Microservice feign infinite loop of invocations? - java

I am confused about how an infinite loop of feign calls might behave.
An example:
Assume I have 2 APIs, A & B.
if I call API A, which in turn calls API B via a feign HTTP call, which in turn calls API A again via feign, will it recognize this and break the call chain?
Quick flowchart of calls:
A -> B -> A -> B ... Repeat infinitely?
I have not tried this code, it is just an idea。
But I am assuming that spring-cloud-starter-feign will provide some methods to resolve this problem? Is this assumption correct?
#PostMapping(RestJsonPath.API_A)
ResponseEntity<byte[]> apiA();
#PostMapping(RestJsonPath.API_B)
ResponseEntity<byte[]> apiB();
Will it execute until it times out or hystrix will stop it?

TL;DR:
Feign will keep the connection open on the initial request from A to B until the pre-configured timeout kicks in. At this point, Feign will time out the request and if you have specified a Hystrix fallback, Spring will use your Hystrix fallback as the response.
Explanation:
spring-boot-starter-feign provides an abstraction layer for writing the HTTP request code. It will not handle potential loops or cycles in your code.
Here is an example spring boot feign client from their tutorials website for demonstration:
#FeignClient(value = "jplaceholder",
url = "https://jsonplaceholder.typicode.com/",
configuration = ClientConfiguration.class,
fallback = JSONPlaceHolderFallback.class)
public interface JSONPlaceHolderClient {
#RequestMapping(method = RequestMethod.GET, value = "/posts")
List<Post> getPosts();
#RequestMapping(method = RequestMethod.GET, value = "/posts/{postId}", produces = "application/json")
Post getPostById(#PathVariable("postId") Long postId);
}
Notice first that this is an interface - all the code is auto generated by Spring at startup time, and that code will make RESTful requests to the urls configured via the annotations. For instance, the 2nd request allows us to pass in a path variable, which Spring will ensure makes it on the URL path of the outbound request.
The important thing to stress here is that this interface is only responsible for the HTTP calls, not any potential loops. Logic using this interface (which I can inject to any other Spring Bean as I would any other Spring Bean), is up to you the developer.
Github repo where this example came from.
Spring Boot Docs on spring-boot-starter-openfeign.
Hope this helps you understand the purpose of the openfeign project, and helps you understand that it's up to you to deal with cycles and infinite loops in your application code.
As for Hystrix, that framework comes in to play (if it is enabled) only if one of these generated HTTP requests fails, whether it's a timeout, 4xx error, 5xx error, or a response deserialization error. You configure Hystrix, as a sensible default or fallback for when the HTTP request fails.
This is a decent tutorial on Hystrix.
Some points to call out is that a Hystrix fallback must implement your Feign client interface, and you must specify this class as your Hysterix fallback in the #FeignClient annotation. Spring and Hystrix will call your Hystrix class automatically if a Feign request fails.

Related

Where is the Spring Actuator Controller endpoint and can I call it programmatically with jvm call?

I want to find the actual java class that serves the Spring Actuator endpoint (/actuator).
It's similar to this question in a way, but that person wanted to call it via a network HTTP call. Ideally, I can call it within the JVM to save on the cost of setting up an HTTP connection.
The reason for this is because we have 2 metrics frameworks in our system. We have a legacy metrics framework built on OpenCensus and we migrated to Spring Actuator (Prometheus metrics based on Micrometer). I think the Spring one is better but I didn't realize how much my company built infrastructure around the old one. For example, we leverage internal libraries that use OpenCensus. Infra team is depending on Opencensus-based metrics from our app. So the idea is to try to merge and report both sets of metrics.
I want to create my own metrics endpoint that pulls in data from Opencensus's endpoint and Actuator's endpoint. I could make an HTTP call to each, but I'd rather call them within the JVM to save on resources and reduce latency.
Or perhaps I'm thinking about it wrong. Should I simply be using MeterRegistry.forEachMeter() in my endpoint?
In any case, I thought if I found the Spring Actuator endpoint, I can see an example of how they're doing it and mimic the implementation even if I don't call it directly.
Bonus: I'll need to track down the Opencensus handler that serves its endpoint too and will probably make another post for that, but if you know the answer to that as well, please share!
I figured it out and posting this for anyone else interested.
The key finding: The MeterRegistry that is #Autowired is actually a PrometheusMeterRegistry if you enable the prometheus metrics.
Once you cast it into a PrometheusMeterRegistry, you can call its .scrape() method to return the exact same metrics printout you would when you hit the http endpoint.
I also need to get the same info from OpenCensus and I found a way to do that too.
Here's the snippet of code for getting metrics from both frameworks
Enumeration<MetricFamilySamples> openCensusSamples = CollectorRegistry.defaultRegistry.filteredMetricFamilySamples(ImmutableSet.of());
StringWriter writer = new StringWriter();
TextFormat.write004(writer, openCensusSamples);
String openCensusMetrics = writer.toString();
PrometheusMeterRegistry registry = (PrometheusMeterRegistry) meterRegistry;
String micrometerMetrics = registry.scrape();
return openCensusMetrics.concat(micrometerMetrics);
I found out another interesting way of doing this.
The other answer I gave but it has one issue. It contains duplicate results. When I looked into it, I realized that both OpenCensus and Micrometer were reporting the same result.
Turns out that the PrometheusScrapeEndpoint implementation uses the same CollectorRegistry that OpenCensus does so the both sets of metrics were being added to the same registry.
You just need to make sure to provide these beans
#PostConstruct
public void openCensusStats() {
PrometheusStatsCollector.createAndRegister();
}
#Bean
public CollectorRegistry collectorRegistry() {
return CollectorRegistry.defaultRegistry;
}

Specify server request timeout in Spring Boot & Spring WebFlux (Netty)

We are using Spring Boot in 2.4.2 with Spring WebFlux.
I want the Spring Boot application to terminate all requests to the application that take longer than say 3 seconds to process.
There is server.netty.connection-timeout, but that doesn't seem to do the trick.
Is there a way to specify such a server request timeout?
I was also facing the same issue i.e. even after configuring server.netty.connection-timeout request would get canceled. So, after some debugging found that timeout was getting set to '30000' by AsyncContext.
So, I configured the following property spring.mvc.async.request-timeout which change the timeout being set in AsyncContext and the request stopped getting canceled.
TL;DR:
Netty has no request timeout*. Add this WebFilter to set a request-timeout of 3 seconds using the reactor timeout on every request (here in kotlin, but in Java it works accordingly):
#Component
class RequestTimeoutWebFilter : WebFilter {
override fun filter(exchange: ServerWebExchange, chain: WebFilterChain): Mono<Void> {
return chain
.filter(exchange)
.timeout(Duration.ofSeconds(3))
}
}
* at least I could not find any information in the netty docs.
Detailed answer
The connection-timeout does not refer to the duration that a request is allowed to take for processing, but it refers to the time it takes for establishing the connection.
First, I could not find any spring configuration option that allows setting the request timeout for netty. Then I went through the netty documentation to find out that there is no concept of request timeouts on the http server (only on the http client).
Wondering about why such important feature would not be supported, I remembered that we often cannot apply the same concepts as in blocking servers for good reasons. Next, I remembered, that in the reactive world we do not directly implement the handling of the request, but how the handling is assembled - i.e. we hold a Mono<Void> that will handle the request. Hence, we can just look at reactor and how to timeout a Mono, which is very easy:
Mono.create(...)
.timeout(Duration.ofSeconds(3))
Next, we just need to figure out, how to apply this to all requests. This is easy as well, because we can just use a WebFilter to intercept all requests to apply our timeout (here in kotlin, but in Java it works accoringly):
#Component
class RequestTimeoutWebFilter : WebFilter {
override fun filter(exchange: ServerWebExchange, chain: WebFilterChain): Mono<Void> {
return chain
.filter(exchange)
.timeout(Duration.ofSeconds(3))
}
}
This effectively cancels a request within the set timeout with the following error:
2022-10-21 00:08:00.981 ERROR 6289 --- [ parallel-4] a.w.r.e.AbstractErrorWebExceptionHandler : [59dfa990-7] 500 Server Error for HTTP GET "/some/route"
java.util.concurrent.TimeoutException: Did not observe any item or terminal signal within 3000ms in 'source(MonoDefer)' (and no fallback has been configured)
at reactor.core.publisher.FluxTimeout$TimeoutMainSubscriber.handleTimeout(FluxTimeout.java:295) ~[reactor-core-3.4.22.jar:3.4.22]
More tips and hints
To make the timeout configurable, we can use a custom config variable instead of the hard-coded duration.
To custimize the 500 status code we can either change the exception by providing a fallback to the timeout as 2nd argument and handle that exception in a controller advice - or we can just use reactors onErrorReturn.
The documentation for WebFilter actually states that they should be used to implement timeouts:
Contract for interception-style, chained processing of Web requests that may be used to implement cross-cutting, application-agnostic requirements such as security, timeouts, and others.
Still I think it is expected that spring provides such implementation out-of-the box that can be easily configured. Maybe we oversaw that it is there, but then I would argue it is too hard to find. ^^
Alternative solution path
As an alternative, we could use circuit breakers. However, those are implemented on the readers side and conceptually are used to protect the reading side against failure of the downstream - rather than protecting the internal processing within the downstream from running too long. They can only be applied to mimic a request timeout when applying them in a dedicated server (e.g. a spring cloud gateway server) that sits between the actual client and the actual service. When using Resilience4j as implementation, you can use TimeLimiter to achieve it.

Spring integration flow vs regular service and adapter

I had some legacy code that had SOAP services. Now I am building Rest API for some objects that may call one or more SOAP operation. I was looking into Spring Integration. From the docs
In addition to wiring together fine-grained components, Spring Integration provides a wide selection of channel adapters and gateways to communicate with external systems.
Above statement sounds enticing. I was writing rest microservice controller, Validation service, Rest request to SOAP request mapper and SOAP client. I some cases when there are multiple calls, there is even more code I had to write and I did write the code in many cases.
Spring Integration at high level looked like a framework oriented for Async messages. My problem is that the call need to be more or less a synchronous call and performance is critical. Had anyone used Spring integration for this problem and can you share your experiences.
To complement Artem's answer it's worth to note that if you're going to use one of Spring Integration DSLs (Java, Groovy or Scala) then (the synchronous) DirectChannel will be picked by default by Spring Integration to wire up the endpoints of your integration flow. This means that as long as your endpoints stay synchronous and you rely on default channels between them, the whole integration flow stay synchronous as well.
For instance (in Java DSL):
#Bean
public IntegrationFlow syncFlow() {
return IntegrationFlows
.from(/* get a REST message from microservice */)
// here the DirectChannel is used by default
.filter(/* validate (and filter out) incorrect messages */)
// here the DirectChannel is used by default too
.transform(/* map REST to SOAP */)
// guess what would be here?
.handle(/* send a message with SOAP client */)
.get();
}
This absolutely doesn't mean you tied up with synchronous flow forever. At any step you can go async or parallel. For example, if you decide to send SOAP messages in parallel all you need to do is to specify appropriate channel before SOAP client invocation:
#Bean
public IntegrationFlow syncFlow() {
// ... the same as above ...
.transform(/* map REST to SOAP */)
.channel(c -> c.executor(Executors.newCachedThreadPool())) // see (1)
.handle(/* send a message with SOAP client */)
.get();
}
(1) From this point on the downstream flow will be processed in parallel thanks to use of ExecutorChannel.
Note that message endpoints may also behave asynchronously depending on their logic.
I've used Spring Integration for building synchronous integration flows in my home and work projects and it's proven to be a very powerful yet flexible solution.
One of the first class citizens in Spring Integration is MessageChannel abstraction. The simplest, synchronous, and therefore direct method invocation is DirectChannel.
Not sure what makes you think that everything in Spring Integration is async. Actually it is always direct unless you tell to be async.

Spring Web MVC 4+ with Java 8: best way to make chained DeferredResult callbacks in the service layer?

UPDATE: I upgraded the code to Java 8 without too much of a hassle. So I would like answers tied to Spring 4/Java 8.
I am working on a task to fix performance issues (Tomcat max thread count of 200 reached at a request rate of just 400/s, request latencies building up periodically, etc) in a Tomcat/Spring 4.2.4/Java 8 web mvc application.
It is a typical web application which looks up Mysql via Hibernate for small but frequent things like user info per request, then does actual data POST/GET to another web service via RestTemplate.
The code is in Java 7 style as I just migrated to Java 8, but no new code has been written in that style yet. (I am also back using Spring after ages, so not sure what would be best).
As expected in a normal such application, the Service layer calls other services for info, and then also passes that along to a call to the DAO. So I have some dependent callbacks here.
Setup
#EnableAsync is set
The flow of our Http requests goes from Controller -> Service -> DAO -> REST or Hibernate
Sample flow
Say Controller receives POST request R and expects a DeferredResult
Controller calls entityXService.save()
EntityXService calls userService.findUser(id)
UserService calls UserDAO.findUser(id) which in turn talks to Hibernate
UserService returns a Spring ListenableFuture to the caller
EntityXService awaits the user info (using callback) in and calls EntityXDAO.save(user, R)
EntityXDAO calls AsyncRestTemplate.postForEntity(user, R)
EntityXDAO receives DeferredResult> which is our data abstraction for the response.
EntityXDAO processes the response and converts to EntityXDTO
Eventually somehow the DeferredResult is sent back through the same chain as a response.
I am getting lost at how in step 3, EntityXService asynchronously calls UserService.findUser(id) with an onSuccess callback to EntityXDAO.save(user, R). However, EntityXDAO.save(user, R) also now returns a DeferredResult from the AsyncRestTemplate.
Questions:
Is using DeferredResult a good way to get concurrency going in this application?
Is using Guava's ListenableFuture or Java 8 CompletableFuture going to help make it better in anyway, rather than using DeferredResult?
My BIGGEST question and confusion is how to arrange the DeferredResult from one service lookup to be used by another, and then finally set a DeferredResult of a completely different return type for the final response?
Is there an example of how to chain such callbacks and what is the recommended way to build such a flow? If this sounds completely wrong, is Java 7 going to be the right choice for this?
Thanks in advance!

Spring MVC like processing of AMQP messages

What I want to do is process AMQP messages in a very similar way the Http Requests are processed using spring-webmvc annotations such as #RequestMapping, #RequestParam etc. But, instead of the Http Request my source object will be an AMQP message. The AMQP message request will have two headers, for example -
method="POST"
url="/api/myobjects/{someParam}"
and the payload will contain data in json format.
If you have noticed, this is nothing but HTTP REST api mapped to AMQP message.
I want to be able to write a controller like handler, for example -
#Controller
public class MyObjectHandler {
#RequestMapping(value="/api/myobjects/{someParam}", method="POST")
public MyObject createMyObject(#Payload MyObject myObj, #PathParam String someParam) {
//... some processing
return myObj;
}
// ...more handlers
}
I have looked at spring-amqp/rabbitmq annotations and also spring integration annotations. They are close to what I want, but would not allow routing to handler methods based on header parameters, especially the REST url.
I don't expect that a readymade solution would be available for this. Just want to make sure I choose the best possible option. Some of the options I think are (in order of precedence)
If the spring-webmvc annotation processing mechanism is extensible, just extend it to use AMQP message as source instead of Http Request
Modify the spring-webmvc annotation processing mechanism to take the AMQP message as input instead of Http Request
Write your own solution with custom annotaions and their processors, which I think is a very involving task
Or any other possible approach than above?
Any guidance/direction is appreciated.
I think the starting point is likely AbstractMethodMessageHandler in spring-messaging.
There's currently a SimpAnnotationMethodMessageHandler implementation for websockets which invokes #Controllers.
You could use a #RabbisListener method that has a Message<?> parameter (Spring AMQP will convert the underlying Rabbit message to a spring-messaging message, including the headers). Then, invoke the message handler to route to the appropriate controller method.
If you come up with a robust implementation, please consider contributing it.

Categories