Calculating cos(x) with a Taylor Series - java

Im Currently working on one of my excercises for university.
I have to calculate the cos(x) by using a taylor series. Im also just allowed to use Math.PI which is why i implemented my own pow, square and factorial methods. But im just getting an NaN as a result for -.5 while it should be 0.87
Below im putting the current state of my class.
class Cosinus{
private static double square(double x){
return x*x;
}
public static double pow(double basis, int exp){
if(exp == 0){
return 1;
}else{
return (square(pow(basis,exp/2))*(exp%2==1?basis:1));
}
}
public static int fac(int n){
int result = 1;
while (n > 1){
result *= n;
n -= 1;
}
return result;
}
public static void main(String[] args){
if(args.length != 1){
System.out.println("ERROR PLEASE ENTER A NUMBER");
}
else if(Double.parseDouble(args[0])>((Math.PI)*2) || Double.parseDouble(args[0]) < ((Math.PI)*-2)){
System.out.println("ERROR PLEASE ENTER A NUMBER BETWEEN 0 AND 2 PI ");
}
else {
double x = Double.parseDouble(args[0]);
if(x < 0) x *= -1;
double sum = 1;
for(int i=2; i<=20; i++){
sum -= (pow(x, (i*4))/fac(i*4))-(pow(x, (i*4+2))/fac(i*4+2));
}
System.out.println(sum);
}
}
}
Would be nice if someone could help me with this

Factorial(20) is 2e18 which is larger than an int can hold. If you change your fac method to use long instead it will give you the expected result:
public static long fac(int n) {
long result = 1;
while (n > 1) {
result *= n;
--n;
}
return result;
}

Related

Optimal way to find next prime number (Java)

I was asked to write a program to find next prime number in an optimal way. I wrote this code, but I could not find an optimal answer to it. Any suggestions?
public static int nextPrime(int input) {
input++;
//now find if the number is prime or not
for(int i=2;i<input;i++) {
if(input % i ==0 ) {
input++;
i=2;
}
else{
continue;
}
}
return input;
}
public int nextPrime(int input){
int counter;
input++;
while(true){
int l = (int) sqrt(input);
counter = 0;
for(int i = 2; i <= l; i ++){
if(input % i == 0) counter++;
}
if(counter == 0)
return input;
else{
input++;
continue;
}
}
}
There is no need to check up on input number. It is enough to check up to the square root of a number. Sorry, I didn't remember the theorem name. Here we are incrementing the input for next prime.
The time complexity of this solution O(n^(3/2)).
#Ephraim - I've replaced the recursive code with "while" loop. It's running more faster.
int nextPrime(int M) {
while(!isPrime(++M))
// no need ++M; as I already added in the isPrime method's parameter.
return M;
}
boolean isPrime(int M) {
for(int i = 2; i <= M; i++)
if(M % i == 0)
return false;
return true;
}
#Scott Parent- I've tested the the recursive code; "while" loop and steam code (IntStream and LongStream) - the Stream's code is running slowly, very slowly.
Example:
Input value: 60000000000
Output: 60000000029
Elapsed time for recursive algorithm = 7 milliseconds
Output: 60000000029
Elapsed time for traversal algorithm = 4 milliseconds
Output: 60000000029
Elapsed time for LongStream.range(2, number).noneMatch(...) algorithm = 615825 milliseconds
If I use IntStream - the elapsed time is about 230 milliseconds for the max Integer number. It's too much slowly. The "while" loop in nextPrime(int n) is running 1-4 milliseconds for the max integer number, but usage of LongStream for 600000000000 input value - the result I couldnt see in 1 hour.
I'm running now for the 600000000000 long number:
Elapsed time for recursive algorithm = 36 milliseconds
Output: 60000000029
Elapsed time for traversal algorithm = 27 milliseconds
Output: 60000000029
Elapsed time for LongStream.range(2, number).noneMatch(...)
it's still running more than 58 minutes, but it's not finished yet.
long n = 12345;
BigInteger b = new BigInteger(String.valueOf(n));
long res = Long.parseLong(b.nextProbablePrime().toString());
System.out.println("Next prime no. is "+ res);
Generate all prime numbers up to your limit using sieve of eratosthenes. And then input your number n and search if n> prime[i] , prime[i] is the answer.
You can also do the same using recursions like this:
int nextPrime(int M) {
if(!isPrime(M)) M = nextPrime(++M);
return M;
}
boolean isPrime(int M) {
for(int i = 2; i <= Math.sqrt(M); i++)
if(M % i == 0) return false;
return true;
}
My son has written his own algorithm - in one method.
But it's written on python - you can find it here.
On Java it looks like:
static long nextPrime(long number) {
boolean prime = false;
long n = number;
while (!prime && n < number * 2) {
n++;
prime = true;
for (int i = 2; i < n; i++) {
if (n % i == 0) {
prime = false;
break;
}
}
}
return n;
}
Here I add a solution algorithm. First of all, the while loop grabs the next number to be tested within the range of number + 1 to number * 2. Then the number is sent to the isPrime method (which uses Java 8 streams) that iterates the stream to look for numbers that have no other factors.
private static int nextPrime(final int number) {
int i = number + 1;
while (!isPrime(i) && i < number * 2)
i++;
return i;
}
private static boolean isPrime(final int number) {
return number > 1 && IntStream.range(2, number).noneMatch(index -> number % index == 0);
}
Dude check this code.
isPrime() in the while loop checks for the next prime number after incrementing the current prime/non-prime number. I did used the long datatype (that's what I got as assignment).
if (isPrime(num)) {
System.out.println("Current Prime number: " + num);
} else {
long a = getNextPrime(num);
System.out.println("Next Prime:" + a);
}
public static long getNextPrime(long num) {
long nextPrime = 0;
while (true) {
num++;
boolean x = isPrime(num);
if (x) {
nextPrime = num;
break;
}
}
return nextPrime;
}
public static boolean isPrime(long num) {
if (num == 0 || num == 1) {
return false;
}
for (long i = 2; i <= num / 2; ++i) {
if (num % i == 0) {
return false;
}
}
return true;
}
This is functional way of finding next prime number.
public void printFirstNPrimes(long n) {
Stream.iterate(2, i->nextPrime(i))
.limit(n).forEach(System.out::println);
}
public static boolean isPrime(long x) {
return Stream.iterate(2, i->i+1)
.limit((long)(Math.sqrt(x)))
.allMatch(n -> x % n != 0);
}
public static int nextPrime(int x) {
return isPrime(x+1)? x+1 : nextPrime(x+1);
}
So, I was reading the first answer and saw some potential upgrades.
I made them and got a really significant improvement.
The original code could calculate 200000 prime numbers in 22.32s
With a little changes I managed to execute the same operation in 11.41s, with the same results.
Notice I executed the code on my laptop #2.50 GHz, running on IntelIJ.
public static int nextPrime(int n) {
boolean isPrime;
n++;
while (true) {
int sqrt = (int) Math.sqrt(n);
isprime = true;
for (int i = 2; i <= sqrt; i++) {
if (n % i == 0) isPrime = false;
}
if (isPrime)
return n;
else {
n++;
}
}
}
Hope you like it!
public class ClosestPrimeNumber {
static boolean isPrime(int n) {
for (int x = 2; x <= Math.sqrt(n); x++) {
if (n % x ==0) {
return false;
}
}
return true;
}
static int next_forward = 0;
static int next_backward = 0;
static int next = 0;
static int closestPrimeNumberForward(int n) {
if (isPrime(n)) {
next_forward = n;
return next_forward;
}else {
next_forward = n+1;
closestPrimeNumberForward(next_forward);
}
return next_forward;
}
static int closestPrimeNumberBackward(int n) {
if (isPrime(n)) {
next_backward = n;
return next_backward;
}else {
next_backward = n-1;
closestPrimeNumberBackward(next_backward);
}
return next_backward;
}
static int closestCompare(int forward, int backward, int num) {
return (Math.abs(num-backward) > Math.abs(num-forward) ) ? forward : backward;
}
public static void main(String[] args) {
int valor = 102;
System.out.println(closestCompare(closestPrimeNumberForward(valor), closestPrimeNumberBackward(valor), valor));
}
}
public int nextPrime(int input){
int counter;
while(true){
counter = 0;
for(int i = 1; i <= input; i ++){
if(input % i == 0) counter++;
}
if(counter == 2)
return input;
else{
input++;
continue;
}
}
}
This will return the nextPrime but cannot say is most optimal way
It is simple as it execute an infinite while loop which break when
prime number is returned.
In while is finds whether the number is prime or not
If it is prime it returns that number, if not it increment input and continue the while loop

sum of digits till the sum is one-digit number

I am a beginner java and trying to solve tricky problem
input=777
output should be 3
7+7+7=21 , 2+1=3;
From the above code if my input is 333 I am getting 9 as answer but when the sum is two digits(777=21) i am getting blank!
public static void main(String[] args)
{
int y=333;//if y is 777 i am getting blank
int sum=0;
String s;
char []ch;
do
{
s=String.valueOf(y);
ch=s.toCharArray();
if(ch.length>1)
{
for(int i=0;i<ch.length;i++)
{
sum+=Character.getNumericValue(ch[i]);
}
}
else
{
System.out.println(sum);
}
y=sum;
}while(ch.length>1);
}
your code maybe loop forever
the right solution is the following below
public static void main(String[] args) throws ParseException {
int y = 777;// if y is 777 i am getting blank
int sum = 0;
String s;
char[] ch;
do {
sum = 0;
s = String.valueOf(y);
ch = s.toCharArray();
if (ch.length > 1) {
for (int i = 0; i < ch.length; i++) {
sum += Character.getNumericValue(ch[i]);
}
} else {
System.out.println(ch[0]);
break;
}
y = sum;
} while (ch.length > 1);
}
Maybe the better choice is the following code
public static void main(String[] args) throws ParseException {
int y = 333;// if y is 777 i am getting blank
int sum = 0;
while (y % 10 != 0) {
sum += y %10;
y = y / 10;
if (0 == y && sum >= 10) {
y = sum;
sum = 0;
}
}
System.out.println(sum);
}
hope that helped
For a task like this, it is best practise to use recursion.
The workflow in pseudocode would look like this:
procedure sumTillOneDigit(n)
split n into it's digits
s := sum of all digits of n
if s has more than one digit:
sumTillOneDigit(s)
else
output s
I am intentionally writing this in pseudocode, since this should help you solving the task. I will not give you a Java implementation, as it looks like a homework to me.
For more information see:
https://en.wikipedia.org/wiki/Recursion_(computer_science)
http://introcs.cs.princeton.edu/java/23recursion/
You are getting that because you put the print statement in else condition..
Also note that to reset your sum value before reusing it. I.e. Set sum=0 at the start of do loop.
EDIT : there are two solutions to print you value
1. Don't put you print statements inside else conditions
Print sum outside the do while loop
First of all you must reset the value of sum variable.
and secondly you must print s in else condition and not the sum and rest is fine.
public static void main(String[] args)
{
int y=333;//if y is 777 i am getting blank
int sum;
String s;
char []ch;
do
{
sum=0;
s=String.valueOf(y);
ch=s.toCharArray();
if(ch.length>1)
{
for(int i=0;i<ch.length;i++)
{
sum+=Character.getNumericValue(ch[i]);
}
}
else
{
System.out.println(s);
}
y=sum;
}while(ch.length>1);
}
I think your solution has wrong basics. There is no point to convert your number to String and handle this as char array. You are doing too much unnecessary operations.
You can do is simpler if you stick with numbers.
You can do it using recursion:
public static int sumRec(int number){
if (number<10){
return number;
}
int sum = 0;
while(number!=0){
sum += number %10;
number /= 10;
}
return sumRec(sum);
}
or itteration
public static int sumIt(int number){
while(number>=10){
int sum = 0;
while(number!=0){
sum += number %10;
number /= 10;
}
number = sum;
}
return number;
}
it is much simpler, right?
You can solve this by 1 line:
public static int sumDigits(int n) {
return (1 + ((n-1) % 9);
}
For example: input 777--> return 1 + ( (777-1) % 9) = 3
Also can work with negative number.
Recursive variant
public static int myFunction(int num){
if(num/10 == 0){
return num;
}
int digitSum = num%10 + myFunction(num/10);
if(digitSum/10 == 0){
return digitSum;
}
return myFunction(digitSum);
}
public static int sum_of_digits(int n) {
return --n % 9 + 1;
}

how to get exponents without using the math.pow for java

This is my program
// ************************************************************
// PowersOf2.java
//
// Print out as many powers of 2 as the user requests
//
// ************************************************************
import java.util.Scanner;
public class PowersOf2 {
public static void main(String[] args)
{
int numPowersOf2; //How many powers of 2 to compute
int nextPowerOf2 = 1; //Current power of 2
int exponent= 1;
double x;
//Exponent for current power of 2 -- this
//also serves as a counter for the loop Scanner
Scanner scan = new Scanner(System.in);
System.out.println("How many powers of 2 would you like printed?");
numPowersOf2 = scan.nextInt();
System.out.println ("There will be " + numPowersOf2 + " powers of 2 printed");
//initialize exponent -- the first thing printed is 2 to the what?
while( exponent <= numPowersOf2)
{
double x1 = Math.pow(2, exponent);
System.out.println("2^" + exponent + " = " + x1);
exponent++;
}
//print out current power of 2
//find next power of 2 -- how do you get this from the last one?
//increment exponent
}
}
The thing is that I am not allowed to use the math.pow method, I need to find another way to get the correct answer in the while loop.
Powers of 2 can simply be computed by Bit Shift Operators
int exponent = ...
int powerOf2 = 1 << exponent;
Even for the more general form, you should not compute an exponent by "multiplying n times". Instead, you could do Exponentiation by squaring
Here is a post that allows both negative/positive power calculations.
https://stackoverflow.com/a/23003962/3538289
Function to handle +/- exponents with O(log(n)) complexity.
double power(double x, int n){
if(n==0)
return 1;
if(n<0){
x = 1.0/x;
n = -n;
}
double ret = power(x,n/2);
ret = ret * ret;
if(n%2!=0)
ret = ret * x;
return ret;
}
You could implement your own power function.
The complexity of the power function depends on your requirements and constraints.
For example, you may constraint exponents to be only positive integer.
Here's an example of power function:
public static double power(double base, int exponent) {
double ans = 1;
if (exponent != 0) {
int absExponent = exponent > 0 ? exponent : (-1) * exponent;
for (int i = 1; i <= absExponent; i++) {
ans *= base;
}
if (exponent < 0) {
// For negative exponent, must invert
ans = 1.0 / ans;
}
} else {
// exponent is 0
ans = 1;
}
return ans;
}
If there are no performance constraints you can do:
double x1=1;
for(int i=1;i<=numPowersOf2;i++){
x1 =* 2
}
You can try to do this based on this explanation:
public double myPow(double x, int n) {
if(n < 0) {
if(n == Integer.MIN_VALUE) {
n = (n+1)*(-1);
return 1.0/(myPow(x*x, n));
}
n = n*(-1);
return (double)1.0/myPow(x, n);
}
double y = 1;
while(n > 0) {
if(n%2 == 0) {
x = x*x;
}
else {
y = y*x;
x = x*x;
}
n = n/2;
}
return y;
}
It's unclear whether your comment about using a loop is a desire or a requirement. If it's just a desire there is a math identity you can use that doesn't rely on Math.Pow.
xy = ey∙ln(x)
In Java this would look like
public static double myPow(double x, double y){
return Math.exp(y*Math.log(x));
}
If you really need a loop, you can use something like the following
public static double myPow(double b, int e) {
if (e < 0) {
b = 1 / b;
e = -e;
}
double pow = 1.0;
double intermediate = b;
boolean fin = false;
while (e != 0) {
if (e % 2 == 0) {
intermediate *= intermediate;
fin = true;
} else {
pow *= intermediate;
intermediate = b;
fin = false;
}
e >>= 1;
}
return pow * (fin ? intermediate : 1.0);
}
// Set the variables
int numPowersOf2; //How many powers of 2 to compute
int nextPowerOf2 = 1; //Current power of 2
int exponent = 0;
/* User input here */
// Loop and print results
do
{
System.out.println ("2^" + exponent + " = " + nextPowerOf2);
nextPowerOf2 = nextPowerOf2*2;
exponent ++;
}
while (exponent < numPowersOf2);
here is how I managed without using "myPow(x,n)", but by making use of "while". (I've only been learning Java for 2 weeks so excuse, if the code is a bit lumpy :)
String base ="";
String exp ="";
BufferedReader value = new BufferedReader (new InputStreamReader(System.in));
try {System.out.print("enter the base number: ");
base = value.readLine();
System.out.print("enter the exponent: ");
exp = value.readLine(); }
catch(IOException e){System.out.print("error");}
int x = Integer.valueOf(base);
int n = Integer.valueOf(exp);
int y=x;
int m=1;
while(m<n+1) {
System.out.println(x+"^"+m+"= "+y);
y=y*x;
m++;
}
To implement pow function without using built-in Math.pow(), we can use the below recursive way to implement it. To optimize the runtime, we can store the result of power(a, b/2) and reuse it depending on the number of times is even or odd.
static float power(float a, int b)
{
float temp;
if( b == 0)
return 1;
temp = power(a, b/2);
// if even times
if (b%2 == 0)
return temp*temp;
else // if odd times
{
if(b > 0)
return a * temp * temp;
else // if negetive i.e. 3 ^ (-2)
return (temp * temp) / a;
}
}
I know this answer is very late, but there's a very simple solution you can use if you are allowed to have variables that store the base and the exponent.
public class trythis {
public static void main(String[] args) {
int b = 2;
int p = 5;
int r = 1;
for (int i = 1; i <= p; i++) {
r *= b;
}
System.out.println(r);
}
}
This will work with positive and negative bases, but not with negative powers.
To get the exponential value without using Math.pow() you can use a loop:
As long as the count is less than b (your power), your loop will have an
additional "* a" to it. Mathematically, it is the same as having a Math.pow()
while (count <=b){
a= a* a;
}
Try this simple code:
public static int exponent(int base, int power) {
int answer = 1;
for(int i = 0; i < power; i++) {
answer *= base;
}
return answer;
}

Convert any number to one digit number

Consider the number 2345.If you multiply the digits of it then you get the number 120.Now if you again multiply the digits of 120 then you will get 0 which is one digit.
import java.util.Scanner;
public class SmallestNum
{
int prod=1,sum=0;
void product(int m)
{
while(m!=0)
{
int a=m%10;
m=m/10;
prod=prod*a;
}
System.out.println(prod);
}
public static void main(String args[])
{
Scanner scn=new Scanner(System.in);
int x=scn.nextInt();
SmallestNum sn=new SmallestNum();
sn.product(x);
}
}
I can get the 120 from this code.But how can i do the same procedure with 120 and get the answer 0.Pls help me.
You can just add an other loop around your while, the end condition being prod < 10, i.e. having only one number.
void product(int m)
{
int prod;
do {
prod = 1;
while(m!=0)
{
int a = m%10;
m = m / 10;
prod *= a;
}
System.out.println(prod);
} while (prod >= 10);
}
public int reduceToOneDigit(int inputNumber){
int result = 1;
while(inputNumber > 0){
result *= (inputNumber % 10);
inputNumber /= 10;
}
if (result > 9)
result = reduceToOneDigit(result);
return result;
}
So basically: multiply the digits of your inputNumber. If the result has more than one digit (so result is > 9, at least 10) call method recursively on the result.
Alternatively, do the same without recursion, using a do-while loop:
public int reduceToOneDigitNoRecursion(int inputNumber){
int result = 1;
do{
while(inputNumber > 0){
result *= (inputNumber % 10);
inputNumber /= 10;
}
}
while(result > 9);
return result;
}
Use recurssion
void product(int m)
{
if(m%10 == 0){
return;
}
while(m!=0)
{
int a=m%10;
m=m/10;
prod=prod*a;
}
System.out.println(prod);
product(prod);//repeat the procedure
}
Recursive call the function
if(String.valueOf(prod).length()>1){
product(prod)
}
complete code
public class SmallestNum
{
int prod=1,sum=0;
void product(int m)
{
while(m!=0)
{
int a=m%10;
m=m/10;
prod=prod*a;
}
if(String.valueOf(prod).length()>1){
product(prod)
}
System.out.println(prod);
}
public static void main(String args[])
{
Scanner scn=new Scanner(System.in);
int x=scn.nextInt();
SmallestNum sn=new SmallestNum();
sn.product(x);
}
}
make member function product return to an int. then instead of sn.product(x);
int p = sn.product(x);
while (p > 9)
{
p = sn.product(t);
}

Largest prime factor program takes aaaages - Java

So this is problem 3 from project Euler. For those who don't know, I have to find out the largest prime factor of 600851475143. I have the below code:
import java.lang.Math;
// 600851475143
public class LargestPrimeFactor {
public static void main(String[] stuff) {
long num = getLong("What number do you want to analyse? ");
long[] primes = primeGenerator(num);
long result = 0;
for(int i = 0; i < primes.length; i++) {
boolean modulo2 = num % primes[i] == 0;
if(modulo2) {
result = primes[i];
}
}
System.out.println(result);
}
public static long[] primeGenerator(long limit) {
int aindex = 0;
long[] ps = new long[primeCount(limit)];
for(long i = 2; i < limit + 1; i++) {
if(primeCheck(i)) {
ps[aindex] = i;
aindex++;
}
}
return ps;
}
public static boolean primeCheck(long num) {
boolean r = false;
if(num == 2 || num == 3) {
return true;
}
else if(num == 1) {
return false;
}
for(long i = 2; i < Math.sqrt(num); i++) {
boolean modulo = num % i == 0;
if(modulo) {
r = false;
break;
}
else if(Math.sqrt(num) < i + 1 && !modulo) {
r = true;
break;
}
}
return r;
}
public static int primeCount(long limit) {
int count = 0;
if(limit == 1 || limit == 2) {
return 0;
}
for(long i = 2; i <= limit; i++) {
if(primeCheck(i)) {
count++;
}
}
return count;
}
public static long getLong(String prompt) {
System.out.print(prompt + " ");
long mrlong = input.nextLong();
input.nextLine();
return mrlong;
}
}
But when I test the program with something (a lot) smaller than 600851475143, like 100000000, then the program takes its time - in fact, 100000000 has taken 20 minutes so far and is still going. I've obviously got the wrong approach here (and yes, the program does work, I tried it out with smaller numbers). Can anyone suggest a less exhaustive way?
public static void main(String[] args) {
long number = 600851475143L;
long highestPrime = -1;
for (long i = 2; i <= number; ++i) {
if (number % i == 0) {
highestPrime = i;
number /= i;
--i;
}
}
System.out.println(highestPrime);
}
public class LargestPrimeFactor {
public static boolean isPrime(long num){
int count = 0;
for(long i = 1; i<=num/2 ; i++){
if(num % i==0){
count++;
}
}
if(count==1){
return true;
}
return false;
}
public static String largestPrimeFactor(long num){
String factor = "none";
for(long i = 2; i<= num/2 ; i++){
if(num % i==0 && isPrime(i)){
factor = Long.toString(i);
}
}
return factor;
}
public static void main(String[] args) {
System.out.println(largestPrimeFactor(13195));
}
}
I have done several dozen of the challenges on Project Euler. Some of the questions can be solved with brute force (they recommend not to do this) but others require "out of the box" thinking. You cannot solve that by problem with brute force.
There is lots of help on the web to lead you in the right direction, for example:
http://thetaoishere.blogspot.com.au/2008/05/largest-prime-factor-of-number.html
The number of prime factors a number can have is always less than sqrt of that number so that there is no need to iterate through the number n to find its largest prime factor.
See this code.
public class LargestPrimeFactor {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
long num=sc.nextLong();
if(num>0 && num<=2)
{
System.out.println("largest prime is:-" + num);
System.exit(0);
}
int i=((Double)Math.sqrt(num)).intValue();
int j=3;
int x=0;
//used for looping through the j value which can also be a prime. for e.g in case of 100 we might get 9 as a divisor. we need to make sure divisor is also a prime number.
int z=0;
//same function as j but for divisor
int y=3;
int max=2;
//divisor is divisible
boolean flag=false;
//we found prime factors
boolean found=false;
while(x<=i)
{
y=3;
flag=false;
if(num % j ==0)
{
if(j>max)
{
for(z=0;z<Math.sqrt(j);z++)
{
if(j!=y && j % y==0)
{
flag=true;
}
y+=2;
}
if(!flag)
{
found=true;
max=j;
}
}
}
j+=2;
x++;
}
if(found){
System.out.println("The maximum prime is :- " + max);
}
else
{
System.out.println("The maximum prime is :- " + num);
}
}
}
change
for(long i = 2; i <= limit; i++)
to
// add the one for rounding errors in the sqrt function
new_limit = sqrt(limit) + 1;
// all even numbers are not prime
for(long i = 3; i <= new_limit; i+=2)
{
...
}
Factoring 1,000,000 for example instead of iterating 1,000,000 times
the thing only needs to do around 500 iterations.

Categories