStore, encrypt my message, get the IV I used as well as the encryptedSecretKey, and write them in a defined order to a byte array (iv->encryptedSecretKey->encryptedMessage).
To Decrypt I try the same in reverse: get the byte array, read the iv and encryptedSecretKey, and pass the rest (encryptedMessage) to my cypher to decrypt.
The problem is, that cipher.doFinal(encryptedMessage) is throwing an
javax.crypto.AEADBadTagExceptionwhich is caused by android.security.KeyStoreException: Signature/MAC verification failed.
I already checked that the encrypted message and the one I want to decrypt are exactly the same. I'm having no idea what I am doing wrong.
The class I use is the following:
package my.company.domain;
import android.content.Context;
import android.content.SharedPreferences;
import android.security.keystore.KeyProperties;
import android.security.keystore.KeyProtection;
import android.support.annotation.NonNull;
import android.util.Base64;
import android.util.Log;
import java.io.DataInputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.security.GeneralSecurityException;
import java.security.InvalidKeyException;
import java.security.KeyFactory;
import java.security.KeyStore;
import java.security.KeyStoreException;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.PublicKey;
import java.security.SecureRandom;
import java.security.spec.X509EncodedKeySpec;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.SecretKey;
import javax.crypto.spec.GCMParameterSpec;
import javax.crypto.spec.SecretKeySpec;
public class CryptoHelper {
public static final String TAG = CryptoHelper.class.getSimpleName();
private static final String KEY_ALIAS = "OI1lTI1lLI1l0";
private static final char[] KEY_PASSWORD = "Il0VELI1lO".toCharArray();
private static final String PREF_NAME = "CryptoPrefs";
private static final String KEY_ENCRYPTED_SECRET = "encryptedSecret";
private static final String ANDROID_KEY_STORE = "AndroidKeyStore";
private static final int IV_SIZE = 12;
private static final int IV_BIT_LEN = IV_SIZE * 8;
//generate 128 bit key (16), other possible values 192(24), 256(32)
private static final int AES_KEY_SIZE = 16;
private static final String AES = KeyProperties.KEY_ALGORITHM_AES;
private static final String AES_MODE = AES + "/" + KeyProperties.BLOCK_MODE_GCM + "/" + KeyProperties.ENCRYPTION_PADDING_NONE;
private static final String RSA = KeyProperties.KEY_ALGORITHM_RSA;
private static final String RSA_MODE = KeyProperties.KEY_ALGORITHM_RSA + "/" + KeyProperties.BLOCK_MODE_ECB + "/" + KeyProperties.ENCRYPTION_PADDING_NONE;
private static final String RSA_PROVIDER = "AndroidOpenSSL";
private final Context mContext;
private final SharedPreferences mPrefs;
private SecureRandom mSecureRandom;
private KeyStore mAndroidKeyStore;
private PublicKey mPublicKey;
private byte[] mEncryptedSecretKey;
public CryptoHelper(Context context) {
mContext = context;
mSecureRandom = new SecureRandom();
mPrefs = mContext.getSharedPreferences(PREF_NAME, Context.MODE_PRIVATE);
try {
mAndroidKeyStore = KeyStore.getInstance(ANDROID_KEY_STORE);
mAndroidKeyStore.load(null);
} catch (KeyStoreException e) {
Log.wtf(TAG, "Could not get AndroidKeyStore!", e);
} catch (Exception e) {
Log.wtf(TAG, "Could not load AndroidKeyStore!", e);
}
}
public void reset() throws KeyStoreException {
mAndroidKeyStore.deleteEntry(KEY_ALIAS);
}
public byte[] encrypt(byte[] message){
SecretKey secretKey = getSecretKey();
try {
Cipher cipher = Cipher.getInstance(AES_MODE);
cipher.init(Cipher.ENCRYPT_MODE, getSecretKey());
byte[] cryptedBytes = cipher.doFinal(message);
byte[] iv = cipher.getIV();
byte[] encryptedSecretKey = getEncryptedSecretKey();
ByteBuffer buffer = ByteBuffer.allocate(IV_BIT_LEN + encryptedSecretKey.length + cryptedBytes.length);
buffer
.put(iv)
.put(encryptedSecretKey)
.put(cryptedBytes);
return buffer.array();
} catch (GeneralSecurityException e) {
e.printStackTrace();
}
return null;
}
public byte[] encrypt(String message){
return encrypt(message.getBytes(StandardCharsets.UTF_8));
}
public byte[] decrypt(byte[] bytes){
ByteBuffer buffer = ByteBuffer.wrap(bytes);
byte[] iv = new byte[IV_SIZE];
buffer.get(iv);
byte[] unused = getEncryptedSecretKey();
buffer.get(unused);
byte[] encryptedMessage = new byte[bytes.length - IV_SIZE - unused.length];
buffer.get(encryptedMessage);
try {
Cipher cipher = Cipher.getInstance(AES_MODE);
GCMParameterSpec parameterSpec = new GCMParameterSpec(IV_BIT_LEN, iv);
cipher.init(Cipher.DECRYPT_MODE, getSecretKey(), parameterSpec);
byte[] decryptedMessage = cipher.doFinal(encryptedMessage);
return decryptedMessage;
} catch (GeneralSecurityException e) {
e.printStackTrace();
}
return null;
}
public String decryptToString(byte[] bytes){
return new String(decrypt(bytes), StandardCharsets.UTF_8);
}
public byte[] decrypt(FileInputStream fileToDecrypt){
byte[] buffer = null;
try {
buffer = new byte[fileToDecrypt.available()];
fileToDecrypt.read(buffer);
buffer = decrypt(buffer);
} catch (IOException e) {
e.printStackTrace();
}
return buffer;
}
public PublicKey getPublicKey() {
if (null == mPublicKey) {
mPublicKey = readPublicKey();
}
return mPublicKey;
}
public byte[] getEncryptedSecretKey() {
if (null == mEncryptedSecretKey){
mEncryptedSecretKey = Base64.decode(mPrefs.getString(KEY_ENCRYPTED_SECRET, null), Base64.NO_WRAP);
}
return mEncryptedSecretKey;
}
private void saveEncryptedSecretKey(byte[] encryptedSecretKey){
String base64EncryptedKey = Base64.encodeToString(encryptedSecretKey, Base64.NO_WRAP);
mPrefs.edit().putString(KEY_ENCRYPTED_SECRET, base64EncryptedKey).apply();
}
protected SecretKey getSecretKey(){
SecretKey secretKey = null;
try {
if (!mAndroidKeyStore.containsAlias(KEY_ALIAS)){
generateAndStoreSecureKey();
}
secretKey = (SecretKey) mAndroidKeyStore.getKey(KEY_ALIAS, KEY_PASSWORD);
} catch (KeyStoreException e) {
Log.wtf(TAG, "Could not check AndroidKeyStore alias!", e);
secretKey = null;
} catch (GeneralSecurityException e) {
e.printStackTrace();
secretKey = null;
}
return secretKey;
}
private void generateAndStoreSecureKey()
throws NoSuchPaddingException, NoSuchAlgorithmException, NoSuchProviderException, InvalidKeyException, KeyStoreException, BadPaddingException, IllegalBlockSizeException {
SecretKey secretKey = generateSecureRandomKey();
PublicKey publicKey = getPublicKey();
Cipher keyCipher = Cipher.getInstance(RSA_MODE, RSA_PROVIDER);
keyCipher.init(Cipher.ENCRYPT_MODE, publicKey);
byte[] encryptedSecretKeyBytes = keyCipher.doFinal(secretKey.getEncoded());
saveEncryptedSecretKey(encryptedSecretKeyBytes);
KeyProtection keyProtection = new KeyProtection.Builder(KeyProperties.PURPOSE_DECRYPT | KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_VERIFY)
.setBlockModes(KeyProperties.BLOCK_MODE_GCM)
.setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_NONE)
.build();
mAndroidKeyStore.setEntry(KEY_ALIAS, new KeyStore.SecretKeyEntry(secretKey), keyProtection);
}
protected PublicKey readPublicKey() {
DataInputStream dis = null;
PublicKey key = null;
try {
dis = new DataInputStream(mContext.getResources().getAssets().open("public_key.der"));
byte[] keyBytes = new byte[dis.available()];
dis.readFully(keyBytes);
X509EncodedKeySpec spec = new X509EncodedKeySpec(keyBytes);
KeyFactory facotory = KeyFactory.getInstance(RSA);
key = facotory.generatePublic(spec);
} catch (Exception e) {
key = null;
} finally {
if (null != dis) {
try {
dis.close();
} catch (IOException e) {
Log.wtf(TAG, "Cannot Close Stream!", e);
}
}
}
return key;
}
#NonNull
protected SecretKey generateSecureRandomKey() {
return new SecretKeySpec(generateSecureRandomBytes(AES_KEY_SIZE), AES);
}
#NonNull
protected byte[] generateSecureRandomBytes(int byteCount) {
byte[] keyBytes = new byte[byteCount];
mSecureRandom.nextBytes(keyBytes);
return keyBytes;
}
}
And I Test it like this:
#Test
public void testCrypto() throws Exception {
CryptoHelper crypto = new CryptoHelper(InstrumentationRegistry.getTargetContext());
crypto.reset();
String verySecretOpinion = "we're all doomed";
byte[] encrypt = crypto.encrypt(verySecretOpinion);
Assert.assertNotNull("Encrypted secret is Null!", encrypt);
Assert.assertFalse("encrypted Bytes are the same as Input!", new String(encrypt, StandardCharsets.UTF_8).equals(verySecretOpinion));
String decryptedString = crypto.decryptToString(encrypt);
Assert.assertNotNull("Decrypted String must be Non-Null!", decryptedString);
Assert.assertEquals("Decrypted String doesn't equal encryption input!", verySecretOpinion, decryptedString);
}
By the way minSdkVersion is 25, so higher than Marshmallow
UPDATE:
Fixed Cipher.DECRYPT_MODE to ENCRYPT_MODE on saving the SecretKey thx to James K Polk's comment
it works If I switch from BlockMode GCM to BlockMode CBC (and changing the GCMParameterSpec to IvParamterSpec but loose the verification of the GCM Mode.
There are at least two problems with the Operator interface. First, you RSA encrypt the secret key using the wrong Cipher mode: you used DECRYPT mode when you should have used encrypt. Secondly, you are using RSA without any padding. You need to use a real padding mode, one of the OEAP padding modes is recommended.
An error in the encryption side occurs when sizing the buffer used to hold the result:
ByteBuffer buffer = ByteBuffer.allocate(IV_BIT_LEN + encryptedSecretKey.length + cryptedBytes.length);
allocates too much space. IV_BIT_LEN should probably be changed to IV_SIZE to get the correctly sized ByteBuffer.
The last mistake is the failure to account for the GCM authentication tag length when setting the GCMParameterSpec on the decrypt side. You initialized the tag length in this line
GCMParameterSpec parameterSpec = new GCMParameterSpec(IV_BIT_LEN, iv);
but that's incorrect, the tag length is unrelated to the IV. Since you did not explicitly set the GCMParameterSpec on the encrypt side you got the default tag length, which happens to be 128.
You can retrieve the tag length on the encrypt side by calling
cipher.getParameters().getParameterSpec(GCMParameterSpec.class) to get the parameter spec. From this you can retrieve both the tag length and the iv. You should probably consider the tag length, 16 bytes = 128 bits, to be a hard-coded constant and not transmit it. The receiver should similar assume the tag length is 128 bits.

Decrypting data on desktop that was encrypted on android

I have an app which encrypts some text strings, and then writes these to a file.
The desktop version of the app is reading the file and decrypts the data. The problem is that whenever I decrypt on the desktop version , I get a "javax.crypto.BadPaddingException: Given final block not properly padded"
Both the app and the desktop are using the same code:
import java.security.SecureRandom;
import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;
public class SSL {
private final static String HEX = "0123456789ABCDEF";
public static String encrypt(Session current, String cleartext) throws Exception {
byte[] rawKey = getRawKey(current.getCurrentSession().getBytes());
byte[] result = encrypt(rawKey, cleartext.getBytes());
return toHex(result);
}
public static String decrypt(Session current, String encrypted) throws Exception {
byte[] rawKey = getRawKey(current.getCurrentSession().getBytes());
byte[] enc = toByte(encrypted);
byte[] result = decrypt(rawKey, enc);
return new String(result);
}
private static byte[] getRawKey(byte[] seed) throws Exception {
KeyGenerator kgen = KeyGenerator.getInstance("AES");
SecureRandom sr = SecureRandom.getInstance("SHA1PRNG");
sr.setSeed(seed);
kgen.init(128, sr); // 192 and 256 bits may not be available
SecretKey skey = kgen.generateKey();
byte[] raw = skey.getEncoded();
return raw;
}
private static byte[] encrypt(byte[] raw, byte[] clear) throws Exception {
SecretKeySpec skeySpec = new SecretKeySpec(raw, "AES");
Cipher cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT_MODE, skeySpec);
byte[] encrypted = cipher.doFinal(clear);
return encrypted;
}
private static byte[] decrypt(byte[] raw, byte[] encrypted) throws Exception {
SecretKeySpec skeySpec = new SecretKeySpec(raw, "AES");
Cipher cipher = Cipher.getInstance("AES");
cipher.init(Cipher.DECRYPT_MODE, skeySpec);
byte[] decrypted = cipher.doFinal(encrypted);
return decrypted;
}
public static String toHex(String txt) {
return toHex(txt.getBytes());
}
public static String fromHex(String hex) {
return new String(toByte(hex));
}
public static byte[] toByte(String hexString) {
int len = hexString.length()/2;
byte[] result = new byte[len];
for (int i = 0; i < len; i++)
result[i] = Integer.valueOf(hexString.substring(2*i, 2*i+2), 16).byteValue();
return result;
}
public static String toHex(byte[] buf) {
if (buf == null)
return "";
StringBuffer result = new StringBuffer(2*buf.length);
for (int i = 0; i < buf.length; i++) {
appendHex(result, buf[i]);
}
return result.toString();
}
private static void appendHex(StringBuffer sb, byte b) {
sb.append(HEX.charAt((b>>4)&0x0f)).append(HEX.charAt(b&0x0f));
}
}
Why can't I decrypt the data on the desktop version? Are the crypto implementations in Android SDK and java 1.7 different?
Note: If I decrypt the encrypted android data on the android, it works. If I encrypt and decrypt on the desktop, it also works. The problem seems to be somewhere between those two.
I have finally found the whole solution.
There were some major issues, and I would like to explain them here so that more users can find the answer. Firstly, the two things pointed out by Duncan needed to be fixed.
After fixing these issues I still had the same problem, and found out that using a pseudo random number to create the raw key is done differently by different platforms/OS'. If you want to have crossplatform independencies, don't use SHA1PRNG as your key algorithm. Instead, use PBEWithSHA256And256BitAES-CBC-BC. I am using the implementation from BouncyCastle, see below for full crypto code.
import java.io.UnsupportedEncodingException;
import java.security.Security;
import java.security.spec.KeySpec;
import java.util.Random;
import javax.crypto.Cipher;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.PBEKeySpec;
import javax.crypto.spec.SecretKeySpec;
import org.bouncycastle.jce.provider.BouncyCastleProvider;
public class SSL {
private final static String HEX = "0123456789ABCDEF";
private final static String ENC = "US-ASCII";
private final static int ITERATION = 1337;
private static final String RANDOM_ALGORITHM = "PBEWithSHA256And256BitAES-CBC-BC";
private static final String CIPHER_ALGORITHM = "AES/CBC/PKCS5Padding";
private static final String SECRET_KEY_ALGORITHM = "AES";
private static IvParameterSpec ips;
public static void init(byte[] iv) {
if(iv == null) {
iv = new byte[16];
Random random = new Random();
random.nextBytes(iv);
}
ips = new IvParameterSpec(iv);
Security.addProvider(new BouncyCastleProvider());
}
public static byte[] getCertificate() {
return ips.getIV();
}
public static String encrypt(Session current, String cleartext) throws Exception {
byte[] rawKey = getRawKey(current.getCurrentSession().toCharArray());
byte[] result = encrypt(rawKey, cleartext.getBytes(ENC));
return toHex(result);
}
public static String decrypt(Session current, String encrypted) throws Exception {
byte[] rawKey = getRawKey(current.getCurrentSession().toCharArray());
byte[] enc = toByte(encrypted);
byte[] result = decrypt(rawKey, enc);
return new String(result, ENC);
}
private static byte[] getRawKey(char[] seed) throws Exception {
KeySpec keySpec = new PBEKeySpec(seed, ips.getIV(), ITERATION);
SecretKeyFactory keyFactory = SecretKeyFactory.getInstance(RANDOM_ALGORITHM);
byte[] keyBytes = keyFactory.generateSecret(keySpec).getEncoded();
SecretKey secretKey = new SecretKeySpec(keyBytes, "AES");
return secretKey.getEncoded();
}
private static byte[] encrypt(byte[] raw, byte[] clear) throws Exception {
SecretKeySpec skeySpec = new SecretKeySpec(raw, SECRET_KEY_ALGORITHM);
Cipher cipher = Cipher.getInstance(CIPHER_ALGORITHM);
cipher.init(Cipher.ENCRYPT_MODE, skeySpec, ips);
byte[] encrypted = cipher.doFinal(clear);
return encrypted;
}
private static byte[] decrypt(byte[] raw, byte[] encrypted) throws Exception {
SecretKeySpec skeySpec = new SecretKeySpec(raw, SECRET_KEY_ALGORITHM);
Cipher cipher = Cipher.getInstance(CIPHER_ALGORITHM);
cipher.init(Cipher.DECRYPT_MODE, skeySpec, ips);
byte[] decrypted = cipher.doFinal(encrypted);
return decrypted;
}
public static String toHex(String txt) throws UnsupportedEncodingException {
return toHex(txt.getBytes(ENC));
}
public static String fromHex(String hex) throws UnsupportedEncodingException {
return new String(toByte(hex), ENC);
}
public static byte[] toByte(String hexString) {
int len = hexString.length()/2;
byte[] result = new byte[len];
for (int i = 0; i < len; i++)
result[i] = Integer.valueOf(hexString.substring(2*i, 2*i+2), 16).byteValue();
return result;
}
public static String toHex(byte[] buf) {
if (buf == null)
return "";
StringBuffer result = new StringBuffer(2*buf.length);
for (int i = 0; i < buf.length; i++) {
appendHex(result, buf[i]);
}
return result.toString();
}
private static void appendHex(StringBuffer sb, byte b) {
sb.append(HEX.charAt((b>>4)&0x0f)).append(HEX.charAt(b&0x0f));
}
}
There are at least two problems with your code that will affect its functionality on different platforms:
You must specify a character set when calling getBytes() or new String(...). Without this, the results will be different if your platforms have different default charsets.
You must fully specify your encryption algorithm, e.g. replace "AES" with "AES/CBC/PKCS5Padding" to avoid differences between providers.

Java Equivalent to OpenSSL AES [duplicate]

I need to decrypt in JAVA a file encrypted in UNIX with the following command:
openssl aes-256-cbc -a -salt -in password.txt -out password.txt.enc
mypass
mypass
I have to decrypt in java as I do here I do in UNIX
openssl aes-256-cbc -d -a -in password.txt.enc -out password.txt.new
mypass
Someone can give me a java code to do this?
OpenSSL generally uses its own password based key derivation method, specified in EVP_BytesToKey, please see the code below. Furthermore, it implicitly encodes the ciphertext as base 64 over multiple lines, which would be required to send it within the body of a mail message.
So the result is, in pseudocode:
salt = random(8)
keyAndIV = BytesToKey(password, salt, 48)
key = keyAndIV[0..31]
iv = keyAndIV[32..47]
ct = AES-256-CBC-encrypt(key, iv, plaintext)
res = base64MimeEncode("Salted__" | salt | ct))
and the decryption therefore is:
(salt, ct) = base64MimeDecode(res)
key = keyAndIV[0..31]
iv = keyAndIV[32..47]
pt = AES-256-CBC-decrypt(key, iv, plaintext)
which can be implemented in Java like this:
import java.io.File;
import java.io.IOException;
import java.nio.charset.Charset;
import java.nio.file.Files;
import java.security.GeneralSecurityException;
import java.security.MessageDigest;
import java.util.Arrays;
import java.util.List;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import org.bouncycastle.util.encoders.Base64;
public class OpenSSLDecryptor {
private static final Charset ASCII = Charset.forName("ASCII");
private static final int INDEX_KEY = 0;
private static final int INDEX_IV = 1;
private static final int ITERATIONS = 1;
private static final int ARG_INDEX_FILENAME = 0;
private static final int ARG_INDEX_PASSWORD = 1;
private static final int SALT_OFFSET = 8;
private static final int SALT_SIZE = 8;
private static final int CIPHERTEXT_OFFSET = SALT_OFFSET + SALT_SIZE;
private static final int KEY_SIZE_BITS = 256;
/**
* Thanks go to Ola Bini for releasing this source on his blog.
* The source was obtained from here .
*/
public static byte[][] EVP_BytesToKey(int key_len, int iv_len, MessageDigest md,
byte[] salt, byte[] data, int count) {
byte[][] both = new byte[2][];
byte[] key = new byte[key_len];
int key_ix = 0;
byte[] iv = new byte[iv_len];
int iv_ix = 0;
both[0] = key;
both[1] = iv;
byte[] md_buf = null;
int nkey = key_len;
int niv = iv_len;
int i = 0;
if (data == null) {
return both;
}
int addmd = 0;
for (;;) {
md.reset();
if (addmd++ > 0) {
md.update(md_buf);
}
md.update(data);
if (null != salt) {
md.update(salt, 0, 8);
}
md_buf = md.digest();
for (i = 1; i < count; i++) {
md.reset();
md.update(md_buf);
md_buf = md.digest();
}
i = 0;
if (nkey > 0) {
for (;;) {
if (nkey == 0)
break;
if (i == md_buf.length)
break;
key[key_ix++] = md_buf[i];
nkey--;
i++;
}
}
if (niv > 0 && i != md_buf.length) {
for (;;) {
if (niv == 0)
break;
if (i == md_buf.length)
break;
iv[iv_ix++] = md_buf[i];
niv--;
i++;
}
}
if (nkey == 0 && niv == 0) {
break;
}
}
for (i = 0; i < md_buf.length; i++) {
md_buf[i] = 0;
}
return both;
}
public static void main(String[] args) {
try {
// --- read base 64 encoded file ---
File f = new File(args[ARG_INDEX_FILENAME]);
List<String> lines = Files.readAllLines(f.toPath(), ASCII);
StringBuilder sb = new StringBuilder();
for (String line : lines) {
sb.append(line.trim());
}
String dataBase64 = sb.toString();
byte[] headerSaltAndCipherText = Base64.decode(dataBase64);
// --- extract salt & encrypted ---
// header is "Salted__", ASCII encoded, if salt is being used (the default)
byte[] salt = Arrays.copyOfRange(
headerSaltAndCipherText, SALT_OFFSET, SALT_OFFSET + SALT_SIZE);
byte[] encrypted = Arrays.copyOfRange(
headerSaltAndCipherText, CIPHERTEXT_OFFSET, headerSaltAndCipherText.length);
// --- specify cipher and digest for EVP_BytesToKey method ---
Cipher aesCBC = Cipher.getInstance("AES/CBC/PKCS5Padding");
MessageDigest md5 = MessageDigest.getInstance("MD5");
// --- create key and IV ---
// the IV is useless, OpenSSL might as well have use zero's
final byte[][] keyAndIV = EVP_BytesToKey(
KEY_SIZE_BITS / Byte.SIZE,
aesCBC.getBlockSize(),
md5,
salt,
args[ARG_INDEX_PASSWORD].getBytes(ASCII),
ITERATIONS);
SecretKeySpec key = new SecretKeySpec(keyAndIV[INDEX_KEY], "AES");
IvParameterSpec iv = new IvParameterSpec(keyAndIV[INDEX_IV]);
// --- initialize cipher instance and decrypt ---
aesCBC.init(Cipher.DECRYPT_MODE, key, iv);
byte[] decrypted = aesCBC.doFinal(encrypted);
String answer = new String(decrypted, ASCII);
System.out.println(answer);
} catch (BadPaddingException e) {
// AKA "something went wrong"
throw new IllegalStateException(
"Bad password, algorithm, mode or padding;" +
" no salt, wrong number of iterations or corrupted ciphertext.");
} catch (IllegalBlockSizeException e) {
throw new IllegalStateException(
"Bad algorithm, mode or corrupted (resized) ciphertext.");
} catch (GeneralSecurityException e) {
throw new IllegalStateException(e);
} catch (IOException e) {
throw new IllegalStateException(e);
}
}
}
Beware that the code specifies ASCII as character set. The character set used may differ for your application / terminal / OS.
In general you should force OpenSSL to use the NIST approved PBKDF2 algorithm, as using the OpenSSL key derivation method - with an iteration count of 1 - is insecure. This may force you to use a different solution than OpenSSL. Note that password based encryption is inherently rather insecure - passwords are much less secure than randomly generated symmetric keys.
OpenSSL 1.1.0c changed the digest algorithm used in some internal components. Formerly, MD5 was used, and 1.1.0 switched to SHA256. Be careful the change is not affecting you in both EVP_BytesToKey and commands like openssl enc.
It's probably best to explicitly specify the digest in the command line interface (e.g. -md md5 for backwards compatibility or sha-256 for forwards compatibility) for the and make sure that the Java code uses the same digest algorithm ("MD5" or "SHA-256" including the dash). Also see the information in this answer.
Below are OpenSSLPBEInputStream and OpenSSLPBEOutputStream which can be used to encrypt/decrypt arbitrary streams of bytes in a way that is compatible with OpenSSL.
Example usage:
// The original clear text bytes
byte[] originalBytes = ...
// Encrypt these bytes
char[] pwd = "thePassword".toCharArray();
ByteArrayOutputStream byteOS = new ByteArrayOutputStream();
OpenSSLPBEOutputStream encOS = new OpenSSLPBEOutputStream(byteOS, ALGORITHM, 1, pwd);
encOS.write(originalBytes);
encOS.flush();
byte[] encryptedBytes = byteOS.toByteArray();
// Decrypt the bytes
ByteArrayInputStream byteIS = new ByteArrayInputStream(encryptedBytes);
OpenSSLPBEInputStream encIS = new OpenSSLPBEInputStream(byteIS, ALGORITHM, 1, pwd);
Where ALGORITHM (using just JDK classes) can be: "PBEWithMD5AndDES", "PBEWithMD5AndTripleDES", "PBEWithSHA1AndDESede", "PBEWithSHA1AndRC2_40".
To handle "openssl aes-256-cbc -a -salt -in password.txt -out password.txt.enc" of the original poster, add bouncey castle to the classpath, and use algorthm= "PBEWITHMD5AND256BITAES-CBC-OPENSSL".
/* Add BC provider, and fail fast if BC provider is not in classpath for some reason */
Security.addProvider(new BouncyCastleProvider());
The dependency:
<dependency>
<groupId>org.bouncycastle</groupId>
<artifactId>bcprov-jdk16</artifactId>
<version>1.44</version>
</dependency>
The input stream:
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import java.io.IOException;
import java.io.InputStream;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.spec.InvalidKeySpecException;
public class OpenSSLPBEInputStream extends InputStream {
private final static int READ_BLOCK_SIZE = 64 * 1024;
private final Cipher cipher;
private final InputStream inStream;
private final byte[] bufferCipher = new byte[READ_BLOCK_SIZE];
private byte[] bufferClear = null;
private int index = Integer.MAX_VALUE;
private int maxIndex = 0;
public OpenSSLPBEInputStream(final InputStream streamIn, String algIn, int iterationCount, char[] password)
throws IOException {
this.inStream = streamIn;
try {
byte[] salt = readSalt();
cipher = OpenSSLPBECommon.initializeCipher(password, salt, Cipher.DECRYPT_MODE, algIn, iterationCount);
} catch (InvalidKeySpecException | NoSuchPaddingException | NoSuchAlgorithmException | InvalidKeyException | InvalidAlgorithmParameterException e) {
throw new IOException(e);
}
}
#Override
public int available() throws IOException {
return inStream.available();
}
#Override
public int read() throws IOException {
if (index > maxIndex) {
index = 0;
int read = inStream.read(bufferCipher);
if (read != -1) {
bufferClear = cipher.update(bufferCipher, 0, read);
}
if (read == -1 || bufferClear == null || bufferClear.length == 0) {
try {
bufferClear = cipher.doFinal();
} catch (IllegalBlockSizeException | BadPaddingException e) {
bufferClear = null;
}
}
if (bufferClear == null || bufferClear.length == 0) {
return -1;
}
maxIndex = bufferClear.length - 1;
}
return bufferClear[index++] & 0xff;
}
private byte[] readSalt() throws IOException {
byte[] headerBytes = new byte[OpenSSLPBECommon.OPENSSL_HEADER_STRING.length()];
inStream.read(headerBytes);
String headerString = new String(headerBytes, OpenSSLPBECommon.OPENSSL_HEADER_ENCODE);
if (!OpenSSLPBECommon.OPENSSL_HEADER_STRING.equals(headerString)) {
throw new IOException("unexpected file header " + headerString);
}
byte[] salt = new byte[OpenSSLPBECommon.SALT_SIZE_BYTES];
inStream.read(salt);
return salt;
}
}
The output stream:
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import java.io.IOException;
import java.io.OutputStream;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.security.spec.InvalidKeySpecException;
public class OpenSSLPBEOutputStream extends OutputStream {
private static final int BUFFER_SIZE = 5 * 1024 * 1024;
private final Cipher cipher;
private final OutputStream outStream;
private final byte[] buffer = new byte[BUFFER_SIZE];
private int bufferIndex = 0;
public OpenSSLPBEOutputStream(final OutputStream outputStream, String algIn, int iterationCount,
char[] password) throws IOException {
outStream = outputStream;
try {
/* Create and use a random SALT for each instance of this output stream. */
byte[] salt = new byte[PBECommon.SALT_SIZE_BYTES];
new SecureRandom().nextBytes(salt);
cipher = OpenSSLPBECommon.initializeCipher(password, salt, Cipher.ENCRYPT_MODE, algIn, iterationCount);
/* Write header */
writeHeader(salt);
} catch (InvalidKeySpecException | NoSuchPaddingException | NoSuchAlgorithmException | InvalidKeyException | InvalidAlgorithmParameterException e) {
throw new IOException(e);
}
}
#Override
public void write(int b) throws IOException {
buffer[bufferIndex] = (byte) b;
bufferIndex++;
if (bufferIndex == BUFFER_SIZE) {
byte[] result = cipher.update(buffer, 0, bufferIndex);
outStream.write(result);
bufferIndex = 0;
}
}
#Override
public void flush() throws IOException {
if (bufferIndex > 0) {
byte[] result;
try {
result = cipher.doFinal(buffer, 0, bufferIndex);
outStream.write(result);
} catch (IllegalBlockSizeException | BadPaddingException e) {
throw new IOException(e);
}
bufferIndex = 0;
}
}
#Override
public void close() throws IOException {
flush();
outStream.close();
}
private void writeHeader(byte[] salt) throws IOException {
outStream.write(OpenSSLPBECommon.OPENSSL_HEADER_STRING.getBytes(OpenSSLPBECommon.OPENSSL_HEADER_ENCODE));
outStream.write(salt);
}
}
Small common class:
import javax.crypto.Cipher;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.PBEKeySpec;
import javax.crypto.spec.PBEParameterSpec;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.spec.InvalidKeySpecException;
class OpenSSLPBECommon {
protected static final int SALT_SIZE_BYTES = 8;
protected static final String OPENSSL_HEADER_STRING = "Salted__";
protected static final String OPENSSL_HEADER_ENCODE = "ASCII";
protected static Cipher initializeCipher(char[] password, byte[] salt, int cipherMode,
final String algorithm, int iterationCount) throws NoSuchAlgorithmException, InvalidKeySpecException,
InvalidKeyException, NoSuchPaddingException, InvalidAlgorithmParameterException {
PBEKeySpec keySpec = new PBEKeySpec(password);
SecretKeyFactory factory = SecretKeyFactory.getInstance(algorithm);
SecretKey key = factory.generateSecret(keySpec);
Cipher cipher = Cipher.getInstance(algorithm);
cipher.init(cipherMode, key, new PBEParameterSpec(salt, iterationCount));
return cipher;
}
}
In Kotlin:
package io.matthewnelson.java_crypto
import java.util.*
import javax.crypto.Cipher
import javax.crypto.SecretKeyFactory
import javax.crypto.spec.IvParameterSpec
import javax.crypto.spec.PBEKeySpec
import javax.crypto.spec.SecretKeySpec
class OpenSSL {
/**
* Will decrypt a string value encrypted by OpenSSL v 1.1.1+ using the following cmds from terminal:
*
* echo "Hello World!" | openssl aes-256-cbc -e -a -p -salt -pbkdf2 -iter 15739 -k qk4aX-EfMUa-g4HdF-fjfkU-bbLNx-15739
*
* Terminal output:
* salt=CC73B7D29FE59CE1
* key=31706F84185EA4B5E8E040F2C813F79722F22996B48B82FF98174F887A9B9993
* iv =1420310D41FD7F48E5D8722B9AC1C8DD
* U2FsdGVkX1/Mc7fSn+Wc4XLwDsmLdR8O7K3bFPpCglA=
* */
fun decrypt_AES256CBC_PBKDF2_HMAC_SHA256(
password: String,
hashIterations: Int,
encryptedString: String
): String {
val encryptedBytes = Base64.getDecoder().decode(encryptedString)
// Salt is bytes 8 - 15
val salt = encryptedBytes.copyOfRange(8, 16)
// println("Salt: ${salt.joinToString("") { "%02X".format(it) }}")
// Derive 48 byte key
val keySpec = PBEKeySpec(password.toCharArray(), salt, hashIterations, 48 * 8)
val keyFactory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA256")
val secretKey = keyFactory.generateSecret(keySpec)
// Decryption Key is bytes 0 - 31 of the derived key
val key = secretKey.encoded.copyOfRange(0, 32)
// println("Key: ${key.joinToString("") { "%02X".format(it) }}")
// Input Vector is bytes 32 - 47 of the derived key
val iv = secretKey.encoded.copyOfRange(32, 48)
// println("IV: ${iv.joinToString("") { "%02X".format(it) }}")
// Cipher Text is bytes 16 - end of the encrypted bytes
val cipherText = encryptedBytes.copyOfRange(16, encryptedBytes.lastIndex + 1)
// Decrypt the Cipher Text and manually remove padding after
val cipher = Cipher.getInstance("AES/CBC/NoPadding")
cipher.init(Cipher.DECRYPT_MODE, SecretKeySpec(key, "AES"), IvParameterSpec(iv))
val decrypted = cipher.doFinal(cipherText)
// println("Decrypted: ${decrypted.joinToString("") { "%02X".format(it) }}")
// Last byte of the decrypted text is the number of padding bytes needed to remove
val plaintext = decrypted.copyOfRange(0, decrypted.lastIndex + 1 - decrypted.last().toInt())
return plaintext.toString(Charsets.UTF_8)
}
}
Don't use ase-128-cbc, use ase-128-ecb.
only take first 16 bytes as key because key is 128 bits
hash output is printed in hex, which every 2 chars presents a byte value
hashpwd=echo -n $password| openssl sha1 | sed 's#.*=\\s*##g' | cut -c 1-32
openssl enc -aes-128-ecb -salt -in -out -K $hashpwd
Java Code is here:
import sun.misc.BASE64Decoder;
import sun.misc.BASE64Encoder;
import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;
import java.io.*;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.ArrayList;
import java.util.Arrays;
//openssl enc -nosalt -aes-128-ecb
// -in <input file>
// -out <output file>
// -K <16 bytes in hex, for example : "abc" can be hashed in SHA-1, the first 16 bytes in hex is a9993e364706816aba3e25717850c26c>
private final static String TRANSFORMATION = "AES"; // use aes-128-ecb in openssl
public static byte[] encrypt(String passcode, byte[] data) throws CryptographicException {
try {
Cipher cipher = Cipher.getInstance(TRANSFORMATION);
cipher.init(Cipher.ENCRYPT_MODE, genKeySpec(passcode));
return cipher.doFinal(data);
} catch (Exception ex) {
throw new CryptographicException("Error encrypting", ex);
}
}
public static String encryptWithBase64(String passcode, byte[] data) throws CryptographicException {
return new BASE64Encoder().encode(encrypt(passcode, data));
}
public static byte[] decrypt(String passcode, byte[] data) throws CryptographicException {
try {
Cipher dcipher = Cipher.getInstance(TRANSFORMATION);
dcipher.init(Cipher.DECRYPT_MODE, genKeySpec(passcode));
return dcipher.doFinal(data);
} catch (Exception e) {
throw new CryptographicException("Error decrypting", e);
}
}
public static byte[] decryptWithBase64(String passcode, String encrptedStr) throws CryptographicException {
try {
return decrypt(passcode, new BASE64Decoder().decodeBuffer(encrptedStr));
} catch (Exception e) {
throw new CryptographicException("Error decrypting", e);
}
}
public static SecretKeySpec genKeySpec(String passcode) throws UnsupportedEncodingException, NoSuchAlgorithmException {
byte[] key = passcode.getBytes("UTF-8");
MessageDigest sha = MessageDigest.getInstance("SHA-1");
key = sha.digest(key);
key = Arrays.copyOf(key, 16); // use only first 128 bit
return new SecretKeySpec(key, TRANSFORMATION);
}
Tested and passed in jdk6 and jdk8.

Not Encrypting & Decrypting Properly

Something is funky with the following AES class I've written to do encryption and decryption. When I copy of the AES object and I choose to encrypt plain text, and then I immediately attempt to decrypt the text I just encrypted, it doesn't decrypt it fully (and does it differently every time).
e.g. I'm initializing it with a simple JSP like this:
<%#page import="com.myclass.util.AES"%>
<%
String hexMessage = "0xe800a86d90d2074fbf339aa70b6d0f62f047db15ef04c86b488a1dda3c6c4f2f2bbb444a8c709bbb4c29c7ff1f1e";
String keyText = "12345678abcdefgh";//*/
AES e = new AES();
//e.setKey(keyText);
String plaintext = "This should decode & encode!";
String ciphertext = e.encrypt(plaintext);
out.println(ciphertext);
out.println("<BR>");
out.println(e.decrypt(ciphertext));
%>
The output varies on each page load:
One time:
0x663D64E6A0AE455AB3D25D5AF2F77C72202627EBA068E6DEBE5F22C31
This should decoÁdĂŹmÚÄV4ÉkÓ
Another:
0x5F5CF31961505F01EA9D5B7D7BFC656BD3117725D2EA041183F48
This s2??XĂȘĂȘÈ&ÀܧF?ÒDÒ­?
etc:
0xC7178A34C59F74E5D68F7CE5ED655B670A0B4E715101B4DDC2122460E8
TĂ #ÂŒR×ËÖ?_U?xÎÚ?Ba?b4r!©F
The class I created is below:
package com.myclass.util;
import java.io.UnsupportedEncodingException;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.Security;
import java.util.regex.Pattern;
import javax.crypto.*;
import javax.crypto.spec.*;
public class AES {
private static String provider = "AES/CTR/NoPadding";
private static String providerkey = "AES";
private static int size = 128;
private SecretKeySpec key;
private Cipher cipher;
private byte[] ivBytes = new byte[size/8];
private IvParameterSpec ivSpec = new IvParameterSpec(ivBytes);
public AES() throws NoSuchAlgorithmException, NoSuchPaddingException, NoSuchProviderException{
Security.addProvider(new org.bouncycastle.jce.provider.BouncyCastleProvider());
KeyGenerator kgen = KeyGenerator.getInstance(providerkey);
kgen.init(size); // 192 and 256 bits may not be available
SecretKey skey = kgen.generateKey();
byte[] raw = skey.getEncoded();
key = new SecretKeySpec(raw, providerkey);
cipher = Cipher.getInstance(provider);
for(int x = 0; x < (size/8); x++)
ivBytes[x] = 00;
ivSpec = new IvParameterSpec(ivBytes);
}
public void setKey(String keyText){
byte[] bText = new byte[size/8];
bText = keyText.getBytes();
key = new SecretKeySpec(bText, providerkey);
}
public void setIV(String ivText){
setIV(ivText.getBytes());
}
public void setIV(byte[] ivByte){
byte[] bText = new byte[size/8];
bText = ivByte;
ivBytes = bText;
ivSpec = new IvParameterSpec(ivBytes);
}
public String encrypt(String message) throws InvalidKeyException, IllegalBlockSizeException, BadPaddingException, InvalidAlgorithmParameterException{
cipher.init(Cipher.ENCRYPT_MODE, key, ivSpec);
byte[] encrypted = cipher.doFinal(message.getBytes());
return byteArrayToHexString(encrypted);
}
public String decrypt(String hexCiphertext) throws IllegalBlockSizeException, BadPaddingException, InvalidKeyException, InvalidAlgorithmParameterException, UnsupportedEncodingException{
cipher.init(Cipher.DECRYPT_MODE, key, ivSpec);
byte[] dec = hexStringToByteArray(hexCiphertext);
byte[] decrypted = cipher.doFinal(dec);
return new String(decrypted);
}
private static String byteArrayToHexString( byte [] raw ) {
String hex = "0x";
String s = new String(raw);
for(int x = 0; x < s.length(); x++){
char[] t = s.substring(x, x + 1).toCharArray();
hex += Integer.toHexString((int) t[0]).toUpperCase();
}
return hex;
}
private static byte[] hexStringToByteArray(String hex) {
Pattern replace = Pattern.compile("^0x");
String s = replace.matcher(hex).replaceAll("");
byte[] b = new byte[s.length() / 2];
for (int i = 0; i < b.length; i++){
int index = i * 2;
int v = Integer.parseInt(s.substring(index, index + 2), 16);
b[i] = (byte)v;
}
return b;
}
}
Based on the varied results, I'm wondering if something is getting messed up with the IV somehow, but I don't really understand why...
[EDIT] Looks like its not the IV, if I hard code that the decrypting still varies. If I hard code the key it stops varying, but still doesn't decrypt the text properly :-(.
--------------------- ===================== ---------------------
Adding the final solution I created below, based on owlstead's code and suggestions. It does the following:
1) Has a random key and iv on initialization.
2) Allows you to specify a key or iv as either a regular string, or as a hex encoded string.
3) Automatically truncates or null pads any given key or iv to make it the appropriate length.
NOTE: Item #3 could be viewed as extremely insecure since it allows you to do something stupid. For my purposes I need it, but please use with caution. If you null pad a short string for a key, your content is not going to be very secure.
--------------------- ===================== ---------------------
package com.myclass.util;
import java.io.UnsupportedEncodingException;
import java.nio.charset.Charset;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.spec.InvalidParameterSpecException;
import java.util.regex.Pattern;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.KeyGenerator;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.SecretKey;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
public class AES {
private static Charset PLAIN_TEXT_ENCODING = Charset.forName("UTF-8");
private static String CIPHER_TRANSFORMATION = "AES/CTR/NoPadding";
private static String KEY_TYPE = "AES";
private static int KEY_SIZE_BITS = 128;
private SecretKey key;
private Cipher cipher = Cipher.getInstance(CIPHER_TRANSFORMATION);
private byte[] ivBytes = new byte[KEY_SIZE_BITS/8];
public AES() throws NoSuchAlgorithmException, NoSuchPaddingException, NoSuchProviderException, InvalidParameterSpecException, InvalidKeyException, InvalidAlgorithmParameterException{
KeyGenerator kgen = KeyGenerator.getInstance(KEY_TYPE);
kgen.init(KEY_SIZE_BITS);
key = kgen.generateKey();
cipher.init(Cipher.ENCRYPT_MODE, key);
ivBytes = cipher.getParameters().getParameterSpec(IvParameterSpec.class).getIV();
}
public String getIVAsHex(){
return byteArrayToHexString(ivBytes);
}
public String getKeyAsHex(){
return byteArrayToHexString(key.getEncoded());
}
public void setStringToKey(String keyText){
setKey(keyText.getBytes());
}
public void setHexToKey(String hexKey){
setKey(hexStringToByteArray(hexKey));
}
private void setKey(byte[] bArray){
byte[] bText = new byte[KEY_SIZE_BITS/8];
int end = Math.min(KEY_SIZE_BITS/8, bArray.length);
System.arraycopy(bArray, 0, bText, 0, end);
key = new SecretKeySpec(bText, KEY_TYPE);
}
public void setStringToIV(String ivText){
setIV(ivText.getBytes());
}
public void setHexToIV(String hexIV){
setIV(hexStringToByteArray(hexIV));
}
private void setIV(byte[] bArray){
byte[] bText = new byte[KEY_SIZE_BITS/8];
int end = Math.min(KEY_SIZE_BITS/8, bArray.length);
System.arraycopy(bArray, 0, bText, 0, end);
ivBytes = bText;
}
public String encrypt(String message) throws InvalidKeyException,
IllegalBlockSizeException, BadPaddingException,
InvalidAlgorithmParameterException {
cipher.init(Cipher.ENCRYPT_MODE, key, new IvParameterSpec(ivBytes));
byte[] encrypted = cipher.doFinal(message.getBytes(PLAIN_TEXT_ENCODING));
return byteArrayToHexString(encrypted);
}
public String decrypt(String hexCiphertext)
throws IllegalBlockSizeException, BadPaddingException,
InvalidKeyException, InvalidAlgorithmParameterException,
UnsupportedEncodingException {
cipher.init(Cipher.DECRYPT_MODE, key, new IvParameterSpec(ivBytes));
byte[] dec = hexStringToByteArray(hexCiphertext);
byte[] decrypted = cipher.doFinal(dec);
return new String(decrypted, PLAIN_TEXT_ENCODING);
}
private static String byteArrayToHexString(byte[] raw) {
StringBuilder sb = new StringBuilder(2 + raw.length * 2);
sb.append("0x");
for (int i = 0; i < raw.length; i++) {
sb.append(String.format("%02X", Integer.valueOf(raw[i] & 0xFF)));
}
return sb.toString();
}
private static byte[] hexStringToByteArray(String hex) {
Pattern replace = Pattern.compile("^0x");
String s = replace.matcher(hex).replaceAll("");
byte[] b = new byte[s.length() / 2];
for (int i = 0; i < b.length; i++){
int index = i * 2;
int v = Integer.parseInt(s.substring(index, index + 2), 16);
b[i] = (byte)v;
}
return b;
}
}
Rewrote, with comments inline. Funny enough, the biggest mistake was generating the hexadecimals, so I rewrote that method. It's not perfect, but I kept to your original source as much as possible.
import java.io.UnsupportedEncodingException;
import java.nio.charset.Charset;
import java.security.GeneralSecurityException;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.Security;
import java.util.regex.Pattern;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.SecretKey;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import org.bouncycastle.jce.provider.BouncyCastleProvider;
/*
* Add state handling! Don't allow same key/iv for encrypting different cipher text!
*/
public class AES {
private static Charset PLAIN_TEXT_ENCODING = Charset.forName("UTF-8");
private static String CIPHER_TRANSFORMATION = "AES/CTR/NoPadding";
private static String KEY_TYPE = "AES";
// 192 and 256 bits may not be available
private static int KEY_SIZE_BITS = 128;
private Cipher cipher;
private SecretKey key;
private IvParameterSpec iv;
static {
// only needed if the platform does not contain CTR encryption by default
if (Security.getProvider(BouncyCastleProvider.PROVIDER_NAME) == null) {
// only needed for some platforms I presume
Security.addProvider(new org.bouncycastle.jce.provider.BouncyCastleProvider());
}
}
public AES() throws NoSuchAlgorithmException, NoSuchPaddingException,
NoSuchProviderException {
// not much use without a getter
// final KeyGenerator kgen = KeyGenerator.getInstance(KEY_TYPE);
// kgen.init(KEY_SIZE_BITS);
// key = kgen.generateKey();
cipher = Cipher.getInstance(CIPHER_TRANSFORMATION);
}
public void setKeyHex(String keyText) {
byte[] bText = hexStringToByteArray(keyText);
if (bText.length * Byte.SIZE != KEY_SIZE_BITS) {
throw new IllegalArgumentException(
"Wrong key size, expecting " + KEY_SIZE_BITS / Byte.SIZE + " bytes in hex");
}
key = new SecretKeySpec(bText, KEY_TYPE);
}
public void setIVHex(String ivText) {
byte[] bText = hexStringToByteArray(ivText);
if (bText.length != cipher.getBlockSize()) {
throw new IllegalArgumentException(
"Wrong IV size, expecting " + cipher.getBlockSize() + " bytes in hex");
}
iv = new IvParameterSpec(bText);
}
public String encrypt(String message) throws InvalidKeyException,
IllegalBlockSizeException, BadPaddingException,
InvalidAlgorithmParameterException {
cipher.init(Cipher.ENCRYPT_MODE, key, iv);
byte[] encrypted = cipher.doFinal(message.getBytes(PLAIN_TEXT_ENCODING));
return byteArrayToHexString(encrypted);
}
public String decrypt(String hexCiphertext)
throws IllegalBlockSizeException, BadPaddingException,
InvalidKeyException, InvalidAlgorithmParameterException,
UnsupportedEncodingException {
cipher.init(Cipher.DECRYPT_MODE, key, iv);
byte[] dec = hexStringToByteArray(hexCiphertext);
byte[] decrypted = cipher.doFinal(dec);
return new String(decrypted, PLAIN_TEXT_ENCODING);
}
private static String byteArrayToHexString(byte[] raw) {
StringBuilder sb = new StringBuilder(2 + raw.length * 2);
sb.append("0x");
for (int i = 0; i < raw.length; i++) {
sb.append(String.format("%02X", Integer.valueOf(raw[i] & 0xFF)));
}
return sb.toString();
}
// better add some input validation
private static byte[] hexStringToByteArray(String hex) {
Pattern replace = Pattern.compile("^0x");
String s = replace.matcher(hex).replaceAll("");
byte[] b = new byte[s.length() / 2];
for (int i = 0; i < b.length; i++) {
int index = i * 2;
int v = Integer.parseInt(s.substring(index, index + 2), 16);
b[i] = (byte) v;
}
return b;
}
public static void main(String[] args) {
try {
String key = "0x000102030405060708090A0B0C0D0E0F";
String iv = "0x000102030405060708090A0B0C0D0E0F";
String text = "Owlsteads answer";
AES aes = new AES();
aes.setKeyHex(key);
aes.setIVHex(iv);
String cipherHex = aes.encrypt(text);
System.out.println(cipherHex);
String deciphered = aes.decrypt(cipherHex);
System.out.println(deciphered);
} catch (GeneralSecurityException e) {
throw new IllegalStateException("Something is rotten in the state of Denmark", e);
} catch (UnsupportedEncodingException e) {
// not always thrown even if decryption fails, add integrity check such as MAC
throw new IllegalStateException("Decryption and/or decoding plain text message failed", e);
}
}
}
Your byteArrayToHexString method is broken. Integer.toHexString doesn't add padding zeroes but your code assumes it does. The broken conversion to hex corrupts the encrypted string, and the conversion from hex back to a raw byte string corrupts it further.

Encrypt Decrypt my own key not generated java

I am new to cryptography, so I have a question:
How can I create my own key (let`s say like a string "1234"). Because I need to encrypt a string with a key (defined by me), save the encrypted string in a database and when I want to use it, take it from the database and decrypt it with the key known by me.
I have this code :
import java.security.InvalidKeyException;
import java.security.*;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.DESedeKeySpec;
public class LocalEncrypter {
private static String algorithm = "PBEWithMD5AndDES";
//private static Key key = null;
private static Cipher cipher = null;
private static SecretKey key;
private static void setUp() throws Exception {
///key = KeyGenerator.getInstance(algorithm).generateKey();
SecretKeyFactory factory = SecretKeyFactory.getInstance(algorithm);
String pass1 = "thisIsTheSecretKeyProvidedByMe";
byte[] pass = pass1.getBytes();
SecretKey key = factory.generateSecret(new DESedeKeySpec(pass));
cipher = Cipher.getInstance(algorithm);
}
public static void main(String[] args)
throws Exception {
setUp();
byte[] encryptionBytes = null;
String input = "1234";
System.out.println("Entered: " + input);
encryptionBytes = encrypt(input);
System.out.println(
"Recovered: " + decrypt(encryptionBytes));
}
private static byte[] encrypt(String input)
throws InvalidKeyException,
BadPaddingException,
IllegalBlockSizeException {
cipher.init(Cipher.ENCRYPT_MODE, key);
byte[] inputBytes = input.getBytes();
return cipher.doFinal(inputBytes);
}
private static String decrypt(byte[] encryptionBytes)
throws InvalidKeyException,
BadPaddingException,
IllegalBlockSizeException {
cipher.init(Cipher.DECRYPT_MODE, key);
byte[] recoveredBytes =
cipher.doFinal(encryptionBytes);
String recovered =
new String(recoveredBytes);
return recovered;
}
}
Exception in thread "main" java.security.spec.InvalidKeySpecException: Invalid key spec
at com.sun.crypto.provider.PBEKeyFactory.engineGenerateSecret(PBEKeyFactory.java:114)
at javax.crypto.SecretKeyFactory.generateSecret(SecretKeyFactory.java:335)
at LocalEncrypter.setUp(LocalEncrypter.java:22)
at LocalEncrypter.main(LocalEncrypter.java:28)
A KeyGenerator generates random keys. Since you know the secret key, what you need is a SecretKeyFactory. Get an instance for your algorithm (DESede), and then call its generateSecret méthode with an instance of DESedeKeySpec as argument:
SecretKeyFactory factory = SecretKeyFactory.getInstance("DESede");
SecretKey key = factory.generateSecret(new DESedeKeySpec(someByteArrayContainingAtLeast24Bytes));
Here is a complete example that works. As I said, DESedeKeySpec must be used with the DESede algorithm. Using a DESede key with PBEWithMD5AndDES makes no sense.
public class EncryptionTest {
public static void main(String[] args) throws Exception {
byte[] keyBytes = "1234567890azertyuiopqsdf".getBytes("ASCII");
DESedeKeySpec keySpec = new DESedeKeySpec(keyBytes);
SecretKeyFactory factory = SecretKeyFactory.getInstance("DESede");
SecretKey key = factory.generateSecret(keySpec);
byte[] text = "Hello world".getBytes("ASCII");
Cipher cipher = Cipher.getInstance("DESede");
cipher.init(Cipher.ENCRYPT_MODE, key);
byte[] encrypted = cipher.doFinal(text);
cipher = Cipher.getInstance("DESede");
cipher.init(Cipher.DECRYPT_MODE, key);
byte[] decrypted = cipher.doFinal(encrypted);
System.out.println(new String(decrypted, "ASCII"));
}
}
Well, I found the solution after combining from here and there. The encrypted result will be formatted as Base64 String for safe saving as xml file.
package cmdCrypto;
import javax.crypto.Cipher;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.DESedeKeySpec;
import javax.xml.bind.DatatypeConverter;
public class CmdCrypto {
public static void main(String[] args) {
try{
final String strPassPhrase = "123456789012345678901234"; //min 24 chars
String param = "No body can see me";
System.out.println("Text : " + param);
SecretKeyFactory factory = SecretKeyFactory.getInstance("DESede");
SecretKey key = factory.generateSecret(new DESedeKeySpec(strPassPhrase.getBytes()));
Cipher cipher = Cipher.getInstance("DESede");
cipher.init(Cipher.ENCRYPT_MODE, key);
String str = DatatypeConverter.printBase64Binary(cipher.doFinal(param.getBytes()));
System.out.println("Text Encryted : " + str);
cipher.init(Cipher.DECRYPT_MODE, key);
String str2 = new String(cipher.doFinal(DatatypeConverter.parseBase64Binary(str)));
System.out.println("Text Decryted : " + str2);
} catch(Exception e) {
e.printStackTrace();
}
}
}

Categories