Find the minimal absolute value of a sum of two elements - java

I am solving the Codility problem provided below,
Let A be a non-empty array consisting of N integers.
The abs sum of two for a pair of indices (P, Q) is the absolute value |A[P] + A[Q]|, for 0 ≤ P ≤ Q < N.
For example, the following array A:
A[0] = 1 A1 = 4 A[2] = -3 has pairs of indices (0, 0), (0,
1), (0, 2), (1, 1), (1, 2), (2, 2). The abs sum of two for the pair
(0, 0) is A[0] + A[0] = |1 + 1| = 2. The abs sum of two for the pair
(0, 1) is A[0] + A1 = |1 + 4| = 5. The abs sum of two for the pair
(0, 2) is A[0] + A[2] = |1 + (−3)| = 2. The abs sum of two for the
pair (1, 1) is A1 + A1 = |4 + 4| = 8. The abs sum of two for the
pair (1, 2) is A1 + A[2] = |4 + (−3)| = 1. The abs sum of two for
the pair (2, 2) is A[2] + A[2] = |(−3) + (−3)| = 6.`
Write a function:
class Solution { public int solution(int[] A); }
that, given a non-empty array A consisting of N integers, returns the minimal abs sum of two for any pair of indices in this array.
For example, given the following array A:
A[0] = 1 A1 = 4 A[2] = -3 the function should return 1, as
explained above.
Given array A:
A[0] = -8 A1 = 4 A[2] = 5 A[3] =-10 A[4] = 3 the function
should return |(−8) + 5| = 3.
Write an efficient algorithm for the following assumptions:
N is an integer within the range [1..100,000]; each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].
I write the solution provided below.
public static int solution(int[] A) {
int N = A.length;
Arrays.sort(A);
if (A[0] >= 0) {
return 2 * A[0];
}
int i = 0;
int j = N - 1;
int sum = Math.abs((A[i] + A[j]));
// -10, -8, 3, 4, 5
while (i <= j) {
if (Math.abs(A[i + 1] + A[j]) < sum) {
++i;
sum = Math.abs(A[i] + A[j]);
} else if (Math.abs(A[i] + A[j - 1]) < sum) {
--j;
sum = Math.abs(A[i] + A[j]);
} else {
i++;
j--;
}
}
return sum;
}
The solution gets hanged in the online judge and seems it enters in a forever loop. Is there a possibility that the code can enter a non-ending loop?
UPDATE
After I update the solution with the all negatives check, the code passed the online judge and provides a good performance.
if(A[N-1] <=0){
return 2* Math.abs(A[N-1]);
}

For input arrays e.g({-1, -2, -3}, {-1, -2}, {-1} your algorithm throws ArrayIndexOutOfBoundsException, so arrays when there are only negative numbers and there is no repeats
There is no chance to reach endless loop because either i or j change only + or - 1

I would like to explain the algorithm that I have implemented and then the implementation in C++.
Sort the array because otherwise we would need to check any two arbitrary indices. That brute-force solution would result in O(N ^ 2) runtime complexity.
We initialise the min abs sum to something higher than the possible value in the arrays.
Apply the caterpillar method by having front and back indices.
In every iteration, update the min abs sum as and when needed.
There two special cases:
a. all values are zero or positive. We could return A[front] * 2 early.
b. all values are negative or zero. We could return A[back] * 2 early.
In both cases, we could return early, however, it would result in a bit more code, so I personally avoid that. In the above cases, we can still go through the array without degrading the overall runtime complexity. In these cases, it also does not matter how we go through the array with regards to the result, so I just go through the array in one way in both cases. But the code will be shared with the third case.
In the third case, where the array, and thereby the sorted array, contains both negative and positive values, we try to keep the sum of front and back to zero since this when the abs sum value is minimised. In other words, we try to keep the balance between the negative and positive numbers by keeping their distance to the minimum.
Therefore, if the sum of front and back are less than zero, then we know that the negative front value is greater than the positive back value. As a direct consequence of that, we need to advance the front index.
If the sum of front and back are equal to zero, then we found the smallest min abs sum that is ever possible. The absolute value cannot be less than zero. Whilst I could return at this point in the code for some constant optimisation, I do not do so to keep the code the minimal and also functional.
If the sum of front and back are greater than zero, then we know that the negative front value is less than the positive back value. As a direct consequence of that, we need to decrease the index.
We loop until the front and back indices meet, but we handle the case when they are equal since according to the task specification, the same index can be used twice for the absolute sum.
The runtime complexity of this solution is O(N * logN) because the sorting of the array is O(N * logN) and the loop is O(N) since we go through every element. Therefore, the sorting runtime complexity dominates the loop.
The space complexity is O(1) because we only allocate constant space independently from the number of inputs. The sorting is done in place.
int solution(vector<int> &A)
{
const int N = A.size();
sort(A.begin(), A.end());
int min_abs_sum_of_two = INT_MAX;
for (int front = 0, back = N - 1; front <= back;) {
const int ef = A[front];
const int eb = A[back];
min_abs_sum_of_two = min(min_abs_sum_of_two, abs(ef + eb));
if (ef + eb < 0) ++front; else --back;
}
return min_abs_sum_of_two;
}

I got 100% for following code ( java). Slightly modified version of https://www.techiedelight.com/find-pair-array-minimum-absolute-sum/
import java.util.*;
// you can write to stdout for debugging purposes, e.g.
// System.out.println("this is a debug message");
class Solution {
public int solution(int[] A) {
// sort the array if it is unsorted
Arrays.sort(A);
int low = 0;
int high = A.length - 1;
if (A[0] >= 0) {
return 2 * A[0];
}
if (A[high] <= 0) {
return -2 * A[high];
}
// maintain two indexes pointing to endpoints of the array
// `min` stores the minimum absolute difference
int min = Integer.MAX_VALUE;
int i = 0, j = 0;
// reduce the search space `A[low…high]` at each iteration of the loop
int sum = 0;
// loop if `low` is less than `high`
while (low < high)
{
// update the minimum if the current absolute sum is less.
sum = A[high] + A[low];
if (Math.abs(sum) < min)
{
min = Math.abs(sum);
i = low;
j = high;
}
// optimization: pair with zero-sum is found
if (min == 0) {
break;
}
// increment `low` index if the total is less than 0;
// decrement `high` index if the total is more than 0
if (sum < 0) {
low++;
}
else {
high--;
}
}
return min;
}
}

The Answer is late but I hope to help anyone have the same question
//============================================================================
// Author: Hamdy Abd El Fattah
// Code is like humor. When you have to explain it, it’s bad.
//============================================================================
#include <bits/stdc++.h>
#define FIO cin.tie(0), cin.sync_with_stdio(0)
#define ll long long
#define INF 0x3f3f3f3f
using namespace std;
int main() {
FIO;
ll n , m = INF , x;
vector<ll> positive,negative;
cin>>n;
while(n--){
cin>>x;
if(x < 0)
negative.push_back(x * -1);
else if(x > 0)
positive.push_back(x);
else
m = 0;
}
if(m == 0){
cout<<"0\n";
}else{
sort(positive.begin(), positive.end());
sort(negative.begin(), negative.end());
int i= 0, j = 0;
int positive_size = positive.size(), negative_size =negative.size();
while(i < positive_size || j < negative_size){
if(abs(positive[i] - negative[j]) < m){
m=abs(positive[i] - negative[j]);
m=min(min(m,positive[i]*2),negative[j] * 2);
}
if((i < positive_size && positive[i] <= negative[j]) || j == negative_size)
i++;
else if((j < negative_size && positive[i] > negative[j]) || i == positive_size)
j++;
}
cout<<m<<endl;
}
return 0;
}

Related

For a given array find 2 integers so that sum of absolute difference between each element of array to any one of chose integer is minimal

Given array arr find x,y such that the sum of the absolute differences of all the elements of the array to any one of x or y is minimum.
Requirement : Return the sum.
Example1 arr=[2,3,6,7] and 3,7 are chosen x,y.
|2-3| + |3-3| + |6-7| + |7-7| = 2
Example2 arr=[1,3,5] and 1,4 are chosen x,y.
|1-1| + |3-4| + |5-4| = 2
My approach :
Assumption : In any integer array the average of all the present elements, upon subtracting from each element of the array and adding the difference gives the least sum.
I am sorting the array and trying to find an index which divides the array in 2 halves, so that the average of left half and the average of right half gives me x and y. Then finding the sum using x and y.
For any element to be considered in left_half :
Math.abs(avg_left - arr[idx]) > Math.abs(avg_right - arr[idx]), where avg_left and avg_right both includes arr[idx]. And vice versa for right half. The solve function checks for every element to be incorporated in left/right half.
public static boolean avg_diff(int[] arr, int idx) {
int sum1 = 0, sum2 = 0;
// finding sum from left and right both including idx element value
for (int i = 0; i < arr.length; i++) {
if (i < idx)
sum1 += arr[i];
else if (i == idx) {
sum1 += arr[i];
sum2 += arr[i];
} else
sum2 += arr[i];
}
// finding the average in left and right half , both including idx element value
int avg_left = sum1 / (idx + 1);
int avg_right = sum2 / (arr.length - idx);
if (Math.abs(avg_left - arr[idx]) > Math.abs(avg_right - arr[idx])) {
return true;
}
return false;
}
public static void solve(int[] arr) {
Arrays.sort(arr);
int i = arr.length - 1;
while (i >= 0) {
if (avg_diff(arr, i)) {
i--;
} else {
// this is the partition index and is included in left half
System.out.println("index : " + i + " value : " + arr[i]);
break;
}
}
}
Testcase : rr[] = {78,97,23,6,51,52,28,60,33,1,100}
My output : 165, expected output : 160
My approach is giving wrong answer in some test cases. I am new to programming. Please guide.
A.length() <= 5*10^3
Your assumption is incorrect. To minimize the sum of the absolute differences you need to find the median, not the average. That's because as you move towards the median, more absolute differences are decreasing than increasing, so the sum of the absolute differences is decreasing.
Consider the following three numbers to see that it matters: [1, 2, 6]. The average is 3, the median is 2. If you pick x = 2 then the sum of the absolute differences is 5. If you pick x=3 then the sum of the absolute differences is 6.
It is known problem if you should choose one number. It should be a median of array. Let the n be size of array.
I guess, in this 2 need numbers is arr[n / 3] and arr[2 * n / 3].

Find maximum product using recursion

There's a question I saw and I'm wondering if it's possible to solve it using recursion. It goes as follow:
Write an algorithm that, when given an array of input, finds the maximum product from those inputs. For example:
Input: [1, 2, 3]
Output: 6 (1*2*3)
Input: [-1, 1, 2, 3]
Output: 6 (1*2*3)
Input: [-2, -1, 1, 2, 3]
Output: 12 (-2*-1*1*2*3)
I'm trying to find a way of using recursion to solve it, but the algorithm I tried doesn't work. My algorithm, written in Java is as follow
Integer[] array;
public int maximumProduct(int[] nums) {
array=new Integer[nums.length];
return multiply(nums, 0);
}
public int multiply(int[] nums, int i){
if (array[i]!=null){
return array[i];
}
if (i==(nums.length-1)){
return nums[i];
}
int returnval=Math.max(nums[i]*multiply(nums, i+1), multiply(nums, i+1));
array[i]=returnval;
return returnval;
}
The problem with this algorithm is that it doesn't work well if there's an even number of negative numbers. For example, if nums[0]=-2, nums[1]=-1 and nums[2]=1, then multiply(nums, 1) will always return 1 instead of -1, and thus it will always see 1 as bigger than 1*-2 at multiply(nums, 0). I'm not sure how to solve this problem, however. Is there any way of solving this using recursion or dynamic programming?
If there is only one non-zero element in the array, and it happens to be a negative number, then then answer is either 0, if there is a 0 present in the input, or if the array contains only that single negative element, the answer is that element itself.
In all other cases, the final answer is going to be positive.
We first make a linear scan to find the number of negative integers. If this number is even, then the answer is the product of all the non-zero elements. If there are an odd number of negative elements, we need to leave out one negative element from the answer, so that the answer is positive. As we want the maximum possible answer, the number we want to leave out should have as small an absolute value as possible. So among all the negative numbers, find the one with the minimum absolute value, and find the product of the remaining non-zero elements, which should be the answer.
All this requires only two linear scans of the array, and hence runs in O(n) time.
What is the maximum product of integers?
To obtain the maximum sum, you will want to multiply all the positive integers with the product of the largest negative integers, with the number of negative integers included in the product being even to obtain a positive final result.
In an algorithm for a single traversal
I am going to treat the positive integers and the negative integers in the input separately. You will want to keep a running product of positive integers, a running product of negative integers and the largest negative integer (ie. the negative integer with the smallest absolute value) found so far.
Let us ignore the edge cases where the final answer is <= 0. That can be handled easily.
//Initialization
int [] nums // Input
int posProduct = 1;
int negProduct = 1;
int smallestNeg = 1;
//Input Traversal
for (int i : nums) {
if ( i == 0 ) {
// ignore
} else if ( i < 0 ) {
if (smallestNeg == 1) {
smallestNeg = i;
} else if ( i > smallestNeg ) {
negProduct *= smallestNeg; //Integrate the old smallest into the running product
smallestNeg = i; // i is the new smallest
} else {
negProduct *= i;
}
} else {
// i is strictly positive
posProduct *= i;
}
}
//Result Computation
int result = posProduct;
if ( negProduct < 0 ) {
// The running product of negative number numbers is negative
// We use the smallestNeg to turn it back up to a positive product
result *= smallestNeg;
result *= negProduct;
} else {
result *= negProduct
}
edit: In a recursive traversal
I personally find that writing the array traversal in a recursive manner to be clumsy but it can be done.
For the beauty of the exercise and to actually answer the question of the OP, here is how I would do it.
public class RecursiveSolver {
public static int findMaxProduct (int [] nums) {
return recursiveArrayTraversal(1, 1, 1, nums, 0);
}
private static int recursiveArrayTraversal(int posProduct, int negProduct,
int smallestNeg, int [] nums, int index) {
if (index == nums.length) {
// End of the recursion, we traversed the whole array
posProduct *= negProduct;
if (posProduct < 0) {
posProduct *= smallestNeg;
}
return posProduct;
}
// Processing the "index" element of the array
int i = nums[index];
if ( i == 0 ) {
// ignore
} else if ( i < 0 ) {
if (smallestNeg == 1) {
smallestNeg = i;
} else if ( i > smallestNeg ) {
negProduct *= smallestNeg;
smallestNeg = i;
} else {
negProduct *= i;
}
} else {
// i is strictly positive
posProduct *= i;
}
//Recursive call here!
//Notice the index+1 for the index parameter which carries the progress
//in the array traversal
return recursiveArrayTraversal(posProduct, negProduct,
smallestNeg, nums, index+1);
}
}
First, break the array in subproblems always you find a 0 in the list:
1 -2 4 -1 8 0 4 1 0 -3 -4 0 1 3 -5
|_____________| |____| |____| |_______|
p1 p2 p3 p4
Then, for each problem pi, count how many negative numbers are there.
If pi has an even number of negatives (or no negatives at all), the answer of pi is the product of all its elements.
If pi has only 1 negative number (say n), the answer will be the maximum between the product of all the elements in n's right and the product of all elements in n's left.
If pi has an odd number (bigger than only 1) of negative numbers, call the index of the leftmost negative number l and the index of the rightmost negative number r. Supposing pi has n elements, the answer will be:
max(
pi[ 0 ] * pi[ 1 ] * ... * pi[r - 1],
pi[l + 1] * pi[l + 2] * ... * pi[ n ]
)
Knowing that, it's easy to write a recursion for each step of the solution of this problem: a recursion to divide problems at zeros, another to count negatives and another to find answers, in O(n).
Linear version
List<Integer> vals = new ArrayList<>(List.of(5,1,-2,1,2,3,-4,-1));
int prod = 0;
int min = 1;
for (int v : vals) {
if (v == 0) {
// ignore zero values
continue;
}
if (prod == 0) {
prod = 1;
}
prod *= v;
// compute min to be the largest negative value in the list.
if (v < 0 && min < Math.abs(v)) {
min = v;
}
}
if (prod < 0) {
prod /= min;
}
System.out.println("Maximum product = " + prod);
}
Recursive version
int prod = prod(vals, new int[] {0} , vals.size());
System.out.println("Maximum product = " + prod);
public static int prod(List<Integer> vals, int[]min, int size) {
int prod = 0;
if(vals.size() > 0) {
int t = vals.get(0);
if (t < 0 && min[0] < Math.abs(t)) {
min[0] = t;
}
prod = prod(vals.subList(1,vals.size()), min, vals.size());
}
if (vals.isEmpty() || vals.get(0) == 0) {
return prod;
}
if (prod == 0) {
prod = 1;
}
prod *= t;
if (vals.size() == size && prod < 0) {
prod/=min[0];
}
return prod;
}
This is my solution - leaving it open for optimization and to figure out the runtime. This is a general purpose solution that finds the products of all the combinations of integers in a list. Of course, there is a O(n) solution but I present this solution as well.
import java.util.ArrayList;
import java.util.List;
public class MaxProd {
int[] input = {1, 2, 3};
// int[] input = {-2, -1, 1, 2, 3};
public static void main(String[] args) {
MaxProd m = new MaxProd();
List<Integer> ll = m.max(0);
for (int i : ll) {
System.out.println(i);
}
ll.sort((x,y) -> Integer.compare(x, y));
System.out.println("The max: " + ll.get(ll.size() -1 ));
}
private List<Integer> max(int index) {
if (index < input.length){
List<Integer> l = new ArrayList<>();
List<Integer> retList = max(index + 1);
for (int j : retList){
l.add(input[index] * j);
}
l.add(input[index]);
l.addAll(retList);
return l;
}
else return new ArrayList<>();
}
}
it prints:
6
2
3
1
6
2
3
The max: 6
If the requirements are constrained (as in this case) then one can get by without the need for generating all combinations resulting in a linear solution. Also, I'm sorting at the end. Note: you could easily get the result with a single pass on the returned list to find the maximum product as specified in other answers.

Maximum height of the staircase

Given an integer A representing the square blocks. The height of each square block is 1. The task is to create a staircase of max height using these blocks. The first stair would require only one block, the second stair would require two blocks and so on. Find and return the maximum height of the staircase.
Your submission failed for the following input: A : 92761
Your function returned the following : 65536
The expected returned value : 430
Approach:
We are interested in the number of steps and we know that each step Si uses exactly Bi number of bricks. We can represent this problem as an equation:
n * (n + 1) / 2 = T (For Natural number series starting from 1, 2, 3, 4, 5 …)
n * (n + 1) = 2 * T
n-1 will represent our final solution because our series in problem starts from 2, 3, 4, 5…
Now, we just have to solve this equation and for that we can exploit binary search to find the solution to this equation. Lower and Higher bounds of binary search are 1 and T.
CODE
public int solve(int A) {
int l=1,h=A,T=2*A;
while(l<=h)
{
int mid=l+(h-l)/2;
if((mid*(mid+1))==T)
return mid;
if((mid*(mid+1))>T && (mid!=0 && (mid*(mid-1))<=T) )
return mid-1;
if((mid*(mid+1))>T)
h=mid-1;
else
l=mid+1;
}
return 0;
}
To expand on the comment by Matt Timmermans:
You know that for n steps, you need (n * (n + 1))/2 blocks. You want know, if given B blocks, how many steps you can create.
So you have:
(n * (n + 1))/2 = B
(n^2 + n)/2 = B
n^2 + n = 2B
n^2 + n - 2B = 0
That looks suspiciously like something for which you'd use the quadratic formula.
In this case, a=1, b=1, and c=(-2B). Plugging the numbers into the formula:
n = ((-b) + sqrt(b^2 - 4*a*c))/(2*a)
= (-1 + sqrt(1 - 4*1*(-2B)))/(2*a)
= (-1 + sqrt(1 + 8B))/2
= (sqrt(1 + 8B) - 1)/2
So if you have 5050 blocks, you get:
n = (sqrt(1 + 40400) - 1)/2
= (sqrt(40401) - 1)/2
= (201 - 1)/2
= 100
Try it with the quadratic formula calculator. Use 1 for the value of a and b, and replace c with negative two times the number of blocks you're given. So in the example above, c would be -10100.
In your program, since you can't have a partial step, you'd want to truncate the result.
Why are you using all these formulas? A simple while() loop should do the trick, eventually, it's just a simple Gaussian Sum ..
public static int calculateStairs(int blocks) {
int lastHeight = 0;
int sum = 0;
int currentHeight = 0; //number of bricks / level
while (sum <= blocks) {
lastHeight = currentHeight;
currentHeight++;
sum += currentHeight;
}
return lastHeight;
}
So this should do the job as it also returns the expected value. Correct me if im wrong.
public int solve(int blocks) {
int current; //Create Variables
for (int x = 0; x < Integer.MAX_VALUE; x++) { //Increment until return
current = 0; //Set current to 0
//Implementation of the Gauss sum
for (int i = 1; i <= x; i++) { //Sum up [1,*current height*]
current += i;
} //Now we have the amount of blocks required for the current height
//Now we check if the amount of blocks is bigger than
// the wanted amount, and if so we return the last one
if (current > blocks) {
return x - 1;
}
}
return current;
}

Why is the Big-O of this algorithm N^2*log N

Fill array a from a[0] to a[n-1]: generate random numbers until you get one that is not already in the previous indexes.
This is my implementation:
public static int[] first(int n) {
int[] a = new int[n];
int count = 0;
while (count != n) {
boolean isSame = false;
int rand = r.nextInt(n) + 1;
for (int i = 0; i < n; i++) {
if(a[i] == rand) isSame = true;
}
if (isSame == false){
a[count] = rand;
count++;
}
}
return a;
}
I thought it was N^2 but it's apparently N^2logN and I'm not sure when the log function is considered.
The 0 entry is filled immediately. The 1 entry has probability 1 - 1 / n = (n - 1) / n of getting filled by a random number. So we need on average n / (n - 1) random numbers to fill the second position. In general, for the k entry we need on average n / (n - k) random numbers and for each number we need k comparisons to check if it's unique.
So we need
n * 1 / (n - 1) + n * 2 / (n - 2) + ... + n * (n - 1) / 1
comparisons on average. If we consider the right half of the sum, we see that this half is greater than
n * (n / 2) * (1 / (n / 2) + 1 / (n / 2 - 1) + ... + 1 / 1)
The sum of the fractions is known to be Θ(log(n)) because it's an harmonic series. So the whole sum is Ω(n^2*log(n)). In a similar way, we can show the sum to be O(n^2*log(n)). This means on average we need
Θ(n^2*log(n))
operations.
This is similar to the Coupon Collector problem. You pick from n items until you get one you don't already have. On average, you have O(n log n) attempts (see the link, the analysis is not trivial). and in the worst case, you examine n elements on each of those attempts. This leads to an average complexity of O(N^2 log N)
The algorithm you have is not O(n^2 lg n) because the algorithm you have may loop forever and not finish. Imagine on your first pass, you get some value $X$ and on every subsequent pass, trying to get the second value, you continue to get $X$ forever. We're talking worst case here, after all. That would loop forever. So since your worst case is never finishing, you can't really analyze.
In case you're wondering, if you know that n is always both the size of the array and the upper bound of the values, you can simply do this:
int[] vals = new int[n];
for(int i = 0; i < n; i++) {
vals[i] = i;
}
// fischer yates shuffle
for(int i = n-1; i > 0; i--) {
int idx = rand.nextInt(i + 1);
int t = vals[idx];
vals[idx] = vals[i];
vals[i] = t;
}
One loop down, one loop back. O(n). Simple.
If I'm not mistaken, the log N part comes from this part:
for(int i = 0; i < count; i++){
if(a[i] == rand) isSame = true;
}
Notice that I changed n for count because you know that you have only count elements in your array on each loop.

Quickest way to find missing number in an array of numbers

This question's answers are a community effort. Edit existing answers to improve this post. It is not currently accepting new answers or interactions.
I have an array of numbers from 1 to 100 (both inclusive). The size of the array is 100. The numbers are randomly added to the array, but there is one random empty slot in the array.
What is the quickest way to find that slot as well as the number that should be put in the slot? A Java solution is preferable.
You can do this in O(n). Iterate through the array and compute the sum of all numbers. Now, sum of natural numbers from 1 to N, can be expressed as Nx(N+1)/2. In your case N=100.
Subtract the sum of the array from Nx(N+1)/2, where N=100.
That is the missing number. The empty slot can be detected during the iteration in which the sum is computed.
// will be the sum of the numbers in the array.
int sum = 0;
int idx = -1;
for (int i = 0; i < arr.length; i++)
{
if (arr[i] == 0)
{
idx = i;
}
else
{
sum += arr[i];
}
}
// the total sum of numbers between 1 and arr.length.
int total = (arr.length + 1) * arr.length / 2;
System.out.println("missing number is: " + (total - sum) + " at index " + idx);
We can use XOR operation which is safer than summation because in programming languages if the given input is large it may overflow and may give wrong answer.
Before going to the solution, know that A xor A = 0. So if we XOR two identical numbers the value is 0.
Now, XORing [1..n] with the elements present in the array cancels the identical numbers. So at the end we will get the missing number.
// Assuming that the array contains 99 distinct integers between 1..99
// and empty slot value is zero
int XOR = 0;
for(int i=0; i<100; i++) {
if (ARRAY[i] != 0) // remove this condition keeping the body if no zero slot
XOR ^= ARRAY[i];
XOR ^= (i + 1);
}
return XOR;
//return XOR ^ ARRAY.length + 1; if your array doesn't have empty zero slot.
Let the given array be A with length N. Lets assume in the given array, the single empty slot is filled with 0.
We can find the solution for this problem using many methods including algorithm used in Counting sort. But, in terms of efficient time and space usage, we have two algorithms. One uses mainly summation, subtraction and multiplication. Another uses XOR. Mathematically both methods work fine. But programatically, we need to assess all the algorithms with main measures like
Limitations(like input values are large(A[1...N]) and/or number of
input values is large(N))
Number of condition checks involved
Number and type of mathematical operations involved
etc. This is because of the limitations in time and/or hardware(Hardware resource limitation) and/or software(Operating System limitation, Programming language limitation, etc), etc. Lets list and assess the pros and cons of each one of them.
Algorithm 1 :
In algorithm 1, we have 3 implementations.
Calculate the total sum of all the numbers(this includes the unknown missing number) by using the mathematical formula(1+2+3+...+N=(N(N+1))/2). Here, N=100. Calculate the total sum of all the given numbers. Subtract the second result from the first result will give the missing number.
Missing Number = (N(N+1))/2) - (A[1]+A[2]+...+A[100])
Calculate the total sum of all the numbers(this includes the unknown missing number) by using the mathematical formula(1+2+3+...+N=(N(N+1))/2). Here, N=100. From that result, subtract each given number gives the missing number.
Missing Number = (N(N+1))/2)-A[1]-A[2]-...-A[100]
(Note:Even though the second implementation's formula is derived from first, from the mathematical point of view both are same. But from programming point of view both are different because the first formula is more prone to bit overflow than the second one(if the given numbers are large enough). Even though addition is faster than subtraction, the second implementation reduces the chance of bit overflow caused by addition of large values(Its not completely eliminated, because there is still very small chance since (N+1) is there in the formula). But both are equally prone to bit overflow by multiplication. The limitation is both implementations give correct result only if N(N+1)<=MAXIMUM_NUMBER_VALUE. For the first implementation, the additional limitation is it give correct result only if Sum of all given numbers<=MAXIMUM_NUMBER_VALUE.)
Calculate the total sum of all the numbers(this includes the unknown missing number) and subtract each given number in the same loop in parallel. This eliminates the risk of bit overflow by multiplication but prone to bit overflow by addition and subtraction.
//ALGORITHM
missingNumber = 0;
foreach(index from 1 to N)
{
missingNumber = missingNumber + index;
//Since, the empty slot is filled with 0,
//this extra condition which is executed for N times is not required.
//But for the sake of understanding of algorithm purpose lets put it.
if (inputArray[index] != 0)
missingNumber = missingNumber - inputArray[index];
}
In a programming language(like C, C++, Java, etc), if the number of bits representing a integer data type is limited, then all the above implementations are prone to bit overflow because of summation, subtraction and multiplication, resulting in wrong result in case of large input values(A[1...N]) and/or large number of input values(N).
Algorithm 2 :
We can use the property of XOR to get solution for this problem without worrying about the problem of bit overflow. And also XOR is both safer and faster than summation. We know the property of XOR that XOR of two same numbers is equal to 0(A XOR A = 0). If we calculate the XOR of all the numbers from 1 to N(this includes the unknown missing number) and then with that result, XOR all the given numbers, the common numbers get canceled out(since A XOR A=0) and in the end we get the missing number. If we don't have bit overflow problem, we can use both summation and XOR based algorithms to get the solution. But, the algorithm which uses XOR is both safer and faster than the algorithm which uses summation, subtraction and multiplication. And we can avoid the additional worries caused by summation, subtraction and multiplication.
In all the implementations of algorithm 1, we can use XOR instead of addition and subtraction.
Lets assume, XOR(1...N) = XOR of all numbers from 1 to N
Implementation 1 => Missing Number = XOR(1...N) XOR (A[1] XOR A[2] XOR...XOR A[100])
Implementation 2 => Missing Number = XOR(1...N) XOR A[1] XOR A[2] XOR...XOR A[100]
Implementation 3 =>
//ALGORITHM
missingNumber = 0;
foreach(index from 1 to N)
{
missingNumber = missingNumber XOR index;
//Since, the empty slot is filled with 0,
//this extra condition which is executed for N times is not required.
//But for the sake of understanding of algorithm purpose lets put it.
if (inputArray[index] != 0)
missingNumber = missingNumber XOR inputArray[index];
}
All three implementations of algorithm 2 will work fine(from programatical point of view also). One optimization is, similar to
1+2+....+N = (N(N+1))/2
We have,
1 XOR 2 XOR .... XOR N = {N if REMAINDER(N/4)=0, 1 if REMAINDER(N/4)=1, N+1 if REMAINDER(N/4)=2, 0 if REMAINDER(N/4)=3}
We can prove this by mathematical induction. So, instead of calculating the value of XOR(1...N) by XOR all the numbers from 1 to N, we can use this formula to reduce the number of XOR operations.
Also, calculating XOR(1...N) using above formula has two implementations. Implementation wise, calculating
// Thanks to https://a3nm.net/blog/xor.html for this implementation
xor = (n>>1)&1 ^ (((n&1)>0)?1:n)
is faster than calculating
xor = (n % 4 == 0) ? n : (n % 4 == 1) ? 1 : (n % 4 == 2) ? n + 1 : 0;
So, the optimized Java code is,
long n = 100;
long a[] = new long[n];
//XOR of all numbers from 1 to n
// n%4 == 0 ---> n
// n%4 == 1 ---> 1
// n%4 == 2 ---> n + 1
// n%4 == 3 ---> 0
//Slower way of implementing the formula
// long xor = (n % 4 == 0) ? n : (n % 4 == 1) ? 1 : (n % 4 == 2) ? n + 1 : 0;
//Faster way of implementing the formula
// long xor = (n>>1)&1 ^ (((n&1)>0)?1:n);
long xor = (n>>1)&1 ^ (((n&1)>0)?1:n);
for (long i = 0; i < n; i++)
{
xor = xor ^ a[i];
}
//Missing number
System.out.println(xor);
This was an Amazon interview question and was originally answered here: We have numbers from 1 to 52 that are put into a 51 number array, what's the best way to find out which number is missing?
It was answered, as below:
1) Calculate the sum of all numbers stored in the array of size 51.
2) Subtract the sum from (52 * 53)/2 ---- Formula : n * (n + 1) / 2.
It was also blogged here: Software Job - Interview Question
Here is a simple program to find the missing numbers in an integer array
ArrayList<Integer> arr = new ArrayList<Integer>();
int a[] = { 1,3,4,5,6,7,10 };
int j = a[0];
for (int i=0;i<a.length;i++)
{
if (j==a[i])
{
j++;
continue;
}
else
{
arr.add(j);
i--;
j++;
}
}
System.out.println("missing numbers are ");
for(int r : arr)
{
System.out.println(" " + r);
}
Recently I had a similar (not exactly the same) question in a job interview and also I heard from a friend that was asked the exactly same question in an interview.
So here is an answer to the OP question and a few more variations that can be potentially asked.
The answers example are given in Java because, it's stated that:
A Java solution is preferable.
Variation 1:
Array of numbers from 1 to 100 (both inclusive) ... The numbers are randomly added to the array, but there is one random empty slot in the array
public static int findMissing1(int [] arr){
int sum = 0;
for(int n : arr){
sum += n;
}
return (100*(100+1)/2) - sum;
}
Explanation:
This solution (as many other solutions posted here) is based on the formula of Triangular number, which gives us the sum of all natural numbers from 1 to n (in this case n is 100). Now that we know the sum that should be from 1 to 100 - we just need to subtract the actual sum of existing numbers in given array.
Variation 2:
Array of numbers from 1 to n (meaning that the max number is unknown)
public static int findMissing2(int [] arr){
int sum = 0, max = 0;
for(int n : arr){
sum += n;
if(n > max) max = n;
}
return (max*(max+1)/2) - sum;
}
Explanation:
In this solution, since the max number isn't given - we need to find it. After finding the max number - the logic is the same.
Variation 3:
Array of numbers from 1 to n (max number is unknown), there is two random empty slots in the array
public static int [] findMissing3(int [] arr){
int sum = 0, max = 0, misSum;
int [] misNums = {};//empty by default
for(int n : arr){
sum += n;
if(n > max) max = n;
}
misSum = (max*(max+1)/2) - sum;//Sum of two missing numbers
for(int n = Math.min(misSum, max-1); n > 1; n--){
if(!contains(n, arr)){
misNums = new int[]{n, misSum-n};
break;
}
}
return misNums;
}
private static boolean contains(int num, int [] arr){
for(int n : arr){
if(n == num)return true;
}
return false;
}
Explanation:
In this solution, the max number isn't given (as in the previous), but it can also be missing of two numbers and not one. So at first we find the sum of missing numbers - with the same logic as before. Second finding the smaller number between missing sum and the last (possibly) missing number - to reduce unnecessary search. Third since Javas Array (not a Collection) doesn't have methods as indexOf or contains, I added a small reusable method for that logic. Fourth when first missing number is found, the second is the subtract from missing sum.
If only one number is missing, then the second number in array will be zero.
Variation 4:
Array of numbers from 1 to n (max number is unknown), with X missing (amount of missing numbers are unknown)
public static ArrayList<Integer> findMissing4(ArrayList<Integer> arr){
int max = 0;
ArrayList<Integer> misNums = new ArrayList();
int [] neededNums;
for(int n : arr){
if(n > max) max = n;
}
neededNums = new int[max];//zero for any needed num
for(int n : arr){//iterate again
neededNums[n == max ? 0 : n]++;//add one - used as index in second array (convert max to zero)
}
for(int i=neededNums.length-1; i>0; i--){
if(neededNums[i] < 1)misNums.add(i);//if value is zero, than index is a missing number
}
return misNums;
}
Explanation:
In this solution, as in the previous, the max number is unknown and there can be missing more than one number, but in this variation, we don't know how many numbers are potentially missing (if any). The beginning of the logic is the same - find the max number. Then I initialise another array with zeros, in this array index indicates the potentially missing number and zero indicates that the number is missing. So every existing number from original array is used as an index and its value is incremented by one (max converted to zero).
Note
If you want examples in other languages or another interesting variations of this question, you are welcome to check my Github repository for Interview questions & answers.
(sum of 1 to n) - (sum of all values in the array) = missing number
int sum = 0;
int idx = -1;
for (int i = 0; i < arr.length; i++) {
if (arr[i] == 0) idx = i; else sum += arr[i];
}
System.out.println("missing number is: " + (5050 - sum) + " at index " + idx);
On a similar scenario, where the array is already sorted, it does not include duplicates and only one number is missing, it is possible to find this missing number in log(n) time, using binary search.
public static int getMissingInt(int[] intArray, int left, int right) {
if (right == left + 1) return intArray[right] - 1;
int pivot = left + (right - left) / 2;
if (intArray[pivot] == intArray[left] + (intArray[right] - intArray[left]) / 2 - (right - left) % 2)
return getMissingInt(intArray, pivot, right);
else
return getMissingInt(intArray, left, pivot);
}
public static void main(String args[]) {
int[] array = new int[]{3, 4, 5, 6, 7, 8, 10};
int missingInt = getMissingInt(array, 0, array.length-1);
System.out.println(missingInt); //it prints 9
}
Well, use a bloom filter.
int findmissing(int arr[], int n)
{
long bloom=0;
int i;
for(i=0; i<;n; i++)bloom+=1>>arr[i];
for(i=1; i<=n, (bloom<<i & 1); i++);
return i;
}
This is c# but it should be pretty close to what you need:
int sumNumbers = 0;
int emptySlotIndex = -1;
for (int i = 0; i < arr.length; i++)
{
if (arr[i] == 0)
emptySlotIndex = i;
sumNumbers += arr[i];
}
int missingNumber = 5050 - sumNumbers;
The solution that doesn't involve repetitive additions or maybe the n(n+1)/2 formula doesn't get to you at an interview time for instance.
You have to use an array of 4 ints (32 bits) or 2 ints (64 bits). Initialize the last int with (-1 & ~(1 << 31)) >> 3. (the bits that are above 100 are set to 1) Or you may set the bits above 100 using a for loop.
Go through the array of numbers and set 1 for the bit position corresponding to the number (e.g. 71 would be set on the 3rd int on the 7th bit from left to right)
Go through the array of 4 ints (32 bit version) or 2 ints(64 bit version)
public int MissingNumber(int a[])
{
int bits = sizeof(int) * 8;
int i = 0;
int no = 0;
while(a[i] == -1)//this means a[i]'s bits are all set to 1, the numbers is not inside this 32 numbers section
{
no += bits;
i++;
}
return no + bits - Math.Log(~a[i], 2);//apply NOT (~) operator to a[i] to invert all bits, and get a number with only one bit set (2 at the power of something)
}
Example: (32 bit version) lets say that the missing number is 58. That means that the 26th bit (left to right) of the second integer is set to 0.
The first int is -1 (all bits are set) so, we go ahead for the second one and add to "no" the number 32. The second int is different from -1 (a bit is not set) so, by applying the NOT (~) operator to the number we get 64. The possible numbers are 2 at the power x and we may compute x by using log on base 2; in this case we get log2(64) = 6 => 32 + 32 - 6 = 58.
Hope this helps.
I think the easiest and possibly the most efficient solution would be to loop over all entries and use a bitset to remember which numbers are set, and then test for 0 bit. The entry with the 0 bit is the missing number.
This is not a search problem. The employer is wondering if you have a grasp of a checksum. You might need a binary or for loop or whatever if you were looking for multiple unique integers, but the question stipulates "one random empty slot." In this case we can use the stream sum. The condition: "The numbers are randomly added to the array" is meaningless without more detail. The question does not assume the array must start with the integer 1 and so tolerate with the offset start integer.
int[] test = {2,3,4,5,6,7,8,9,10, 12,13,14 };
/*get the missing integer*/
int max = test[test.length - 1];
int min = test[0];
int sum = Arrays.stream(test).sum();
int actual = (((max*(max+1))/2)-min+1);
//Find:
//the missing value
System.out.println(actual - sum);
//the slot
System.out.println(actual - sum - min);
Success time: 0.18 memory: 320576 signal:0
I found this beautiful solution here:
http://javaconceptoftheday.com/java-puzzle-interview-program-find-missing-number-in-an-array/
public class MissingNumberInArray
{
//Method to calculate sum of 'n' numbers
static int sumOfNnumbers(int n)
{
int sum = (n * (n+1))/ 2;
return sum;
}
//Method to calculate sum of all elements of array
static int sumOfElements(int[] array)
{
int sum = 0;
for (int i = 0; i < array.length; i++)
{
sum = sum + array[i];
}
return sum;
}
public static void main(String[] args)
{
int n = 8;
int[] a = {1, 4, 5, 3, 7, 8, 6};
//Step 1
int sumOfNnumbers = sumOfNnumbers(n);
//Step 2
int sumOfElements = sumOfElements(a);
//Step 3
int missingNumber = sumOfNnumbers - sumOfElements;
System.out.println("Missing Number is = "+missingNumber);
}
}
function solution($A) {
// code in PHP5.5
$n=count($A);
for($i=1;$i<=$n;$i++) {
if(!in_array($i,$A)) {
return (int)$i;
}
}
}
Finding the missing number from a series of numbers. IMP points to remember.
the array should be sorted..
the Function do not work on multiple missings.
the sequence must be an AP.
public int execute2(int[] array) {
int diff = Math.min(array[1]-array[0], array[2]-array[1]);
int min = 0, max = arr.length-1;
boolean missingNum = true;
while(min<max) {
int mid = (min + max) >>> 1;
int leftDiff = array[mid] - array[min];
if(leftDiff > diff * (mid - min)) {
if(mid-min == 1)
return (array[mid] + array[min])/2;
max = mid;
missingNum = false;
continue;
}
int rightDiff = array[max] - array[mid];
if(rightDiff > diff * (max - mid)) {
if(max-mid == 1)
return (array[max] + array[mid])/2;
min = mid;
missingNum = false;
continue;
}
if(missingNum)
break;
}
return -1;
}
One thing you could do is sort the numbers using quick sort for instance. Then use a for loop to iterate through the sorted array from 1 to 100. In each iteration, you compare the number in the array with your for loop increment, if you find that the index increment is not the same as the array value, you have found your missing number as well as the missing index.
Below is the solution for finding all the missing numbers from a given array:
public class FindMissingNumbers {
/**
* The function prints all the missing numbers from "n" consecutive numbers.
* The number of missing numbers is not given and all the numbers in the
* given array are assumed to be unique.
*
* A similar approach can be used to find all no-unique/ unique numbers from
* the given array
*
* #param n
* total count of numbers in the sequence
* #param numbers
* is an unsorted array of all the numbers from 1 - n with some
* numbers missing.
*
*/
public static void findMissingNumbers(int n, int[] numbers) {
if (n < 1) {
return;
}
byte[] bytes = new byte[n / 8];
int countOfMissingNumbers = n - numbers.length;
if (countOfMissingNumbers == 0) {
return;
}
for (int currentNumber : numbers) {
int byteIndex = (currentNumber - 1) / 8;
int bit = (currentNumber - byteIndex * 8) - 1;
// Update the "bit" in bytes[byteIndex]
int mask = 1 << bit;
bytes[byteIndex] |= mask;
}
for (int index = 0; index < bytes.length - 2; index++) {
if (bytes[index] != -128) {
for (int i = 0; i < 8; i++) {
if ((bytes[index] >> i & 1) == 0) {
System.out.println("Missing number: " + ((index * 8) + i + 1));
}
}
}
}
// Last byte
int loopTill = n % 8 == 0 ? 8 : n % 8;
for (int index = 0; index < loopTill; index++) {
if ((bytes[bytes.length - 1] >> index & 1) == 0) {
System.out.println("Missing number: " + (((bytes.length - 1) * 8) + index + 1));
}
}
}
public static void main(String[] args) {
List<Integer> arrayList = new ArrayList<Integer>();
int n = 128;
int m = 5;
for (int i = 1; i <= n; i++) {
arrayList.add(i);
}
Collections.shuffle(arrayList);
for (int i = 1; i <= 5; i++) {
System.out.println("Removing:" + arrayList.remove(i));
}
int[] array = new int[n - m];
for (int i = 0; i < (n - m); i++) {
array[i] = arrayList.get(i);
}
System.out.println("Array is: " + Arrays.toString(array));
findMissingNumbers(n, array);
}
}
Lets say you have n as 8, and our numbers range from 0-8 for this example
we can represent the binary representation of all 9 numbers as follows
0000
0001
0010
0011
0100
0101
0110
0111
1000
in the above sequence there is no missing numbers and in each column the number of zeros and ones match, however as soon as you remove 1 value lets say 3 we get a in balance in the number of 0's and 1's across the columns. If the number of 0's in a column is <= the number of 1's our missing number will have a 0 at this bit position, otherwise if the number of 0's > the number of 1's at this bit position then this bit position will be a 1. We test the bits left to right and at each iteration we throw away half of the array for the testing of the next bit, either the odd array values or the even array values are thrown away at each iteration depending on which bit we are deficient on.
The below solution is in C++
int getMissingNumber(vector<int>* input, int bitPos, const int startRange)
{
vector<int> zeros;
vector<int> ones;
int missingNumber=0;
//base case, assume empty array indicating start value of range is missing
if(input->size() == 0)
return startRange;
//if the bit position being tested is 0 add to the zero's vector
//otherwise to the ones vector
for(unsigned int i = 0; i<input->size(); i++)
{
int value = input->at(i);
if(getBit(value, bitPos) == 0)
zeros.push_back(value);
else
ones.push_back(value);
}
//throw away either the odd or even numbers and test
//the next bit position, build the missing number
//from right to left
if(zeros.size() <= ones.size())
{
//missing number is even
missingNumber = getMissingNumber(&zeros, bitPos+1, startRange);
missingNumber = (missingNumber << 1) | 0;
}
else
{
//missing number is odd
missingNumber = getMissingNumber(&ones, bitPos+1, startRange);
missingNumber = (missingNumber << 1) | 1;
}
return missingNumber;
}
At each iteration we reduce our input space by 2, i.e N, N/2,N/4 ... = O(log N), with space O(N)
//Test cases
[1] when missing number is range start
[2] when missing number is range end
[3] when missing number is odd
[4] when missing number is even
Solution With PHP $n = 100;
$n*($n+1)/2 - array_sum($array) = $missing_number
and array_search($missing_number) will give the index of missing number
Here program take time complexity is O(logn) and space complexity O(logn)
public class helper1 {
public static void main(String[] args) {
int a[] = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12};
int k = missing(a, 0, a.length);
System.out.println(k);
}
public static int missing(int[] a, int f, int l) {
int mid = (l + f) / 2;
//if first index reached last then no element found
if (a.length - 1 == f) {
System.out.println("missing not find ");
return 0;
}
//if mid with first found
if (mid == f) {
System.out.println(a[mid] + 1);
return a[mid] + 1;
}
if ((mid + 1) == a[mid])
return missing(a, mid, l);
else
return missing(a, f, mid);
}
}
public class MissingNumber {
public static void main(String[] args) {
int array[] = {1,2,3,4,6};
int x1 = getMissingNumber(array,6);
System.out.println("The Missing number is: "+x1);
}
private static int getMissingNumber(int[] array, int i) {
int acctualnumber =0;
int expectednumber = (i*(i+1)/2);
for (int j : array) {
acctualnumber = acctualnumber+j;
}
System.out.println(acctualnumber);
System.out.println(expectednumber);
return expectednumber-acctualnumber;
}
}
Use sum formula,
class Main {
// Function to ind missing number
static int getMissingNo (int a[], int n) {
int i, total;
total = (n+1)*(n+2)/2;
for ( i = 0; i< n; i++)
total -= a[i];
return total;
}
/* program to test above function */
public static void main(String args[]) {
int a[] = {1,2,4,5,6};
int miss = getMissingNo(a,5);
System.out.println(miss);
}
}
Reference http://www.geeksforgeeks.org/find-the-missing-number/
simple solution with test data :
class A{
public static void main(String[] args){
int[] array = new int[200];
for(int i=0;i<100;i++){
if(i != 51){
array[i] = i;
}
}
for(int i=100;i<200;i++){
array[i] = i;
}
int temp = 0;
for(int i=0;i<200;i++){
temp ^= array[i];
}
System.out.println(temp);
}
}
//Array is shorted and if writing in C/C++ think of XOR implementations in java as follows.
int num=-1;
for (int i=1; i<=100; i++){
num =2*i;
if(arr[num]==0){
System.out.println("index: "+i+" Array position: "+ num);
break;
}
else if(arr[num-1]==0){
System.out.println("index: "+i+ " Array position: "+ (num-1));
break;
}
}// use Rabbit and tortoise race, move the dangling index faster,
//learnt from Alogithimica, Ameerpet, hyderbad**
If the array is randomly filled, then at the best you can do a linear search in O(n) complexity. However, we could have improved the complexity to O(log n) by divide and conquer approach similar to quick sort as pointed by giri given that the numbers were in ascending/descending order.
This Program finds missing numbers
<?php
$arr_num=array("1","2","3","5","6");
$n=count($arr_num);
for($i=1;$i<=$n;$i++)
{
if(!in_array($i,$arr_num))
{
array_push($arr_num,$i);print_r($arr_num);exit;
}
}
?>
Now I'm now too sharp with the Big O notations but couldn't you also do something like (in Java)
for (int i = 0; i < numbers.length; i++) {
if(numbers[i] != i+1){
System.out.println(i+1);
}
}
where numbers is the array with your numbers from 1-100.
From my reading of the question it did not say when to write out the missing number.
Alternatively if you COULD throw the value of i+1 into another array and print that out after the iteration.
Of course it might not abide by the time and space rules. As I said. I have to strongly brush up on Big O.
========Simplest Solution for sorted Array===========
public int getMissingNumber(int[] sortedArray)
{
int missingNumber = 0;
int missingNumberIndex=0;
for (int i = 0; i < sortedArray.length; i++)
{
if (sortedArray[i] == 0)
{
missingNumber = (sortedArray[i + 1]) - 1;
missingNumberIndex=i;
System.out.println("missingNumberIndex: "+missingNumberIndex);
break;
}
}
return missingNumber;
}
Another homework question. A sequential search is the best that you can do. As for a Java solution, consider that an exercise for the reader. :P

Categories