public class StaticFinalExample {
static String str;
public void StaticFinalExample() {
System.out.println("In Constr");
str = "H";
}
public static void main(String[] args) {
StaticFinalExample t = new StaticFinalExample();
System.out.println(str);
}
}
In above example the output is null.
Why was not the constructor called?
Constructors don't have a return type. There shouldn't be void in your StaticFinalExample() method, if that's your constructor.
Avoid using class name as a method name, it's ambiguous. When we notice any name having same value as class, our mind reads as a class name not as actual usage (method name in your case).
It's not a good practice. It does not mean you can not use method name as class name, but you should avoid using same name.
Related
public class MainForm {
String varpass = "This is a string that has to be passed.";
public String t1(){
String text = "This is a non-static method being called.";
return text;
}
public static String t2(){
String text = "This is a static method being called.";
return text;
}
public void t3(){
System.out.println("This is a non-static void method and cannot return.");
}
public static void t4(){
System.out.println("This is a static void method and cannot return.");
}
public void place1 (){
//=======================================Method calls from another class========================================
//Calls from another class. It is non-static and thus requires it to be instantiated. EG. class var = new class();
Methods call = new Methods();
System.out.println(call.t1());
//Calls from another class. It is non-static void and thus requires it to be instantiated and be called straight.
call.t3();
//Calls from another class. It is static and thus does not require it to be instantiated. EG. class var = new class();
System.out.println(Methods.t2());
//Calls from another class. It is static void and thus does not require it to be instantiated.
Methods.t4();
//Trying to call a variable that was sent.
Methods.getvar(varpass);
call.getvar(varpass);
//=======================================Method calls from current class========================================
MainForm mcall = new MainForm();
//Calls from within the same class. It is static and thus does not require it to be instantiated. EG. class var = new class();
System.out.println(mcall.t1());
mcall.t3();
System.out.println(t2());
t4();
}
public static void main(String[] args) {
MainForm place = new MainForm();
place.place1();
}
}
public class Methods {
String var1 = "This is a public String variable";
String getVar = "Initial";
public String t1(){
String text = "This is a non-static method being called.";
return text;
}
public static String t2(){
String text = "This is a static method being called.";
return text;
}
public void t3(){
System.out.println("This is a non-static void method and cannot return.");
}
public static void t4(){
System.out.println("This is a static void method and cannot return.");
}
public void getvar(String varsent){
String msg = "getver() Variables are varsent("+varsent+"), getVar("+getVar+"), getVar(";
getVar = varsent;
msg = msg + getVar+")";
System.out.println(msg);
}
}
Here is the errors below
Methods.getvar(varpass);
call.getvar(varpass);
top one is giving non-static cannot be referenced from a static context
bottom one is saying cannot resolve method 'println(void)'
You can tell im using this as practice to call methods.
Here im trying to pass a variable varpass that contains a string. I want it pass that variable to getvar in Methods. in that getvar it takes a variable in Methods displays it before altering it then again after alter.
Im trying to understand how this works. Any insight would be appreciated.
This line
Methods.getvar(varpass);
is a static call. You try to call the static Method getvar from your Methods class. This method however is not static and therefor requires an instance of Method.
This line
call.getvar(varpass);
works fine. It in fact is the solution to the first line, where you reffere a non-static method from a static context
You cannot refer to a non-static variable/field from a static method, because a non-static field may vary between instances of a class. To solve it, make varpass static:
static String varpass = "This is a string that has to be passed.";
The second error results from the definition of getvar:
public void getvar(String varsent);
Since it does not return anything, it cannot be used in a System.out.println() as there is no definition of println accepting void (It doesn't know what to print).
Also, Methods.getvar(varpass) should be Methods.getvar(MainForm.varpass), because there is no local variable with that name.
I wrote this simple class in java just for testing some of its features.
public class class1 {
public static Integer value=0;
public class1() {
da();
}
public int da() {
class1.value=class1.value+1;
return 5;
}
public static void main(String[] args) {
class1 h = new class1();
class1 h2 = new class1();
System.out.println(class1.value);
}
}
The output is:
2
But in this code:
public class class1 {
public static Integer value=0;
public void class1() {
da();
}
public int da() {
class1.value=class1.value+1;
return 5;
}
public static void main(String[] args) {
class1 h = new class1();
class1 h2 = new class1();
System.out.println(class1.value);
}
}
The output of this code is:
0
So why doesn't, when I use void in the constructor method declaration, the static field of the class doesn't change any more?
In Java, the constructor is not a method. It only has the name of the class and a specific visibility. If it declares that returns something, then it is not a constructor, not even if it declares that returns a void. Note the difference here:
public class SomeClass {
public SomeClass() {
//constructor
}
public void SomeClass() {
//a method, NOT a constructor
}
}
Also, if a class doesn't define a constructor, then the compiler will automatically add a default constructor for you.
public void class1() is not a constructor, it is a void method whose name happens to match the class name. It is never called. Instead java creates a default constructor (since you have not created one), which does nothing.
Using void in the constructor by definition leads it to not longer be the constructor.
The constructor specifically has no return type. While void doesn't return a value in the strictest sense of the word, it is still considered a return type.
In the second example (where you use the void), you would have to do h.class1() for the method to get called because it is no longer the constructor. Or you could just remove the void.
This is arguably a design flaw in Java.
class MyClass {
// this is a constructor
MyClass() {...}
// this is an instance method
void MyClass() {...}
}
Perfectly legal. Probably shouldn't be, but is.
In your example, class1() is never getting called, because it's not a constructor. Instead, the default constructor is getting called.
Suggestion: familiarize yourself with Java naming conventions. Class names should start with uppercase.
The reason the constructor doesn't return a value is because it's not called directly by your code, it's called by the memory allocation and object initialization code in the run time.
Here is an article explaining this in greater detail:
https://www.quora.com/Why-is-the-return-type-of-constructor-not-void-while-the-return-type-of-a-function-can-be-void
This question already has answers here:
When should I use "this" in a class?
(17 answers)
Closed 7 years ago.
I'm trying to get an understanding of what the the java keyword this actually does.
I've been reading Sun's documentation but I'm still fuzzy on what this actually does.
The this keyword is a reference to the current object.
class Foo
{
private int bar;
public Foo(int bar)
{
// the "this" keyword allows you to specify that
// you mean "this type" and reference the members
// of this type - in this instance it is allowing
// you to disambiguate between the private member
// "bar" and the parameter "bar" passed into the
// constructor
this.bar = bar;
}
}
Another way to think about it is that the this keyword is like a personal pronoun that you use to reference yourself. Other languages have different words for the same concept. VB uses Me and the Python convention (as Python does not use a keyword, simply an implicit parameter to each method) is to use self.
If you were to reference objects that are intrinsically yours you would say something like this:
My arm or my leg
Think of this as just a way for a type to say "my". So a psuedocode representation would look like this:
class Foo
{
private int bar;
public Foo(int bar)
{
my.bar = bar;
}
}
The keyword this can mean different things in different contexts, that's probably the source of your confusion.
It can be used as a object reference which refers to the instance the current method was called on: return this;
It can be used as a object reference which refers to the instance the current constructor is creating, e.g. to access hidden fields:
MyClass(String name)
{
this.name = name;
}
It can be used to invoke a different constructor of a a class from within a constructor:
MyClass()
{
this("default name");
}
It can be used to access enclosing instances from within a nested class:
public class MyClass
{
String name;
public class MyClass
{
String name;
public String getOuterName()
{
return MyClass.this.name;
}
}
}
"this" is a reference to the current object.
See details here
The keyword this is a reference to the current object. It's best explained with the following piece of code:
public class MyClass {
public void testingThis()
{
// You can access the stuff below by
// using this (although this is not mandatory)
System.out.println(this.myInt);
System.out.println(this.myStringMethod());
// Will print out:
// 100
// Hello World
}
int myInt = 100;
string myStringMethod()
{
return "Hello World";
}
}
It's not used a lot unless you have code standard at your place telling you to use the this keyword. There is one common use for it, and that's if you follow a code convention where you have parameter names that are the same as your class attributes:
public class ProperExample {
private int numberOfExamples;
public ProperExample(int numberOfExamples)
{
this.numberOfExamples = numberOfExamples;
}
}
One proper use of the this keyword is to chain constructors (making constructing object consistent throughout constructors):
public class Square {
public Square()
{
this(0, 0);
}
public Square(int x_and_y)
{
this(x_and_y, x_and_y);
}
public Square(int x, int y)
{
// finally do something with x and y
}
}
This keyword works the same way in e.g. C#.
An even better use of this
public class Blah implements Foo {
public Foo getFoo() {
return this;
}
}
It allows you to specifically "this" object in the current context. Another example:
public class Blah {
public void process(Foo foo) {
foo.setBar(this);
}
}
How else could you do these operations.
"this" keyword refers to current object due to which the method is under execution. It is also used to avoid ambiguity between local variable passed as a argument in a method and instance variable whenever instance variable and local variable has a same name.
Example ::
public class ThisDemo1
{
public static void main(String[] args)
{
A a1=new A(4,5);
}
}
class A
{
int num1;
int num2;
A(int num1)
{
this.num1=num1; //here "this" refers to instance variable num1.
//"this" avoids ambigutiy between local variable "num1" & instance variable "num1"
System.out.println("num1 :: "+(this.num1));
}
A(int num, int num2)
{
this(num); //here "this" calls 1 argument constructor within the same class.
this.num2=num2;
System.out.println("num2 :: "+(this.num2));
//Above line prints value of the instance variable num2.
}
}
The keyword 'this' refers to the current object's context. In many cases (as Andrew points out), you'll use an explicit this to make it clear that you're referring to the current object.
Also, from 'this and super':
*There are other uses for this. Sometimes, when you are writing an instance method, you need to pass the object that contains the method to a subroutine, as an actual parameter. In that case, you can use this as the actual parameter. For example, if you wanted to print out a string representation of the object, you could say "System.out.println(this);". Or you could assign the value of this to another variable in an assignment statement.
In fact, you can do anything with this that you could do with any other variable, except change its value.*
That site also refers to the related concept of 'super', which may prove to be helpful in understanding how these work with inheritance.
It's a reference of actual instance of a class inside a method of the same class.
coding
public class A{
int attr=10;
public int calc(){
return this.getA()+10;
}
/**
*get and set
**/
}//end class A
In calc() body, the software runs a method inside the object allocated currently.
How it's possible that the behaviour of the object can see itself? With the this keyword, exactly.
Really, the this keyword not requires a obligatory use (as super) because the JVM knows where call a method in the memory area, but in my opinion this make the code more readeable.
It can be also a way to access information on the current context.
For example:
public class OuterClass
{
public static void main(String[] args)
{
OuterClass oc = new OuterClass();
}
OuterClass()
{
InnerClass ic = new InnerClass(this);
}
class InnerClass
{
InnerClass(OuterClass oc)
{
System.out.println("Enclosing class: " + oc + " / " + oc.getClass());
System.out.println("This class: " + this + " / " + this.getClass());
System.out.println("Parent of this class: " + this.getClass().getEnclosingClass());
System.out.println("Other way to parent: " + OuterClass.this);
}
}
}
Think of it in terms of english, "this object" is the object you currently have.
WindowMaker foo = new WindowMaker(this);
For example, you are currently inside a class that extends from the JFrame and you want to pass a reference to the WindowMaker object for the JFrame so it can interact with the JFrame. You can pass a reference to the JFrame, by passing its reference to the object which is called "this".
Every object can access a reference to itself with keyword this (sometimes called the this
reference).
First lets take a look on code
public class Employee {
private int empId;
private String name;
public int getEmpId() {
return this.empId;
}
public String getName() {
return this.name;
}
public void setEmpId(int empId) {
this.empId = empId;
}
public void setName(String name) {
this.name = name;
}
}
In the above method getName() return instance variable name.
Now lets take another look of similar code is
public class Employee {
private int empId;
private String name;
public int getEmpId() {
return this.empId;
}
public String getName() {
String name="Yasir Shabbir";
return name;
}
public void setEmpId(int empId) {
this.empId = empId;
}
public void setName(String name) {
this.name = name;
}
public static void main(String []args){
Employee e=new Employee();
e.setName("Programmer of UOS");
System.out.println(e.getName());
}
}
Output
Yasir Shabbir
this operator always work with instance variable(Belong to Object)
not any class variable(Belong to Class)
this always refer to class non static attribute not any other parameter or local variable.
this always use in non static method
this operator cannot work on static variable(Class variable)
**NOTE:**It’s often a logic error when a method contains a parameter or local variable that has the
same name as a field of the class. In this case, use reference this if you wish to access the
field of the class—otherwise, the method parameter or local variable will be referenced.
What 'this' does is very simply. It holds the reference of current
object.
This keyword holds the reference of instance of current class
This keyword can not be used inside static function or static blocks
This keyword can be used to access shadowed variable of instance
This keyword can be used to pass current object as parameter in function calls
This keyword can be used to create constructor chain
Source: http://javaandme.com/core-java/this-word
I can't seem to use getConstructor for constructors with no parameters.
I keep getting the following exception:
java.lang.NoSuchMethodException: classname.<init>()
Here is the code:
interface InfoInterface {
String getClassName();
String getMethodName();
String getArgument();
}
class asa implements InfoInterface {
#Override
public String getClassName() {
return ("jeden");
}
#Override
public String getMethodName() {
return ("metoda");
}
#Override
public String getArgument() {
return ("krzyk");
}
}
class Jeden {
Jeden() {
System.out.println("konstruktor");
}
public void Metoda(String s) {
System.out.println(s);
}
}
class Start {
public static void main(String[] argv) {
if (argv.length == 0) {
System.err.println("Uzycie programu: java Start nazwa_klasy nazwa_klasy2...");
return;
}
try {
for (int x = 0; x < argv.length; x++) {
Class<?> c = Class.forName(argv[x]);
InfoInterface d = (InfoInterface) c.newInstance();
String klasa = d.getClassName();
String metoda = d.getMethodName();
String argument = d.getArgument();
Class<?> o = Class.forName(klasa);
// o.newInstance();
Constructor<?> oCon = o.getConstructor();
System.out.println("ASD");
Class<?> p = (Class<?>) oCon.newInstance();
}
} catch (Exception e) {
System.out.println(e);
}
}
}
o.newInstance(); prints "konstruktor" without problems.
The problem is clear when you read the javadoc of .getConstructor():
Returns a Constructor object that reflects the specified public constructor of the class represented by this Class object.
Emphasis mine.
In your code, the constructor is not public!
Example:
// Note: class is NOT public -- its default constructor won't be either
final class Test
{
public static void main(final String... args)
throws NoSuchMethodException
{
// throws NoSuchMethodException
Test.class.getConstructor();
}
}
Obligatory link to an SO answer which also gives the JLS reference. In particular, note that the default constructor has the same access modifier as the class.
It seems as if your class provides a constructor that is NOT a default constructor. The call to getConstructor() without parameters requires the class to have a default constructor. The following test illustrates this.
import org.junit.Test;
public class ConstructorTest {
public static class ClassWithParameterizedConstructor {
public ClassWithParameterizedConstructor(final String param) {
// A parameterized constructor, no default constructor exists
}
}
#Test
public void testFoo() throws NoSuchMethodException {
// Parameterized constructor lookup works fine
ClassWithParameterizedConstructor.class.getConstructor(String.class);
// This doesn't work since there is no default constructor
ClassWithParameterizedConstructor.class.getConstructor();
}
}
So, a possible solution is to either change the call to getConstructor() to include the correct type or to provide a default constructor on the object itself (but why would you do that?).
Read this: http://docs.oracle.com/javase/tutorial/reflect/member/ctorInstance.html
It seems that both classes Class and Constructor have the method newInstance the difference is that in the Class class you can only call newInstance with no arguments, so the called constructor must have an no arguments (this also brings a problem when you have more that one constructor).
The methoe newInstance in the Constructor class allows you to call the constructor with arguments also, notice that you can also use the method getConstructors instead of getConstructor that returns you all the class constructors and allows you to call the constructor method you want.
In this case, since you only have one constructor only and with no arguments, Class.newInstance works fine. To use the getConstructor to have the same result you'll need to add in the end oCon.newInstance();
You can use getDeclaredConstructors() which returns an array of Constructor objects reflecting all the constructors declared by the class represented by this Class object
class SomeClass{
{
System.out.println("I'am here!");
}
}
public class Main {
public static void main(String[] args) throws Exception{
System.out.println(Arrays.toString(SomeClass.class.getDeclaredConstructors()));
// returns public, protected, default (package) access, and private constructors
// System.out.println(SomeClass.class.getConstructor());
// in that case you got:
// NoSuchMethodException: reflection.SomeClass.<init>()
// because SomeClass don't have public constructor
for (Constructor constructor : SomeClass.class.getDeclaredConstructors()){
constructor.newInstance();
}
}
}
And if you have private constructor like this:
class SomeClass{
private SomeClass(String val){
System.out.println(val);
}
}
You have to set accessible for constructor:
constructor.setAccessible(true);
And get something like this:
class SomeClass{
private SomeClass(String val){
System.out.println(val);
}
}
public class Main {
public static void main(String[] args) throws Exception{
for (Constructor constructor : SomeClass.class.getDeclaredConstructors()){
// constructor.newInstance("some arg"); // java.lang.IllegalAccessException
constructor.setAccessible(true);
constructor.newInstance("some arg");
}
}
}
Note: if your class declared as private his default constructor must be private too.
And be careful with nonstatic-inner classes, which receives an outer class instance
In this (somewhat convoluted) scenario, it's actually possible to get hold of the (non-public) constructor by replacing:
Constructor<?> oCon = o.getConstructor();
with
Constructor<?> oCon = o.getDeclaredConstructor();
The "default" visibility of the Jeden class (and its constructor) makes it accessible to the Start class, since it's defined in the same package.
i am new to java is there is any possible way of calling a function within same class without creating a object for the class my program is
public class Puppy{
public Pup(String name){
System.out.println("Passed Name is :" + name );
}
public static void main(String []args){
public Pup( "tommy" );
}
}
i want to call function pup without creating object for it ,is it possible?
You can declare the method to be static:
public static void Pup(String name){
...
}
As an aside: you should use standard Java naming conventions and start your method name with a lower-case letter:
public static void pup(String name){ ...
Try this:
public class Puppy{
public static void Pup(String name){
System.out.println("Passed Name is :" + name );
}
public static void main(String []args){
Pup("tommy");
}
}
You can define Pup as statis method like:
public static void Pup(String name){
// This constructor has one parameter, name.
System.out.println("Passed Name is :" + name );
}
And from main call it like:
Pup("tommy");
There are couple of issues in your code:
You don't have valid return type for your method Pup. If you dont return anything you should add void as return type.
You can't use public or any access modifier within any method. So you need remove public from method call.
I'm not sure but maybe....
Inside your main method, you can simply use this statement,
Pup("Your Name");
Your Pup method should have a valid return statement and use these modifiers,
public static
if it's a returning method
public static void
if it's a void method