Time complexity for n elements - java

I have these 2 questions which I'm stuck on. I have an idea of how the search works but not entirely sure. I wrote what I knew but I don't think it seems 100% accurate or answers the question.
1) The first time you run algorithm A on a dataset of n elements; it is faster than
algorithm B. The second time you run algorithm A on a dataset of n elements; it is slower than
algorithm B. Explain how this is possible. Give an example for algorithm A and algorithm B.
2) If both have n nodes and are sorted smallest to largest, will it be faster to find
the largest value in a sorted linked list or a minimum-level BST? Explain.
This is what I think for the above questions. Please correct me if I am wrong or missing any KEY information.
1) Algorithm A is a linear search (checks every element for a match). Algorithm B sorts the data and stores in memory before using binary search. For every consequent search, Algorithm B would be faster because the binary search is generally faster than a linear search.
2) if the list is ordered from min to max, it will become O(1) if you further have the tail pointer. The reason is that the max element is the last one in the linked list. Thus you have to traverse to the tail (O(n)).
Sorry if I broke any rules but I'm asking after a long time.
Any help would be appreciated. Thank you.

I think that your guesses are correct. For the sake of completeness you may add O(log(n)) for the binary search.

Related

If array needs to be sorted would it count as part of the binary search algorithm

I am trying to understand the speed of the Binary Search algorithm.
I understand it needs to operate on a sorted array.
However if the array comes in unsorted and performing the sorting. Wouldn't the sorting be part of the Binary Search and thus its performance would be slower?
I am confused because I think that there is very little chance to use this algorithm if the data does not come in sorted.
And if my code needs to sort it then why isn't it counting towards the search algorithm.
Sorry if I am confusing,
Thank you for helping.
You can't just point at an algorithm and say: It's got O(n^2) complexity!
That's what people usually say, sure. But that's shorthand. They're omitting things; assuming that the listener / reader will make assumptions.
You need to fully describe the exact algorithm, the conditions under which it is applied, and the precise definition of n and any other variable.
Then, you can answer that question. The problem you're having here is that the definition of 'what is the performance of binary search' is unclear. If you assume it means X whilst your buddy assumes it means Y, and you then argue about the answers, you're not actually having a constructive debate at all. You're just tilting at windmills; the real problem is that neither of you figured out the problem is communicating the basics.
Given that there is some confusion here, I'll give you 3 different more or less equally sensible more fleshed out definitions, along with the actual answer for each such definition. Hint, for one of them, 'binary search' isn't the fastest algorithm!
Given [1] a list that is already sorted, and [2] a single value, write me an algorithm that determines if this value is in the list or not.
The best answer would be: A binary sort algorithm, and its complexity would be O(log n).
Given [1] a list that is not sorted, and [2] a single value, write me an algorithm that determines if this value is in the list or not.
The best answer would be: Just iterate through the list. Its complexity would be O(n), and binary sort is not part of this answer at all.
given [1] a list that is not sorted, and [2] a list of tests, whereby each individual test is defined by a single value, but they all use the same input unsorted list, write an algorithm that will, for each test, determine if the value for that test is in the list or not, and then give me the amortized complexity (basically, the complexity of the whole thing, divided by the # of tests we ran).
Then the best answer would be: First sort the list, spending O(n log n) time to do so, but we get to amortize that over the test case count, and then use binary search for each individual test, adding an O(log n) complexity to each test. If we term n the size of the input list and t the number of tests we have, this gets us:
O( (n log n)/t + O(log n) )
Which is the actual answer to the question, complex as it may look. But, if t is large or even considered effectively infinite in size, OR we add one more rider to the question:
The list from [1] is given to you in advance and, within reasonable time and memory limits, you may preprocess this data without needing to amortize these costs across your test cases
then that boils down to just O(log n), as the large value for t makes that (n log n) / t factor approach zero.
In communicating this to your buddy, given that we don't talk in entire scientific papers, one might then say: "The algorithmic complexity of the binary sort algorithm is O(log n)", even if that omits a gigantic chunk of the full story.
You interpret the question as per the second case (input is unsorted, the input comprises both the list and the value to search for, no multi-test clause). Someone who says 'binary search is O(log n)' is labouring under either the first or third. You're both right.
NB: The third definition seems unusually complicated. However, it matches common scenarios. For example, 'we have compiled a list of folks living in town and their phone numbers, and we want to print them in a giant book with the aim of letting recipients of this book look up phone numbers. We expect over the lifetime of a single print run that the 100,000 citizens of the township will eaech do on average about 50 lookups, for a grand total of 5 million lookups for this single list. That gives you t= 5 million, n = 200,000 (let's say 200k people live here, half of which get a phonebook). Plug those numbers in and sorting the phonebook wins by a landslide vs. releasing the phonebook in arbitrary, unsorted order. Even if, yes, you start 'down' the effort of sorting it and won't make up for that loss until a few folks have speedily looked up a few phone numbers to make up for your efforts in sorting it before printing the book.
Yes. If
the data comes in unsorted
you only need to search for one element
...then you would have to first sort the data to use binary search, which would take a total of O(n log n + log n) = O(n log n) time.
But once the data is sorted, you can then binary search on that data as many times as you want. You don't have to sort it again each time.

Fastest way to find number of elements in a range

Given an array with n elements, how to find the number of elements greater than or equal to a given value (x) in the given range index i to index j in O(log n) or better complexity?
my implementation is this but it is O(n)
for(a=i;a<=j;a++)
if(p[a]>=x) // p[] is array containing n elements
count++;
If you are allowed to preprocess the array, then with O(n log n) preprocessing time, we can answer any [i,j] query in O(log n) time.
Two ideas:
1) Observe that it is enough to be able to answer [0,i] and [0,j] queries.
2) Use a persistent* balanced order statistics binary tree, which maintains n versions of the tree, version i is formed from version i-1 by adding a[i] to it. To answer query([0,i], x), you query the version i tree for the number of elements > x (basically rank information). An order statistics tree lets you do that.
*: persistent data structures are an elegant functional programming concept for immutable data structures and have efficient algorithms for their construction.
If the array is sorted you can locate the first value less than X with a binary search and the number of elements greater than X is the number of items after that element. That would be O(log(n)).
If the array is not sorted there is no way of doing it in less than O(n) time since you will have to examine every element to check if it's greater than or equal to X.
Impossible in O(log N) because you have to inspect all the elements, so a O(N) method is expected.
The standard algorithm for this is based on quicksort's partition, sometimes called quick-select.
The idea is that you don't sort the array, but rather just partition the section containing x, and stop when x is your pivot element. After the procedure is completed you have all elements x and greater to the right of x. This is the same procedure as when finding the k-th largest element.
Read about a very similar problem at How to find the kth largest element in an unsorted array of length n in O(n)?.
The requirement index i to j is not a restriction that introduces any complexity to the problem.
Given your requirements where the data is not sorted in advance and constantly changing between queries, O(n) is the best complexity you can hope to achieve, since there's no way to count the number of elements greater than or equal to some value without looking at all of them.
It's fairly simple if you think about it: you cannot avoid inspecting every element of a range for any type of search if you have no idea how it's represented/ordered in advance.
You could construct a balanced binary tree, even radix sort on the fly, but you're just pushing the overhead elsewhere to the same linear or worse, linearithmic O(NLogN) complexity since such algorithms once again have you inspecting every element in the range first to sort it.
So there's actually nothing wrong with O(N) here. That is the ideal, and you're looking at either changing the whole nature of the data involved outside to allow it to be sorted efficiently in advance or micro-optimizations (ex: parallel fors to process sub-ranges with multiple threads, provided they're chunky enough) to tune it.
In your case, your requirements seem rigid so the latter seems like the best bet with the aid of a profiler.

Time complexity assignment

I have an assignment in my intro to programming course that I don't understand at all. I've been falling behind because of problems at home. I'm not asking you to do my assignment for me I'm just hoping for some help for a programming boob like me.
The question is this:
Calculate the time complexity in average case for searching, adding, and removing in a
- unsorted vector
- sorted vector
- unsorted singlelinked list
- sorted singlelinked list
- hash table
Let n be the number of elements in the datastructure
and present the solution in a
table with three rows and five columns.
I'm not sure what this even means.. I've read as much as I can about time complexity but I don't understand it.. It's so confusing. I don't know where I would even start.. Remember I'm a novice programmer, as dumb as they come. I did really well last semester but had problems at home at the start of this one so I missed a lot of lectures and the first assignments so now I'm in over my head..
Maybe if someone could give me the answer and the reasoning behind it on a couple of them I could maybe understand it and do the others? I have a hard time learning through theory, examples work best.
Time complexity is a formula that describes how the cost of an operation varies related to the number of elements. It is usually expressed using "big-O" notation, for example O(1) or constant time, O(n) where cost relates linearly to n, O(n2) where cost increases as the square of the size of the input. There can be others involving exponentials or logarithms. Read up on "Big-O Notation".
You are being asked to evaluate five different data structures, and provide average cost for three different operations on each data structure (hence the table with three rows and five columns).
Time complexity is an abstract concept, that allows us to compare the complexity of various algorithms by looking at how many operations are performed in order to handle its inputs. To be precise, the exact number of operations isn't important, the bottom line is, how does the number of operations scale with increasing complexity of inputs.
Generally, the number of inputs is denoted as n and the complexity is denoted as O(p(n)), with p(n) being some kind of expression with n. If an algorithm has O(n) complexity, it means, that is scales linearly, with every new input, the time needed to run the algorithm increases by the same amount.
If an algorithm has complexity of O(n^2) it means, that the amount of operations grows as a square of number of inputs. This goes on and on, up to exponencially complex algorithms, that are effectively useless for large enough inputs.
What your professor asks from you is to have a look at the given operations and judge, how are going to scale with increasing size of lists, you are handling. Basically this is done by looking at the algorithm and imagining, what kinds of cycles are going to be necessary. For example, if the task is to pick the first element, the complexity is O(1), meaning that it doesn't depend on the size of input. However, if you want to find a given element in the list, you already need to scan the whole list and this costs you depending on the list size. Hope this gives you a bit of an idea how algorithm complexity works, good luck with your assignment.
Ok, well there are a few things you have to start with first. Algorithmic complexity has a lot of heavy math behind it and so it is hard for novices to understand, especially if you try to look up Wikipedia definitions or more-formal definitions.
A simple definition is that time-complexity is basically a way to measure how much an operation costs to perform. Alternatively, you can also use it to see how long a particular algorithm can take to run.
Complexity is described using what is known as big-O notation. You'll usually end up seeing things like O(1) and O(n). n is usually the number of elements (possibly in a structure) on which the algorithm is operating.
So let's look at a few big-O notations:
O(1): This means that the operation runs in constant time. What this means is that regardless of the number of elements, the operation always runs in constant time. An example is looking at the first element in a non-empty array (arr[0]). This will always run in constant time because you only have to directly look at the very first element in an array.
O(n): This means that the time required for the operation increases linearly with the number of elements. An example is if you have an array of numbers and you want to find the largest number. To do this, you will have to, in the worst case, look at every single number in the array until you find the largest one. Why is that? This is because you can have a case where the largest number is the last number in the array. So you cannot be sure until you have examined every number in the array. This is why the cost of this operation is O(n).
O(n^2): This means that the time required for the operation increases quadratically with the number of elements. This usually means that for each element in the set of elements, you are running through the entire set. So that is n x n or n^2. A well-known example is the bubble-sort algorithm. In this algorithm you run through and swap adjacent elements to ensure that the array is sorted according to the order you need. The array is sorted when no-more swaps need to be made. So you have multiple passes through the array, which in the worst case is equal to the number of elements in the array.
Now there are certain things in code that you can look at to get a hint to see if the algorithm is O(n) or O(n^2).
Single loops are usually O(n), since it means you are iterating over a set of elements once:
for(int i = 0; i < n; i++) {
...
}
Doubly-nested loops are usually O(n^2), since you are iterating over an entire set of elements for each element in the set:
for(int i = 0; i < n; i++) {
for(j = 0; j < n; j++) {
...
}
}
Now how does this apply to your homework? I'm not going to give you the answer directly but I will give you enough and more hints to figure it out :). What I wrote above, describing big-O, should also help you. Your homework asks you to apply runtime analyses to different data structures. Well, certain data structures have certain runtime properties based on how they are set up.
For example, in a linked list, the only way you can get to an element in the middle of the list, is by starting with the first element and then following the next pointer until you find the element that you want. Think about that. How many steps would it take for you to find the element that you need? What do you think those steps are related to? Do the number of elements in the list have any bearing on that? How can you represent the cost of this function using big-O notation?
For each datastructure that your teacher has asked you about, try to figure out how they are set up and try to work out manually what each operation (searching, adding, removing) entails. I'm talking about writing the steps out and drawing pictures of the strucutres on paper! This will help you out immensely! Looking at that, you should have enough information to figure out the number of steps required and how it relates to the number of elements in the set.
Using this approach you should be able to solve your homework. Good luck!

Java/Jsp programming quiz with respect to Big-O notation

Question: Given: a list of integers (duplicates are allowed); and integer N. Remove the duplicates from the list and find the N-th largest element in the modified list. Implement at least two different solutions to find N-th largest element with O(N*log(N)) average time complexity in Big-O notation, where N is the number of elements in the list.
According to my understanding i can use Merge Sort, Heap Sort, Quick sort on the provided integer list with duplicates to find the N-th largest element with O(N*log(N)) average time complexity in Big-O notation. Is that correct ?
Also, what about duplicates in the list do i just add an extra line of code in the above mentioned algorithm to remove duplicates will that not affect the O(N*log(N)) average time complexity because Merge Sort, Heap Sort, Quick sort will only sort the list not delete duplicates.
I am not looking for any code but just tips and ideas about how to proceed with the question ? I am using Java also is there any predefined classed/methods in java that i can use to accomplish the task rather than me coding Merge Sort, Heap Sort, Quick sort on my own.
My aim is to complete the task keeping in mind O(N*log(N)) average time complexity.
You first sort the list and then you remove illiterate over it to find all the duplicates. A second methode might be to loop over all elements and keep a tree structure in which for each element you first check if it's already present in the tree structure O(log(n)) and if is remove it else add it to the tree structure O(log(n)). This makes the whole algorithm O(n(log(n))).
Since you added java as a tag:
List<Integer> listWithoutDuplicates = new ArrayList(new TreeSet(originalList));
This will construct a new, sorted list without duplicates. Regarding time complexity, this adds up to O(n*log n) (the complexity of constructing a binary balanced tree with n elements). As a bonus, you can try and replace TreeSet with LinkedHashSet to preserve elements' order (among duplicates, I think the last one is kept).
About the last part, removing an element by index is straight forward afterwards.
Of course, if it is a homework question, you may need to implement your own red-black tree to get the same result.

Pseudo Range Minimum Query

I have a problem with my assignment which requires me to solve a problem that is similar to range-minimum-query. The problem is roughly described below:
I am supposed to code a java program which reads in large bunch of integers (about 100,000) and store them into some data structure. Then, my program must answer queries for the minimum number in a given range [i,j]. I have successfully devised an algorithm to solve this problem. However, it is just not fast enough.
The pseudo-code for my algorithm is as follows:
// Read all the integers into an ArrayList
// For each query,
// Read in range values [i,j] (note that i and j is "actual index" + 1 in this case)
// Push element at index i-1 into a Stack
// Loop from index i to j-1 in the ArrayList (tracking the current index with variable k)
[Begin loop]
// If element at k is lesser than the one at the top of the stack, push the element at k into the Stack.
[End of loop]
Could someone please advise me on what I could do so that my algorithm would be fast enough to solve this problem?
The assignment files can be found at this link: http://bit.ly/1bTfFKa
I have been stumped by this problem for days. Any help would be much appreciated.
Thanks.
Your problem is a static range minimum query (RMQ). Suppose you have N numbers. The simplest algorithm you could use is an algorithm that would create an array of size N and store the numbers, and another one that will be of size sqrtN, and will hold the RMQ of each interval of size sqrtN in the array. This should work since N is not very large, but if you have many queries you may want to use a different algorithm.
That being said, the fastest algorithm you could use is making a Sparse Table out of the numbers, which will allow you to answer the queries in O(1). Constructing the sparse table is O(NlogN) which, given N = 10^5 should be just fine.
Finally, the ultimate RMQ algorithm is using a Segment Tree, which also supports updates (single-element as well as ranges), and it's O(N) to construct the Segment Tree, and O(logN) per query and update.
All of these algorithms are very well exposed here.
For more information in Segment Trees see these tutorials I wrote myself.
link
Good Luck!

Categories