Circular Queue toString method ignoring some conditions - java

when I call my toString() method it doesn't work if after the index wraps around (front > rear). I have included the code below. After, I enqueue(5) and enqueue(6), the toString seems to be completely ignored. At first I thought I wasn't overriding the default toString in Java but the first print statement clearly tells me I am. Anyways, check the code out:
public class driver {
public static void main(String[] args) {
Queue queue = new Queue(4);
System.out.println(queue);
queue.enqueue(1);
queue.enqueue(2);
queue.enqueue(3);
queue.enqueue(4);
System.out.println(queue);
queue.dequeue();
System.out.println(queue);
queue.dequeue();
System.out.println(queue);
queue.enqueue(5);
queue.enqueue(6);
System.out.println(queue);
}
public static class Queue {
int front;
int rear;
int capacity;
int[] queue;
public Queue(int size) {
this.capacity = size;
this.front = this.rear = -1;
this.queue = new int[capacity];
}
#Override
public String toString() {
String str = "";
if (front > rear) {
int i = front;
while (i != rear) {
str = str + queue[i % queue.length] + " ";
i++;
}
//str= str+queue[rear];
}
if (front < rear) {
for (int i = front; i <= rear; i++) {
str = str + queue[i];
}
}
if (front == rear) {
str = "This Queue is Empty. Please Enqueue";
}
return str;
}
public boolean isFull() {
return ((rear == this.queue.length - 1 && front == 0) || rear == front - 1);
}
public boolean isEmpty() {
return (front == -1);
}
public void enqueue(int elem) {
if (isFull()) {
System.out.println("Full Queue - dequeue an element if you need to add an element in the queue");
} else {
if (isEmpty()) {
this.queue[++rear] = elem;
front = 0;
} else {
rear = (rear + 1) % this.queue.length;
this.queue[rear] = elem;
}
}
}
public int dequeue() {
if (isEmpty()) {
System.out.println("empty queue. Enqueue some elments. ");
return -1;
} else {
int store = this.queue[front];
if (rear == front) {
front = rear = -1;
} else {
front = front + 1 % this.queue.length;
}
return store;
}
}
}
*there is a return curly bracket here too lol still new to posting questions. P.S can someone help me because apparently I posted too much code in my question. Any workarounds?

The issue is with i++ in your while loop of toString.
Consider the case where front = 3 and rear = 1 then you start the loop with i = front = 3. However, you keep incrementing until you reach i == rear which will never happen since rear < front
What you want is for i to loop back around to 0 once it reaches capacity.
You can do this by removing i++ and replacing it with i = (i + 1) % capacity;
It seems like you have a different bug in your code, because when I run it I see
This Queue is Empty. Please Enqueue
1234
234
34
3 4 5
You'll need to figure this one out by yourself.
You can even condense it into a single for statement
for(int i = front; i != rear; i = (++i) % capacity)

Related

delete odd numbers in queue

i am trying to delete odd numbers in the queue linked list but I am struggling to make function to
delete the odd here my code for better understanding ;
public class queueLinked {
private Node rear;
private Node front;
private int siz;
public boolean isEmpty() {//function return boolean if is empty or not
boolean response = false;
if (siz == 0) {
response = true;
}
return response;
}
public void enqueue(int element) { // inserting the value type of int
Node node = new Node(element);
if (front == null) {
rear = node;
front = node;
} else {
rear.setNext(node);
rear = node;
siz++;
}
}
public queueLinked() {
front = null;
rear = null;
siz = 0;
}
public Node dequeue() { // to remove the a element in the queue
Node response = null;
if (front != null) ;
if (front.getNext() != null) {
response = new Node(front.getData());
front = front.getNext();
siz--;
} else {
response = new Node(front.getData());
front = null;
rear = null;
}
return response;
}
public Node peak() {
Node response = null;
if (!isEmpty()) {
response = new Node(front.getData());
}
return response;
}
public int getSiz() { // to get the size
return siz;
}
public void display() { // display the queue function
System.out.print("\nQueue = ");
if (siz == 0) {
System.out.print("Empty\n");
return;
}
Node ptr = front;
while (ptr != rear.getNext()) {
System.out.print(ptr.getData() + " ");
ptr = ptr.getNext();
}
System.out.println();
}
public void deleteOdd() { // delete odd number in the queue
System.out.print("\nQueue = ");
if (siz == 0) { //make sure if it is empty or not
System.out.print("Empty\n");
return;
}
Node tempe = front;
if (front.getData() % 2 != 0){
enqueue(front.getData());
front = front.getNext();
rear = rear.getNext();
}
}
}
in function deleteOdd() i tried to make sure if is it empty and then I tried more than way to get the right one if the first one is odd delete it and front = front.next and I do not know if it is right
First, there are some issues in other methods in your code:
Issues
enqueue should also increase the size of the list when adding to an empty list.
dequeue should also decrease the size of the list when removing the last node from it.
dequeue has a wrong semi-colon after if (front != null) ; and so you can get a null pointer exception on the line below it.
Here is a possible correction with minimal changes:
public void enqueue(int element) {
Node node = new Node(element);
if (front == null) {
rear = node;
front = node;
} else {
rear.setNext(node);
rear = node;
}
siz++; // size should be updated in both cases
}
public Node dequeue() {
Node response = null;
if (front != null) { // correction of misplaced semi-colon
response = new Node(front.getData());
front = front.getNext();
if (front == null) {
rear = null;
}
siz--; // size should be updated in both cases
}
return response;
}
deleteOdd
I chose to only use public methods of the class, so that this function can be easily coded outside of the class, if desired.
The current size of the queue is used for a count down, so every node is visited exactly once. The nodes with even data are appended to the queue again, but this count down will prevent us from visiting those again (and again, ...):
public void deleteOdd() {
for (int count = getSiz(); count > 0; count--) {
Node node = dequeue();
if (node.getData() % 2 == 0) {
enqueue(node.getData());
}
}
}
Try the following function to delete odd number in queue.
public void deleteOdd() { // delete odd number in the queue
if (size == 0) { // make sure if it is empty or not
System.out.print("Empty\n");
return;
}
Node ptr = front;
while (ptr != rear.getNext()) {
if (ptr.getData() % 2 != 0) {
Node tmp = ptr.getNext();
ptr.data = tmp.getData();
ptr.next = tmp.next;
size--;
}
else
ptr = ptr.getNext();
}
System.out.println();
}
QueueLinked queue = new QueueLinked();
for (int i=1; i<=20; i++) {
queue.enqueue(i);
}
queue.display();
queue.deleteOdd();

How can I reverse the contents of a queue

I want the program to print in the output Reversing the contents of the queue, (use an array hint)
I have 3 classes , Node , class , main
public class QueuePtr {
Node front, rear;
QueuePtr () { rear = front = null; }
Boolean isEmpty ()
{
if (front == null) return true; else return false;
}
void ENQUEUE (int x) {
Node N = new Node(x);
if(rear != null) {rear.next = N;
rear = N; }
else { front = rear = N; }
}
int FRONT (){
if (!isEmpty ()) return front.data;
else {System.out.println(" error queue is empty");
return -1111; }
}
void DEQUEUE (){
if (isEmpty ()) System.out.println(" error queue is empty");
else if (front == rear) front = rear = null;
else front = front.next;
public static void main(String arg[])
{
QueuePtr Q = new QueuePtr () ;
Q.ENQUEUE(10);
Q.ENQUEUE(20);
Q.ENQUEUE(30);
Q.ENQUEUE(40);
Reverse (Q);
}
output
[40,30,20,10]
You can use recursion to print your queue in reverse order as you deconstruct it:
public static void printBackwards(QueuePtr q) {
if (!q.isEmpty()) {
Node r = q.DEQUEUE();
printBackwards(q);
System.out.println(r);
}
}

displaying circular queue in java

I have the following code where I have implemented a circular array. The problem comes when I try to display it. The display method works well until the array gets full and last goes back to 0. Therefore last and first are both 0 and the for loop doesn't execute.
public class PassengerQueue
{
private Passenger[] queueArray = new Passenger[TrainStation.WAITING_ROOM_CAPACITY];
private int first = 0;
private int last = 0;
private int maxStayInQueue = 0; //number of seconds that the passenger who stayed longest in the queue
private int maxLength = 0; //the maximum legth that was reached by the queue
private int currentSize = 0;
public void add(Passenger next)
{
//if the queue is not full - check for the circular queue
if (isFull()){
System.out.println("The queue is full");
}
else
{
queueArray[last] = next;
last = (last + 1) % queueArray.length;
currentSize++;
maxLength++;
}
}
public Passenger remove()
{
Passenger removedPassenger = null;
//if the queue array is not empty
//remove passenger
if (isEmpty())
{
System.out.println("The queue is empty");
}
else
{
removedPassenger = queueArray[first];
queueArray[first] = null;
first = (first + 1) % queueArray.length;
currentSize--;
}
return removedPassenger;
}
public Boolean isEmpty()
{
return (currentSize == 0);
}
public Boolean isFull()
{
return (currentSize == queueArray.length);
}
public void display()
{
if (isEmpty())
{
System.out.println("The queue is empty");
}
else
{
for(int i = first; i < last; i++)
{
queueArray[i].display();
}
}
}
Any help would be appreciated! Thank You
You can change the loop so it iterates from 0 to size. This also fixes the problem where last is less than first because items have been removed.
for(int i = 0; i < currentSize; i++)
{
queueArray[(first + i) % queueArray.length].display();
}
Just use the properties on the array itself to display:
public void display()
{
if (isEmpty())
{
System.out.println("The queue is empty");
}
else
{
for(int i = 0; i < queueArray.length; i++)
{
queueArray[i].display();
}
}
}

Deque AddFront causing junit errors

I have to write code for Dequeue using a circular array I am getting null pointer exceptions that point to my addFront method, I feel like the logic is correct but I just can't seem to get what's wrong. A full queue is indicated by when rear is 2 positions counter clockwise from front. And an empty queue is indicated by when rear is 1 position counter clockwise from front.
Here is my code:
import java.util.ArrayList;
import java.util.Iterator;
import java.util.NoSuchElementException;
public class Dequeue<E> {
private E elements[];
private int front;
private int rear;
private static final int INITIAL_CAPACITY = 5;
/** Creates a queue with an initial capacity of 5 */
#SuppressWarnings("unchecked")
public Dequeue(int INITIAL_CAPACITY) {
elements = (E[]) new Object[INITIAL_CAPACITY];
front = 0;
rear = -1;
}
public Dequeue() {
front = 1;
rear = 0;
}
public int size() {
return elements.length;
}
public boolean empty() {
return (rear + 1 == front);
}
public boolean isFull() {
return (front == rear + 2);
}
#SuppressWarnings("unchecked")
private void resize() {
E[] temp = (E[]) new Object[(elements.length * 2)+1]; // new array
int i = 0; // use this to control new array positions
int j = front; // use this to control old array positions
boolean rearReached = false;
while (!rearReached) {
rearReached = j % elements.length == rear; // is true if we've reached the rear
temp[i] = elements[j % elements.length];
i++;
j++;
}
front = 0;
rear = elements.length - 1;
elements = temp;
}
public boolean addFront(E item) {
// check whether Deque if full or not
if (isFull()) {
resize();
}
if (elements.length == 0) {
elements[front] = item;
} else if (front == 0){
front = elements.length - 1 ;
elements[front] = item;
} else {
front--;
elements[front] = item;
}
return true;
}
public boolean addRear(E item) {
if (isFull()) {
resize();
rear++;
elements[rear] = item;
} else if (empty()) {
rear++;
elements[rear] = item;
}
return elements[rear] == item;
}
public E peekFront() {
// check whether Deque is empty or not
if (empty()) {
throw new NoSuchElementException("Empty Deque");
}
E result = elements[front];
return result;
}
public E peekRear() {
// check whether Deque is empty or not
if (empty()) {
throw new NoSuchElementException("Empty Deque");
}
E result = elements[rear];
return result;
}
public E removeFront() {
// check whether Deque is empty or not
if (empty()) {
throw new NoSuchElementException("Empty Deque");
}
// Deque has only one element
if (front == rear) {
front = -1;
rear = -1;
} else
// back to initial position
if (front == size() - 1)
front = 0;
else // increment front by '1' to remove current
// front value from Deque
front++;
return elements[front];
}
public E removeRear() {
if (empty()) {
throw new NoSuchElementException("Empty Deque");
}
// Deque has only one element
if (front == rear) {
front = -1;
rear = -1;
} else if (rear == 0)
rear = size() - 1;
else
rear = rear - 1;
return elements[rear];
}
public Iterator<E> iterator() {
Iterator<E> it = new Iterator<E>() {
private int currentIndex = front;
#Override
public boolean hasNext() {
return currentIndex < size() && elements[currentIndex] != elements[rear];
}
#Override
public E next() {
return elements[currentIndex++];
}
#Override
public void remove() {
throw new UnsupportedOperationException();
}
};
return it;
}
}

Binary Heap Implemented via a Binary Tree Structure

For an assignment, we were instructed to create a priority queue implemented via a binary heap, without using any built-in classes, and I have done so successfully by using an array to store the queued objects. However, I'm interested in learning how to implement another queue by using an actual tree structure, but in doing so I've run across a bit of a problem.
How would I keep track of the nodes on which I would perform insertion and deletion? I have tried using a linked list, which appends each node as it is inserted - new children are added starting from the first list node, and deleted from the opposite end. However, this falls apart when elements are rearranged in the tree, as children are added at the wrong position.
Edit: Perhaps I should clarify - I'm not sure how I would be able to find the last occupied and first unoccupied leaves. For example, I would always be able to tell the last inserted leaf, but if I were to delete it, how would I know which leaf to delete when I next remove the item? The same goes for inserting - how would I know which leaf to jump to next after the current leaf has both children accounted for?
A tree implementation of a binary heap uses a complete tree [or almost full tree: every level is full, except the deepest one].
You always 'know' which is the last occupied leaf - where you delete from [and modifying it is O(logn) after it changed so it is not a problem], and you always 'know' which is the first non-occupied leaf, in which you add elements to [and again, modifying it is also O(logn) after it changed].
The algorithm idea is simple:
insert: insert element to the first non-occupied leaf, and use heapify [sift up] to get this element to its correct place in the heap.
delete_min: replace the first element with the last occupied leaf, and remove the last occupied leaf. then, heapify [sift down] the heap.
EDIT: note that delete() can be done to any element, and not only the head, however - finding the element you want to replace with the last leaf will be O(n), which will make this op expensive. for this reason, the delete() method [besides the head], is usually not a part of the heap data structure.
I really wanted to do this for almost a decade.Finally sat down today and wrote it.Anyone who wants it can use it.I got inspired by Quora founder to relearn Heap.Apparently he was asked how would you find K near points in a set of n points in his Google phone screen.Apparently his answer was to use a Max Heap and to store K values and remove the maximum element after the size of the heap exceeds K.The approach is pretty simple and the worst case is nlog K which is better than n^2 in most sorting cases.Here is the code.
import java.util.ArrayList;
import java.util.List;
/**
* #author Harish R
*/
public class HeapPractise<T extends Comparable<T>> {
private List<T> heapList;
public List<T> getHeapList() {
return heapList;
}
public void setHeapList(List<T> heapList) {
this.heapList = heapList;
}
private int heapSize;
public HeapPractise() {
this.heapList = new ArrayList<>();
this.heapSize = heapList.size();
}
public void insert(T item) {
if (heapList.size() == 0) {
heapList.add(item);
} else {
siftUp(item);
}
}
public void siftUp(T item) {
heapList.add(item);
heapSize = heapList.size();
int currentIndex = heapSize - 1;
while (currentIndex > 0) {
int parentIndex = (int) Math.floor((currentIndex - 1) / 2);
T parentItem = heapList.get(parentIndex);
if (parentItem != null) {
if (item.compareTo(parentItem) > 0) {
heapList.set(parentIndex, item);
heapList.set(currentIndex, parentItem);
currentIndex = parentIndex;
continue;
}
}
break;
}
}
public T delete() {
if (heapList.size() == 0) {
return null;
}
if (heapList.size() == 1) {
T item = heapList.get(0);
heapList.remove(0);
return item;
}
return siftDown();
}
public T siftDown() {
T item = heapList.get(0);
T lastItem = heapList.get(heapList.size() - 1);
heapList.remove(heapList.size() - 1);
heapList.set(0, lastItem);
heapSize = heapList.size();
int currentIndex = 0;
while (currentIndex < heapSize) {
int leftIndex = (2 * currentIndex) + 1;
int rightIndex = (2 * currentIndex) + 2;
T leftItem = null;
T rightItem = null;
int currentLargestItemIndex = -1;
if (leftIndex <= heapSize - 1) {
leftItem = heapList.get(leftIndex);
}
if (rightIndex <= heapSize - 1) {
rightItem = heapList.get(rightIndex);
}
T currentLargestItem = null;
if (leftItem != null && rightItem != null) {
if (leftItem.compareTo(rightItem) >= 0) {
currentLargestItem = leftItem;
currentLargestItemIndex = leftIndex;
} else {
currentLargestItem = rightItem;
currentLargestItemIndex = rightIndex;
}
} else if (leftItem != null && rightItem == null) {
currentLargestItem = leftItem;
currentLargestItemIndex = leftIndex;
}
if (currentLargestItem != null) {
if (lastItem.compareTo(currentLargestItem) >= 0) {
break;
} else {
heapList.set(currentLargestItemIndex, lastItem);
heapList.set(currentIndex, currentLargestItem);
currentIndex = currentLargestItemIndex;
continue;
}
}
}
return item;
}
public static void main(String[] args) {
HeapPractise<Integer> heap = new HeapPractise<>();
for (int i = 0; i < 32; i++) {
heap.insert(i);
}
System.out.println(heap.getHeapList());
List<Node<Integer>> nodeArray = new ArrayList<>(heap.getHeapList()
.size());
for (int i = 0; i < heap.getHeapList().size(); i++) {
Integer heapElement = heap.getHeapList().get(i);
Node<Integer> node = new Node<Integer>(heapElement);
nodeArray.add(node);
}
for (int i = 0; i < nodeArray.size(); i++) {
int leftNodeIndex = (2 * i) + 1;
int rightNodeIndex = (2 * i) + 2;
Node<Integer> node = nodeArray.get(i);
if (leftNodeIndex <= heap.getHeapList().size() - 1) {
Node<Integer> leftNode = nodeArray.get(leftNodeIndex);
node.left = leftNode;
}
if (rightNodeIndex <= heap.getHeapList().size() - 1) {
Node<Integer> rightNode = nodeArray.get(rightNodeIndex);
node.right = rightNode;
}
}
BTreePrinter.printNode(nodeArray.get(0));
}
}
public class Node<T extends Comparable<?>> {
Node<T> left, right;
T data;
public Node(T data) {
this.data = data;
}
}
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
class BTreePrinter {
public static <T extends Comparable<?>> void printNode(Node<T> root) {
int maxLevel = BTreePrinter.maxLevel(root);
printNodeInternal(Collections.singletonList(root), 1, maxLevel);
}
private static <T extends Comparable<?>> void printNodeInternal(
List<Node<T>> nodes, int level, int maxLevel) {
if (nodes.isEmpty() || BTreePrinter.isAllElementsNull(nodes))
return;
int floor = maxLevel - level;
int endgeLines = (int) Math.pow(2, (Math.max(floor - 1, 0)));
int firstSpaces = (int) Math.pow(2, (floor)) - 1;
int betweenSpaces = (int) Math.pow(2, (floor + 1)) - 1;
BTreePrinter.printWhitespaces(firstSpaces);
List<Node<T>> newNodes = new ArrayList<Node<T>>();
for (Node<T> node : nodes) {
if (node != null) {
String nodeData = String.valueOf(node.data);
if (nodeData != null) {
if (nodeData.length() == 1) {
nodeData = "0" + nodeData;
}
}
System.out.print(nodeData);
newNodes.add(node.left);
newNodes.add(node.right);
} else {
newNodes.add(null);
newNodes.add(null);
System.out.print(" ");
}
BTreePrinter.printWhitespaces(betweenSpaces);
}
System.out.println("");
for (int i = 1; i <= endgeLines; i++) {
for (int j = 0; j < nodes.size(); j++) {
BTreePrinter.printWhitespaces(firstSpaces - i);
if (nodes.get(j) == null) {
BTreePrinter.printWhitespaces(endgeLines + endgeLines + i
+ 1);
continue;
}
if (nodes.get(j).left != null)
System.out.print("//");
else
BTreePrinter.printWhitespaces(1);
BTreePrinter.printWhitespaces(i + i - 1);
if (nodes.get(j).right != null)
System.out.print("\\\\");
else
BTreePrinter.printWhitespaces(1);
BTreePrinter.printWhitespaces(endgeLines + endgeLines - i);
}
System.out.println("");
}
printNodeInternal(newNodes, level + 1, maxLevel);
}
private static void printWhitespaces(int count) {
for (int i = 0; i < 2 * count; i++)
System.out.print(" ");
}
private static <T extends Comparable<?>> int maxLevel(Node<T> node) {
if (node == null)
return 0;
return Math.max(BTreePrinter.maxLevel(node.left),
BTreePrinter.maxLevel(node.right)) + 1;
}
private static <T> boolean isAllElementsNull(List<T> list) {
for (Object object : list) {
if (object != null)
return false;
}
return true;
}
}
Please note that BTreePrinter is a code I took somewhere in Stackoverflow long back and I modified to use with 2 digit numbers.It will be broken if we move to 3 digit numbers and it is only for simple understanding of how the Heap structure looks.A fix for 3 digit numbers is to keep everything as multiple of 3.
Also due credits to Sesh Venugopal for wonderful tutorial on Youtube on Heap data structure
public class PriorityQ<K extends Comparable<K>> {
private class TreeNode<T extends Comparable<T>> {
T val;
TreeNode<T> left, right, parent;
public String toString() {
return this.val.toString();
}
TreeNode(T v) {
this.val = v;
left = null;
right = null;
}
public TreeNode<T> insert(T val, int position) {
TreeNode<T> parent = findNode(position/2);
TreeNode<T> node = new TreeNode<T>(val);
if(position % 2 == 0) {
parent.left = node;
} else {
parent.right = node;
}
node.parent = parent;
heapify(node);
return node;
}
private void heapify(TreeNode<T> node) {
while(node.parent != null && (node.parent.val.compareTo(node.val) < 0)) {
T temp = node.val;
node.val = node.parent.val;
node.parent.val = temp;
node = node.parent;
}
}
private TreeNode<T> findNode(int pos) {
TreeNode<T> node = this;
int reversed = 1;
while(pos > 0) {
reversed <<= 1;
reversed |= (pos&1);
pos >>= 1;
}
reversed >>= 1;
while(reversed > 1) {
if((reversed & 1) == 0) {
node = node.left;
} else {
node = node.right;
}
reversed >>= 1;
}
return node;
}
public TreeNode<T> remove(int pos) {
if(pos <= 1) {
return null;
}
TreeNode<T> last = findNode(pos);
if(last.parent.right == last) {
last.parent.right = null;
} else {
last.parent.left = null;
}
this.val = last.val;
bubbleDown();
return null;
}
public void bubbleDown() {
TreeNode<T> node = this;
do {
TreeNode<T> left = node.left;
TreeNode<T> right = node.right;
if(left != null && right != null) {
T max = left.val.compareTo(right.val) > 0 ? left.val : right.val;
if(max.compareTo(node.val) > 0) {
if(left.val.equals(max)) {
left.val = node.val;
node.val = max;
node = left;
} else {
right.val = node.val;
node.val = max;
node = right;
}
} else {
break;
}
} else if(left != null) {
T max = left.val;
if(left.val.compareTo(node.val) > 0) {
left.val = node.val;
node.val = max;
node = left;
} else {
break;
}
} else {
break;
}
} while(true);
}
}
private TreeNode<K> root;
private int position;
PriorityQ(){
this.position = 1;
}
public void insert(K val) {
if(val == null) {
return;
}
if(root == null) {
this.position = 1;
root = new TreeNode<K>(val);
this.position++;
return ;
}
root.insert(val, position);
position++;
}
public K remove() {
if(root == null) {
return null;
}
K val = root.val;
root.remove(this.position-1);
this.position--;
if(position == 1) {
root = null;
}
return val;
}
public static void main(String[] args) {
PriorityQ<Integer> q = new PriorityQ<>();
System.out.println(q.remove());
q.insert(1);
q.insert(11);
q.insert(111);
q.insert(1111);
q.remove();
q.remove();
q.remove();
q.remove();
q.insert(2);
q.insert(4);
}
}

Categories