Project Euler Consecutive Prime Sum Java - java

I wrote a program that didn't work for project Euler problem 50, so if you haven't solved that one probably don't look if you want too solve it.
the problem is linked here:https://projecteuler.net/problem=50
Spoiler to answer below
My answer was 997661, which was exactly ten more than the real solution
My program seems to function to me, but I am inexperienced and was hoping that a more experienced programmer could find what was wrong.
import java.util.ArrayList;
public class ConsecutivePrimeSum {
public static void main(String[] args) {
ArrayList<Integer> primes = new ArrayList<Integer>();
for (int i = 2; i < 1000000; i++) {
if (isPrime(i)) {
primes.add(i);
}
}
int total = 0;
int counter = 0;
while (total + primes.get(counter) < 1000000) {
total += primes.get(counter);
System.out.println(primes.get(counter));
counter += 1;
}
System.out.println(total + " " + counter);
}
public static boolean isPrime(Integer number) {
int sqrt = (int) Math.sqrt(number) + 1;
for (int i = 2; i < sqrt; i++) {
if (number % i == 0 && number != i) {
return false;
}
}
return true;
}
}

Related

Finding the smith number between given range

I will get to the point quickly. Basically smith numbers are: Composite number the sum of whose digits is the sum of the digits of its prime factors (excluding 1). (The primes are excluded since they trivially satisfy this condition). One example of a Smith number is the beast number 666=2·3·3·37, since 6+6+6=2+3+3+(3+7)=18.
what i've tried:
In a for loop first i get the sum of the current number's(i) digits
In same loop i try to get the sum of the number's prime factors digits.
I've made another method to check if current number that is going to proccessed in for loop is prime or not,if its prime it will be excluded
But my code is seems to not working can you guys help out?
public static void main(String[] args) {
smithInrange(1, 50);
}
public static void smithInrange(int start_val, int end_val) {
for (int i = start_val; i < end_val; i++) {
if(!isPrime(i)) { //since we banned prime numbers from this process i don't include them
int for_digit_sum = i, digit = 0, digit_sum = 0, for_factor_purpose = i, smith_sum = 0;
int first = 0, second = 0, last = 0;
// System.out.println("current number is" + i);
while (for_digit_sum > 0) { // in this while loop i get the sum of current number's digits
digit = for_digit_sum % 10;
digit_sum += digit;
for_digit_sum /= 10;
}
// System.out.println("digit sum is"+digit_sum);
while (for_factor_purpose % 2 == 0) { // i divide the current number to 2 until it became an odd number
first += 2;
for_factor_purpose /= 2;
}
// System.out.println("the first sum is " + first);
for (int j = 3; j < Math.sqrt(for_factor_purpose); j += 2) {
while (for_factor_purpose % j == 0) { // this while loop is for getting the digit sum of every prime
// factor that j has
int inner_digit = 0, inner_temp = j, inner_digit_sum = 0;
while (inner_temp > 0) {
inner_digit = inner_temp % 10;
second += inner_digit;
inner_temp /= 10;
}
// System.out.println("the second sum is " + second);
for_factor_purpose /= j;
}
}
int last_temp = for_factor_purpose, last_digit = 0, last_digit_sum = 0;
if (for_factor_purpose > 2) {
while (last_temp > 0) {
last_digit = last_temp % 10;
last += last_digit;
last_temp /= 10;
}
// System.out.println("last is " + last);
}
smith_sum = first + second + last;
// System.out.println("smith num is "+ smith_sum);
// System.out.println(smith_sum);
if (smith_sum == digit_sum) {
System.out.println("the num founded is" + i);
}
}
}
}
public static boolean isPrime(int i) {
int sqrt = (int) Math.sqrt(i) + 1;
for (int k = 2; k < sqrt; k++) {
if (i % k == 0) {
// number is perfectly divisible - no prime
return false;
}
}
return true;
}
the output is:
the num founded is4
the num founded is9
the num founded is22
the num founded is25
the num founded is27
the num founded is49
how ever the smith number between this range(1 and 50) are:
4, 22 and 27
edit:I_ve found the problem which is :
Math.sqrt(for_factor_purpose) it seems i should add 1 to it to eliminate square numbers. Thanks to you guys i've see sthe solution on other perspectives.
Keep coding!
Main loop for printing Smith numbers.
for (int i = 3; i < 10000; i++) {
if (isSmith(i)) {
System.out.println(i + " is a Smith number.");
}
}
The test method to determine if the supplied number is a Smith number. The list of primes is only increased if the last prime is smaller in magnitude than the number under test.
static boolean isSmith(int v) {
int sum = 0;
int save = v;
int lastPrime = primes.get(primes.size() - 1);
if (lastPrime < v) {
genPrimes(v);
}
outer:
for (int p : primes) {
while (save > 1) {
if (save % p != 0) {
continue outer;
}
sum += sumOfDigits(p);
save /= p;
}
break;
}
return sum == sumOfDigits(v) && !primes.contains(v);
}
Helper method to sum the digits of a number.
static int sumOfDigits(int i) {
return String.valueOf(i).chars().map(c -> c - '0').sum();
}
And the prime generator. It uses the list as it is created to determine if a given
number is a prime.
static List<Integer> primes = new ArrayList<>(List.of(2, 3));
static void genPrimes(int max) {
int next = primes.get(primes.size() - 1);
outer:
while (next <= max) {
next += 2;
for (int p : primes) {
if (next % p == 0) {
continue outer;
}
if (p * p > next) {
break;
}
}
primes.add(next);
}
}
}
I do not want to spoil the answer finding, but just some simpler code snippets,
making everything simpler, and more readable.
public boolean isSmith(int a) {
if (a < 2) return false;
int factor = findDivisor(a);
if (factor == a) return false;
int sum = digitSum(a);
// loop:
a /= factor;
sum -= digitSum(factor);
...
}
boolean isPrime(int a){
for(int i = 2; i*i <= a; i++) {
if (a % i == 0) {
return false;
}
}
return true;
}
int findDivisor(int a){
for(int i = 2; i*i <= a; i++) {
if (a % i == 0) {
return i;
}
}
return a;
}
int digitSum(int a) {
if (a < 10) {
return a;
}
int digit = a % 10;
int rest = a / 10;
return digit + digitSum(rest);
}
As you see integer division 23 / 10 == 2, and modulo (remainder) %: 23 % 10 == 3 can simplify things.
Instead of isPrime, finding factor(s) is more logical. In fact the best solution is not using findDivisor, but immediately find all factors
int factorsSum = 0;
int factorsCount = 0;
for(int i = 2; i*i <= a; i++) {
while (a % i == 0) {
factorsSum += digitSum(i);
a /= i;
factorsCount++;
}
}
// The remaining factor >= sqrt(original a) must be a prime.
// (It cannot contain smaller factors.)
factorsSum += digitSum(a);
factorsCount++;
Here is the code. If you need further help, please let me know. The code is pretty self explanatory and a decent bit was taken from your code but if you need me to explain it let me know.
In short, I created methods to check if a number is a smith number and then checked each int in the range.
import java.util.*;
public class MyClass {
public static void main(String args[]) {
System.out.println(smithInRange)
}
public int factor;
public boolean smithInRange(int a, int b){
for (int i=Math.min(a,b);i<=Math.max(a,b);i++) if(isSmith(i)) return true;
return false;
}
public boolean isSmith(int a){
if(a<2) return false;
if(isPrime(a)) return false;
int digits=0;
int factors=0;
String x=a+¨" ";
for(int i=0;i<x.length()-1;i++) digits+= Integer.parseInt(x.substring(i,i+1));
ArrayList<Integer> pF = new ArrayList<Integer>();
pF.add(a);
while(!aIsPrime(pF)){
int num = pF.get(pF.size-1)
pF.remove(pF.size()-1);
pF.add(factor);
pF.add(num/factor)
}
for(int i: pF){
if((factors+"").length()==1)factors+= i;
else{
String ss= i+" ";
int nums=0;
for(int j=0;j<ss.length()-1;j++){
nums+=Integer.parseInt(ss.substring(j,j+1));
}
}
}
return (factors==digits);
}
public boolean isPrime(int a){
for(int i=2;i<=(int)Math.sqrt(a),i++){
String s = (double)a/(double)i+"";
if(s.substring(s.length()-2).equals(".0")){
return false;
factor = i;
}
}
return true;
}
public boolean aIsPrime(ArrayList<int> a){
for(int i: a) if (!isPrime(a)) return false;
return true;
}
}

Find largest prime factor for the number 600851475143L [duplicate]

This question already has answers here:
Algorithm to find Largest prime factor of a number
(30 answers)
Closed 4 years ago.
I am getting output for 13195L, 24L, and 23L. But I am not getting output for 600851475143L. The system is going into infinite loop. Please help me identify what is wrong with my code.
package problem3;
public class problem3_version1 {
public static void main(String[] args) {
long dividend = 600851475143L;
// long dividend=13195L;
// long dividend=24L;
// long dividend=23L;
int num_of_divisors = 0;
for (long i = dividend - 1; i >= 2; i--) {
System.out.println("i =" + i);
int count = 2;
for (long j = 2; j < i; j++) {
if (i % j == 0)
count++;
if (count == 3)
break;
}
if (count == 2) {
if (dividend % i == 0) {
num_of_divisors++;
System.out.println("Highest factor is " + i);
break;
}
}
}
if (num_of_divisors == 0)
System.out.println("The number is prime");
}
}
try this solution :
public class LargestPrimeFactor
{
public static int largestPrimeFactor(long number) {
int i;
for (i = 2; i <= number; i++) {
if (number % i == 0) {
number /= i;
i--;
}
}
return i;
}
public static void main(String[] args) {
System.out.println(LargestPrimeFactor.largestPrimeFactor(600851475143l));
}
}
The problem was because you have nested loop with very big number, and that what made the loop

how do i get even placed digits from a number in java

I want my program to get all the even digits from a number input. Then multiply those with digits with 2. If the result is a two digit number, add them. At the end i want it to give me the sum of all the even digits.
public class evenplaceadd {
public static void main(String[] args) {
System.out.println(sumOfevenPlace(5566));
}
public static int sumOfevenPlace(int number)
{
int maxDigitLength = 4;
int sum = 0;
for (int i = 0; i < maxDigitLength; i++)
{
if (i % 2 == 0)
{
int digita = number % 10;
int digitb =digita*2;
int digitc;
if(digita < 9)
{
sum = sum + digitb;
}
else if(digitb>9)
{
digitc =(digitb % 10)+ (digitb /10);
sum =sum + digitc;
}
}
else
{
number = number/10;
}
}
return sum;
}
}
Your code seems ok for the most part. There are some minor flaws in the code which I am sure you will be able to figure out after understanding the code provided below. I have changed it up a bit and made it easier to read. Please confirm it is working, and next time please provide the code when asking question. I know you are new to the community, and so am I. Its a learning experience for all of us. All the best in the future :)
public static void int sumOfEvenDigits(int num){
int sum = 0;
int lastDig = 0;
while(num/10 != 0)
{
lastDig = num % 10;
num = num / 10;
if(lastDig % 2 != 0)
{
continue;
}
if(lastDig > 10)
{
sum += lastDig / 10;
sum += lastDig % 10;
}
else
{
sum += lastDig;
}
}
return sum;
}

The prime factors of 13195 are 5, 7, 13 and 29. What is the largest prime factor of the number 600851475143?

My program is not working on eclipse.. And i dont know whats wrong with it..
Plz help..
And plz tell the reason as well.
public class ProblemThree {
public static void main(String args[])
{
long a=0L, z=0L;
long n=600851475143L;
for(long i=2;i<=n ;++i)
{
if(600851475143L % i==0)
{
a=i;
if(a%2==0)
{; }
else if(a%3==0)
{ ;}
else if(a%5==0)
{ ;}
else if(a%7==0)
{ ;}
else if (a>z)
{
z=a;
}
}
}
System.out.println(z);
}
}
Thank you guys for your feedback but i have solved this question myself with the following code.. :)
public class ProblemThree {
public static void main(String args[])
{
long n=600851475143L;
for(long i=2;i<n ;++i)
{
while(n % i==0)
{//for yes
n=n/i;
}
}
System.out.println(n);
}
}
Your program isn't "returning" anything because it is still running. Your loop is still iterated. Your code needs to be modified to be more performant. Here is my solution to the same problem.
long testNum = 600851475143l;
int largestFactor = 0;
long loopMax = 17425170l; //largest known prime
for (int i = 3; i * i <= loopMax; i++) {
boolean isPrime = true;
for (int j = 2; j < i; j++) {
if (i % j == 0) {
isPrime = false;
break;
}
}
if (isPrime && testNum % i == 0) {
System.out.println("prime factor: " + i);
largestFactor = i;
loopMax = (testNum / i) + 1;
}
}
System.out.println("result is: " + largestFactor);
package Euler;
import java.util.Scanner;
public class euler3 {
public static void main(String args[])
{
long num;
Scanner sc = new Scanner(System.in);
num= sc.nextLong();
for(int i=2;i<num; i++)
{
while(num%i == 0)
{
//System.out.println(i);
num=num/i;
}
}
if(num>2)
System.out.println(num);
}
}
The prime factors of 13195 are 5, 7, 13 and 29.
The largest prime factor of the number 600851475143 is 6857.
#include <bits/stdc++.h>
using namespace std;
int SieveOfEratosthenes(int x,long long signed int n)
{
bool prime[x]; //use sieve upto square root of
// required number
memset(prime, true, sizeof(prime));
for (long long signed int p = 2; p * p <= x; p++)
{
if (prime[p] == true)
{
for (long long signed int i = p * p; i <= x; i += p)
prime[i] = false;
}
}
int res;
for (long long signed int p = 2; p <= x; p++)
if (prime[p])
{
if(n%p==0) //if number is divisble by prime number than update with
res=p; //latest value of prime number
}
return res;
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout<<SieveOfEratosthenes(775146,600851475143);//Return the answer
// long long signed int n;cin>>n; for value of n
//cout<<SieveOfEratosthenes(sqrt(n),n);
return 0;
}

Largest prime factor program takes aaaages - Java

So this is problem 3 from project Euler. For those who don't know, I have to find out the largest prime factor of 600851475143. I have the below code:
import java.lang.Math;
// 600851475143
public class LargestPrimeFactor {
public static void main(String[] stuff) {
long num = getLong("What number do you want to analyse? ");
long[] primes = primeGenerator(num);
long result = 0;
for(int i = 0; i < primes.length; i++) {
boolean modulo2 = num % primes[i] == 0;
if(modulo2) {
result = primes[i];
}
}
System.out.println(result);
}
public static long[] primeGenerator(long limit) {
int aindex = 0;
long[] ps = new long[primeCount(limit)];
for(long i = 2; i < limit + 1; i++) {
if(primeCheck(i)) {
ps[aindex] = i;
aindex++;
}
}
return ps;
}
public static boolean primeCheck(long num) {
boolean r = false;
if(num == 2 || num == 3) {
return true;
}
else if(num == 1) {
return false;
}
for(long i = 2; i < Math.sqrt(num); i++) {
boolean modulo = num % i == 0;
if(modulo) {
r = false;
break;
}
else if(Math.sqrt(num) < i + 1 && !modulo) {
r = true;
break;
}
}
return r;
}
public static int primeCount(long limit) {
int count = 0;
if(limit == 1 || limit == 2) {
return 0;
}
for(long i = 2; i <= limit; i++) {
if(primeCheck(i)) {
count++;
}
}
return count;
}
public static long getLong(String prompt) {
System.out.print(prompt + " ");
long mrlong = input.nextLong();
input.nextLine();
return mrlong;
}
}
But when I test the program with something (a lot) smaller than 600851475143, like 100000000, then the program takes its time - in fact, 100000000 has taken 20 minutes so far and is still going. I've obviously got the wrong approach here (and yes, the program does work, I tried it out with smaller numbers). Can anyone suggest a less exhaustive way?
public static void main(String[] args) {
long number = 600851475143L;
long highestPrime = -1;
for (long i = 2; i <= number; ++i) {
if (number % i == 0) {
highestPrime = i;
number /= i;
--i;
}
}
System.out.println(highestPrime);
}
public class LargestPrimeFactor {
public static boolean isPrime(long num){
int count = 0;
for(long i = 1; i<=num/2 ; i++){
if(num % i==0){
count++;
}
}
if(count==1){
return true;
}
return false;
}
public static String largestPrimeFactor(long num){
String factor = "none";
for(long i = 2; i<= num/2 ; i++){
if(num % i==0 && isPrime(i)){
factor = Long.toString(i);
}
}
return factor;
}
public static void main(String[] args) {
System.out.println(largestPrimeFactor(13195));
}
}
I have done several dozen of the challenges on Project Euler. Some of the questions can be solved with brute force (they recommend not to do this) but others require "out of the box" thinking. You cannot solve that by problem with brute force.
There is lots of help on the web to lead you in the right direction, for example:
http://thetaoishere.blogspot.com.au/2008/05/largest-prime-factor-of-number.html
The number of prime factors a number can have is always less than sqrt of that number so that there is no need to iterate through the number n to find its largest prime factor.
See this code.
public class LargestPrimeFactor {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
long num=sc.nextLong();
if(num>0 && num<=2)
{
System.out.println("largest prime is:-" + num);
System.exit(0);
}
int i=((Double)Math.sqrt(num)).intValue();
int j=3;
int x=0;
//used for looping through the j value which can also be a prime. for e.g in case of 100 we might get 9 as a divisor. we need to make sure divisor is also a prime number.
int z=0;
//same function as j but for divisor
int y=3;
int max=2;
//divisor is divisible
boolean flag=false;
//we found prime factors
boolean found=false;
while(x<=i)
{
y=3;
flag=false;
if(num % j ==0)
{
if(j>max)
{
for(z=0;z<Math.sqrt(j);z++)
{
if(j!=y && j % y==0)
{
flag=true;
}
y+=2;
}
if(!flag)
{
found=true;
max=j;
}
}
}
j+=2;
x++;
}
if(found){
System.out.println("The maximum prime is :- " + max);
}
else
{
System.out.println("The maximum prime is :- " + num);
}
}
}
change
for(long i = 2; i <= limit; i++)
to
// add the one for rounding errors in the sqrt function
new_limit = sqrt(limit) + 1;
// all even numbers are not prime
for(long i = 3; i <= new_limit; i+=2)
{
...
}
Factoring 1,000,000 for example instead of iterating 1,000,000 times
the thing only needs to do around 500 iterations.

Categories