Different time conversion by using java.util.Date in Java - java

I am using the below code for epoch to time conversion by using java.util.Date class in Java.
Long scheduledTime = 1602258300000L;
Date date = new Date(scheduledTime);
System.out.println("Date obj :" + date);
Below are the outputs while running the same code on two different timezone server :
On EDT server-
Date obj :Fri Oct 09 11:45:00 EDT 2020
On IST server -
Date obj :Fri Oct 09 21:15:00 IST 2020
Why does this happen? I am only passing milliseconds. This data is supposed to be treated as 21:15 on all servers. Why does Date class change the data?
Please share a sample piece of code for getting the same time data regardless of the timezone of the server.

A Date object represents a specific instant in time, represented by a given number of milliseconds since the Unix epoch.
The toString() method converts that instant in time into a local time based on the default time zone. It's not that the Date value itself "has" a time zone - it's just toString() that uses the default one.
This data is supposed to be treated as 21:15 on all servers.
That suggests you want to use the Indian time zone in all servers, at least when converting the instant in time for display. Without knowing anything more about your application, that's all we can say... other than "don't use java.util.Date or java.util.Calendar; use the java.time classes instead". They're much better designed, and you're less likely to run into problems like this.

java.time
I recommend you use java.time, the modern Java date and time API, for your date and time work.
long scheduledTime = 1_602_258_300_000L;
Instant pointInTime = Instant.ofEpochMilli(scheduledTime);
System.out.println(pointInTime);
Output from this snippet will be the same on all servers in all time zones:
2020-10-09T15:45:00Z
Since you want 21:15, specify the time zone for India:
ZoneId serverTimeZone = ZoneId.of("Asia/Kolkata");
ZonedDateTime dateTime = pointInTime.atZone(serverTimeZone);
System.out.println(dateTime);
2020-10-09T21:15+05:30[Asia/Kolkata]
What went wrong?
The epoch is one point in time independent of time zone. so a count of milliseconds also denotes one point in time. In your case that point in time is Friday 9. October 2020 15:45:00 UTC. And at that point in time it was 21:15 in India and 11:45 on the East coast of North America. It’s a confusing trait of the outdated Date class that on one hand it represents just a point in time, on the other hand its toString method grabs the time zone setting of the JVM and uses it for rendering the string to be returned, thus giving you the false impression that you get different Date objects in different time zones when in fact they are equal.
Links
Oracle tutorial: Date Time explaining how to use java.time.
Epoch & Unix Timestamp Conversion Tools where you can check what’s the equivalent of your milliseconds in UTC/GMT and in your own time zone.

As pointed by others you should now use the java.time package for working with time. If you look at the documentation of the toString() method of java.util.Date, it says that it coverts the Date object to a String of form:
EEE MMM d m dd hh:mm:ss zzz yyyy
It is like the following code is running in the background:
public String toString(){
Date date=this;
SimpleDateFormat simpleDateFormat=new SimpleDateFormat(
"EEE MMM d m dd hh:mm:ss zzz yyyy");
simpleDateFormat.setTimeZone(TimeZone.getDefault()); //This line is important.
return simpleDateFormat.format(date);
}
Now, if you wanna format your Date object for a certain timezone you can do the same including setting the timezone:
Long scheduledTime = 1602258300000L;
Date date = new Date(scheduledTime);
SimpleDateFormat simpleDateFormat=new SimpleDateFormat(
"EEE MMM d m dd hh:mm:ss zzz yyyy");
simpleDateFormat.setTimeZone(TimeZone.getTimeZone("IST"));
String dateStr = simpleDateFormat.format(date);
System.out.println("Date obj :" + dateStr);

Related

Date is not properly calculated in Java. Issue with zone

I have a date format stored in DB, for example:
Thu Aug 27 2020 00:00:00 GMT-0400 (Eastern Daylight Time)
I want to display the same date as output. Seems like I am missing something zone. It's evolving to be one day prior to this date.
I did the following:
DateTimeFormatter etFormat = DateTimeFormatter.ofPattern("MM/dd/yyyy 'at' hh:mma 'ET'");
ZoneId zoneId = ZoneId.of("America/New_York");
ZonedDateTime zonedDateTime = ((Timestamp) date).toLocalDateTime().atZone(zoneId);
etFormat.format(zonedDateTime)
Output:
08/26/2020 at 08:00PM ET
What am I doing wrong?
In your database you have the date time with offset UTC-04:40 (which is 4 hr behind from UTC assuming America/New_York timezone). And when it converts into Timestamp it will be stores in UTC without offset which is 08/26/2020 at 08:00PM.
So first convert the Timestamp into Instant of UTC and then convert the Instant into ZonedDateTime with the zone information
ZonedDateTime dateTime = timestamp.toInstant()
.atZone(ZoneOffset.UTC)
.withZoneSameInstant(ZoneId.of("America/New_York"));
etFormat.format(dateTime); //08/27/2020 at 00:00PM ET
The central issue is this:
java.sql.Timestamp, which is what e.g. resultSet.getTimestamp() returns, does not contain any timezone data. It is simply an instant in time, and it is stored as milliseconds since the epoch (jan 1st, 1970), UTC zone.
This does not match what most DBs store, because most DBs do in fact explicitly store the timezone with that. If your DB does not do this, or you picked a column type which does not do this, you should strongly consider changing that.
So, if the database has stored 'midnight in new york, aug 27th', and the database is forced by JDBC to put this in java.sql.Timestamp terms, there's nothing the DB engine can do about it, other than do its best, which is to return that exact time, in UTC terms. If you then print the UTC timestamp in human terms, you end up with '4 at night', and not 'midnight' (because new york is 4 hours earlier than UTC).
You then, with your code say: Okay, take the timestamp, turn it into a local date time (that'd be the notion of '27th of august, 4 o clock at night', without any inkling of in which czone that is in, and by itself not a thing that can ever be turned back into an epoch with more info), and then you put this at the new york zone, giving you '4 at night in new york', which is 4 hours later than where we started.
Okay, but how do I fix this?
Every other answer (so far) is just giving you silly ways to fight the symptoms.
I propose you fix the disease.
The actual error occurs when you ask the DB to transfer the fully timezoned information from its tables into the timezoneless java.sql.Timestamp object. Stop doing that.
Don't call (I assume your column is called 'mark', fill in whatever it might be):
resultSet.getTimestamp("mark").
Call:
resultSet.getObject("mark", ZonedDateTime.class);
or possibly try LocalDateTime.class, or possibly OffsetDateTime.class, but ZDT is preferred.
Then if that does not work, complain to your DB and/or JDBC driver because they're messing up and making it next to impossible to do timezone stuff properly when interacting with that DB from the java side.
Actually, the DB should store just a moment-in-time
If truly the time being stored represents the notion of an 'instant in time' and not so much 'as humans would ever talk to you about it', then there are data types for that too, but convert your java.sql.Timestamp object to a java.time.Instant asap (via .toInstant()), or straight up ask for it: resultSet.getObject("colName", Instant.class) and have java and the db line up the datatypes straight away.
Eh, whatever. Cures are for wussies, just work around it
Eh, well, the only thing you really need to do then is not to magically add 4 hours. This will do it:
ZonedDateTime dateTime = timestamp.toInstant()
.atZone(ZoneOffset.UTC)
.withZoneSameInstant(ZoneId.of("America/New_York"));
even if the tz stored in the DB is something else (it'll then give you that instant in time, but in new york, e.g. if the db has stored 'midnight in amsterdam', this will give you a time 6 hours earlier (or possibly 7 or 5, there are a few days in the year where things go ape due to US and europe having different shift days for daylight savings).
The format that you have used is not correct. I hope you will be able to understand the difference by comparing your pattern with mine. The reason why I've presented the parsing logic is that you have not made it clear the type of date-time. Whatever type it may be, it looks like you have a date-time string, Thu Aug 27 2020 00:00:00 GMT-0400 (Eastern Daylight Time) which you want to parse into ZonedDateTime and display the same into the pattern of the date-time string you have. I guess, the main problem you are having is how to format the ZonedDateTime instance into the same form.
Do it as follows:
import java.time.ZonedDateTime;
import java.time.format.DateTimeFormatter;
import java.time.format.DateTimeFormatterBuilder;
import java.time.format.TextStyle;
public class Main {
public static void main(String[] args) {
// Given date-time string
String dateStr = "Thu Aug 27 2020 00:00:00 GMT-0400 (Eastern Daylight Time)";
// Define the formatter for parsing
DateTimeFormatter parsingFormat = new DateTimeFormatterBuilder()
.appendPattern("EEE MMM dd uuuu HH:mm:ss zX")
.appendLiteral(" (")
.appendGenericZoneText(TextStyle.FULL)
.appendLiteral(")")
.toFormatter();
// Parse the given date-time into ZonedDateTime
ZonedDateTime zonedDateTime = ZonedDateTime.parse(dateStr, parsingFormat);
// Display in default format [i.e. zonedDateTime.toString()]
System.out.println(zonedDateTime);
// Define the formatter for output
DateTimeFormatter outputFormat = new DateTimeFormatterBuilder()
.appendPattern("EEE MMM dd uuuu HH:mm:ss z")
.appendLiteral(" (")
.appendPattern("zzzz")
.appendLiteral(")")
.toFormatter();
// Get the string representation in the custom format
String strDate = zonedDateTime.format(outputFormat);
// Display the string representation in the custom format
System.out.println(strDate);
}
}
Output:
2020-08-27T00:00-04:00[America/New_York]
Thu Aug 27 2020 00:00:00 GMT-04:00 (Eastern Daylight Time)
Note: By any chance, if you also have difficulty to convert the timestamp into ZonedDateTime, you can refer other answers on this page and use this answer to solve the problem with formatting.
java.time
I recommend that you use java.time, the modern Java date and time API, exclusively for your date work. Instead of getting a Date or Timestamp from your database, since JDBC 4.2 (in the case of MySQL that’s many years now) get a modern LocalDate from your result set. An example:
PreparedStatement ps = yourDatabaseConnection.prepareStatement("select your_date from your_table;");
ResultSet rs = ps.executeQuery();
while (rs.next()) {
LocalDate date = rs.getObject("your_date", LocalDate.class);
// Do something with date
}
A LocalDate is a date without time of day and without time zone. So this will relieve you of all time zone trouble.
If you want to print the start of the day in North American Eastern time zone to the user in the format used in the question:
DateTimeFormatter etFormat = DateTimeFormatter.ofPattern("MM/dd/yyyy 'at' hh:mma v");
ZoneId zoneId = ZoneId.of("America/New_York");
LocalDate date = LocalDate.of(2020, Month.AUGUST, 27);
ZonedDateTime startOfDay = date.atStartOfDay(zoneId);
String result = startOfDay.format(etFormat);
System.out.println(result);
Output from this example is:
08/27/2020 at 12:00AM ET
Do use pattern letter v for time zone in the format pattern rather than hard-coding ET. The latter will produce false and confusing results when one day a junior programmer feeds a ZonedDateTime in an other time zone into the code.
What went wrong in your code?
It’s not clear to me how you got your date from your database. Apparently date even though declared a Date was really a Timestamp (a bad practice since the inheritance relationship between the two classes is really one of implementation, not a conceptual one) denoting the start of the day in UTC. toLocalDateTime() is a dangerous and often meaningless call: it uses the time zone of the JVM for converting the Timestamp to a LocalDateTime. At 0:00 UTC it is 8 PM the evening before in Eastern time zone, so your LocalDateTime becomes 2020-08-26T20:00. Next atZone(zoneId) only gives the correct time because zoneId happens to coincide with the JVM’s time zone used in the previous step.
Link
Oracle tutorial: Date Time explaining how to use java.time.
The date is converted with timezone set to GMT.
final static String datePattern = "EEE MM/dd/yyyy HH:mm:ss 'GMT'Z '('z')'";
DateFormat df = new SimpleDateFormat(datePattern, Locale.getDefault());
simpledateformat.setTimeZone(TimeZone.getTimeZone("GMT"))
simpleDateFormat.format(givenDate)

Date Format with different Timezone in Java

I am confused with Timezone conversions in Java. I have a few cases which I will list out below.
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
// sdf.setTimeZone(TimeZone.getTimeZone("Asia/kolkata"));
Date date1 = sdf.parse("2021-01-31");
System.out.println(date1); //. O/P - Sun Jan 31 00:00:00 IST 2021
Now lets uncomment the Timezone part and see the time difference
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
sdf.setTimeZone(TimeZone.getTimeZone("Asia/kolkata"));
Date date1 = sdf.parse("2021-01-31");
System.out.println(date1); // O/P - Sun Jan 31 05:30:00 IST 2021
Now lets set the TimeZone to IST and see the time difference
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
sdf.setTimeZone(TimeZone.getTimeZone("IST"));
Date date1 = sdf.parse("2021-01-31");
System.out.println(date1); // O/P - Sun Jan 31 00:00:00 IST 2021
Now lets set the TimeZone to UTC and see the time difference
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
sdf.setTimeZone(TimeZone.getTimeZone("UTC"));
Date date1 = sdf.parse("2021-01-31");
System.out.println(date1); // O/P - Sun Jan 31 05:30:00 IST 2021
Can anybody please explain me why this shift in time is happening (+- 5:30) when I change the Timezone?
For IST and Asia/Kolkata, time should have remain same because they are same Timezone, but why the shift?
Why When using the UTC Timezone, time gets increased by 5:30 hours? What I understand is IST is 5:30 hrs ahead of UTC, so cnverting to UTC should have decreased the time by 5:30 hrs
Why even after converting to UTC, my time displays IST 2021?
I still have confusion here.
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
sdf.setTimeZone(TimeZone.getTimeZone("UTC"));
Date date1 = sdf.parse("2021-01-31");
System.out.println(date1.getTime()); // 1612051200000
SimpleDateFormat sdf1 = new SimpleDateFormat("yyyy-MM-dd");
sdf1.setTimeZone(TimeZone.getTimeZone("Asia/Kolkata"));
Date date2 = sdf1.parse("2021-01-31");
System.out.println(date2.getTime()); // 1612031400000
Why instant of time in UTC is greater than instant of time in Asia/Kolkata ?
Here are some things for you to note:
When a Date is printed, it will be formatted in your computer's local timezone (that's what Date.toString does). Presumably, your computer is in the Asia/Kolkata timezone, so the output is always displayed as a date & time in that timezone.
A Date represents a point in time (i.e. an instant). It is not a tuple of year, month, day, hour, minute, seconds and timezone
Since there are no time in your input string, the time 00:00:00 is used for the time when parsing.
Just a date and a time is not enough to produce a point in time. You also need a timezone to specify a point in time. Since there is no timezone in your input string, the local timezone of your computer is used, or if you have set it, sdf.getTimeZone().
Although a timezone is used in parsing the date, the timezone is not part of the Date object.
Can anybody please explain me why this shift in time is happening (+- 5:30) when I change the Timezone?
When you use the "IST" timezone (first and third code snippet), sdf gets the following pieces of information:
Date: 2021-01-31
Time: 00:00:00
TimeZone: Asia/Kolkata
With these pieces of information, it can produce a point in time, represented by a number of milliseconds since the Java Epoch - 1970-01-01 00:00:00 UTC. This is the Date object. Then you print the Date object, which gets formatted to your local timezone. Your local timezone just so happens to be the same as the one that sdf is provided with, so you see Sun Jan 31 00:00:00 IST 2021.
When you use UTC (second and fourth code snippets), these information are provided to sdf:
Date: 2021-01-31
Time: 00:00:00
TimeZone: UTC
That represents a different point in time than 2021-01-31T00:00:00 in Kolkata. How different? 2021-01-31T00:00:00 in UTC is exactly 5 and a half hours later than 2021-01-31T00:00:00 in Kolkata. Recall that to convert a UTC time to Kolkata, you add 5 and a half hours.
For IST and Asia/Kolkata, time should have remain same because they are same Timezone, but why the shift?
Because you have misspelled Asia/Kolkata. The first "K" in "Kolkata" should be capitalised. Unknown zone IDs are treated as UTC by the TimeZone class. This is why you should move to the new java.time classes. ZoneId throws an exception if you supply it with an unknown zone ID.
Why When using the UTC Timezone, time gets increased by 5:30 hours? What I understand is IST is 5:30 hrs ahead of UTC, so converting to UTC should have decreased the time by 5:30 hrs
You are thinking about formatting dates, not parsing, because remember that the timezone is not part of Date, but part of SimpleDateFormat. Your code does not format Date, only parses them. Without formatting, Dates are always printed in your local timezone.
To see your desired behaviour using SimpleDateFormat, you'd first parse the date string once, and then format it using SimpleDateFormats with different timezones.
Really though, you should change to java.time. Using that API, your zone changing code could be written like so:
ZonedDateTime zdt = LocalDate.parse("2021-01-31")
.atStartOfDay()
.atZone(ZoneId.of("Asia/Kolkata"));
System.out.println(zdt);
ZonedDateTime utcDateTime = zdt.withZoneSameInstant(ZoneId.of("UTC"));
System.out.println(utcDateTime);
// output:
// 2021-01-31T00:00+05:30[Asia/Kolkata]
// 2021-01-30T18:30Z[UTC]
java time
I recommend you use java.time, the modern Java date and time API, for your date work
LocalDate date = LocalDate.parse("2021-01-31");
System.out.println(date);
Output is:
2021-01-31
A LocalDate is a date without time of day and without time zone or UTC offset, so using it frees you completely from all time zone trouble. Furthermore we don’t need any explicit formatter. Your string is in ISO 8601 format, and LocalDate parses the most common ISO 8601 variant as its default. As you can see, it also prints the same ISO 8601 format back when we print it, implicitly calling its toString method.
What went wrong in your code?
The SimpleDateFormat, TimeZone and Date classes that you are using are poorly designed and long outdated. No wonder that their behaviour confuses you.
I am assuming that Asia/Kolkata (or Asia/Colombo or Asia/Calcutta) is the default time zone of your JVM. In your first example the SimpleDateFormat is using your default time zone and is parsing the string into the first moment of the day in that time zone.
In your second example, as Elavya has spotted so well, you have got a lower case k in Asia/kolkata which causes TimeZone not to recognize the intended time zone. And this is where TimeZone excels in bad design: it just tacitly gives you GMT instead. Next the Date class is poorly designed too and still prints the time in the default time zone of the JVM, giving the illusion that the Date object contains a time zone. This has confused very many. The start of the day in GMT is the same point in time as 05:30:00 IST, so this is what you get.
In your third and fourth example, even though the three letter time zone abbreviations are deprecated, IST (contrary to what Eklavya said) is interpreted as Asia/Kolkata and UTC as Etc/UTC. Even though as Eklavya also said, IST is ambiguous.
So in short:
The change happens because the start of the day is a different point in time in different time zones.
Because of your typo in Asia/kolkata. Time zone IDs are case sensitive.
You are not converting to UTC. You are parsing in UTC thereby converting from UTC, and Date.toString() further converts to Asia/Kolkata (IST) as the output also says.
Because the Date object hasn’t got a time zone and because Date.toString() grabs the default time zone of your JVM and uses it for rendering the string to be returned.
Links
Oracle tutorial: Date Time explaining how to use java.time.
Wikipedia article: ISO 8601
All about java.util.Date
Java doc for getTimeZone
ID - the ID for a TimeZone, either an abbreviation such as "PST", a
full name such as "America/Los_Angeles", or a custom ID such as
"GMT-8:00". Note that the support of abbreviations is for JDK 1.1.x
compatibility only and full names should be used.
TimeZone abbreviation is not supported. So you can't use IST
And in TimeZone Doc for Three-letter time zone IDs
For compatibility with JDK 1.1.x, some other three-letter time zone
IDs (such as "PST", "CTT", "AST") are also supported. However, their
use is deprecated because the same abbreviation is often used for
multiple time zones (for example, "CST" could be U.S. "Central
Standard Time" and "China Standard Time"), and the Java platform can
then only recognize one of them.
Problem is IST abbreviation is used for multiple time zones like Irish Standard Time, Isreal Standrad Time, Indian Standard Time. And you mistyped Asia/Kolkata as Asia/kolkata.
So, the GMT zone will return if the given ID cannot be understood from TimeZone.getTimeZone()
As an addition to the accepted answer, for the last part of your question;
Why instant of time in UTC is greater than instant of time in Asia/Kolkata in below code?
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
sdf.setTimeZone(TimeZone.getTimeZone("UTC"));
Date date1 = sdf.parse("2021-01-31");
System.out.println(date1.getTime()); // 1612051200000
SimpleDateFormat sdf1 = new SimpleDateFormat("yyyy-MM-dd");
sdf1.setTimeZone(TimeZone.getTimeZone("Asia/Kolkata"));
Date date2 = sdf1.parse("2021-01-31");
System.out.println(date2.getTime()); // 1612031400000
First, you have a point T in time regardless of timezone. In our example T=2021-01-31 00:00:00.
When we set timezone as UTC and print the time using java.util.Date.getTime() method, it will print milliseconds since the Unix epoch, which occurred at midnight January 1st 1970, UTC. So it will print 1612051200000. As you see the epoch and our date has the same timezone which is UTC. So the time is printed directly, no adjustment necessary for timezone.
Now, when we set timezone as Asia/Kolkata, during SimpleDateFormat.parse, timezone information will be added to date. That means +5:30h(19800000ms) will be added to time T. Therefore our time T is increased by 19800000ms. However T must be pointing to the same point in time. How do we fix that? It is fixed on SimpleDateFormat.parse method by subtracting 19800000ms from the time 1612051200000ms so that getTime() method will now show 1612031400000ms so that our actual time T will still show the same point in time(which is 1612051200000ms) because in this date object we have an extra 19800000ms which comes from timezone.

Java set timezone does not default to gmt+0

I have the following codes. The string form of the java date time is gmt+0. Thus I need to later convert it according to different local timezone but when I try to set the default timezone it keep going back another 8 hours cause my machine is on gmt+8.The output is showing me 2017-12-09 09:00:00 but I want to remain as 2017-12-09 17:00:00 because this is gmt+0.
String existingTime = "2017-12-09 17:00:00";
String newTime = "2017-12-09 14:00:00";
Date existingDateTime = null;
Date newDateTime = null;
Date localexistingDateTime = null;
Date localnewDateTime = null;
DateFormat dateTimeFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
TimeZone tz = TimeZone.getDefault();
sdf.setTimeZone(TimeZone.getTimeZone("GMT"));
// sdf.setTimeZone(TimeZone.getTimeZone("GMT+8:30"));
try {
existingDateTime = dateTimeFormat.parse(existingTime);
newDateTime = dateTimeFormat.parse(newTime);
System.out.println("GMT existingDateTime" + sdf.format(existingDateTime));
System.out.println("GMT newDateTime" + sdf.format(newDateTime));
} catch (ParseException ex) {
System.out.println("MyError:Parse Error has been caught for date parse close");
ex.printStackTrace(System.out);
}
This snippet may get you started using java.time, the modern Java date and time API. It is also known as JSR-310 after the Java Specification Request that first described it.
DateTimeFormatter formatter = DateTimeFormatter.ofPattern("uuuu-MM-dd HH:mm:ss");
String existingTime = "2017-12-09 17:00:00";
OffsetDateTime existingDateTime = LocalDateTime.parse(existingTime, formatter)
.atOffset(ZoneOffset.UTC);
System.out.println("UTC existingDateTime: " + existingDateTime.format(formatter));
System.out.println("Pyongyang existingDateTime: "
+ existingDateTime.atZoneSameInstant(ZoneId.of("Asia/Pyongyang"))
.format(formatter));
System.out.println("Singapore existingDateTime: "
+ existingDateTime.atZoneSameInstant(ZoneId.of("Asia/Singapore"))
.format(formatter));
The output from running the snippet is:
UTC existingDateTime: 2017-12-09 17:00:00
Pyongyang existingDateTime: 2017-12-10 01:30:00
Singapore existingDateTime: 2017-12-10 01:00:00
This was the output I got on my computer (in Europe/Berlin time zone), but it’s easier to keep the modern classes independent of the JVM’s time zone, so you should get the same output on your computer.
EDIT: You asked in a comment if it isn’t possible to use an offset of GMT+09:00 instead of a time zone. I’m unsure why you will want to do that since real people live in time zones rather than in offsets, but it’s easy when you know how:
System.out.println("GMT+09:00 existingDateTime: "
+ existingDateTime.withOffsetSameInstant(ZoneOffset.ofHours(9))
.format(formatter));
Output:
GMT+09:00 existingDateTime: 2017-12-10 02:00:00
A LocalDateTime is a date and time without time zone or offset information. Since your string doesn’t contain offset or zone, I use this for parsing. And since you told me your date-time was in GMT+0, I convert it to an OffsetDateTime with offset UTC first thing. From there it’s straightforward to convert it into different local time zones. So I demonstrate that for a couple of time zones, each time formatting the date-time using the same formatter I used for parsing, since I gather you tend to like the yyyy-MM-dd HH:mm:ss format.
I always give time zone in the region/city format. This is unambiguous (contrary to three letter abbreviations; for example, PYT may mean Paraguay Time or Pyongyang Time). And it will automatically take care of summer time (DST) in case the time zone uses such. Even historic changes in zone offset are built-in.
To learn to use java.time, see the Oracle Tutorial on Date Time and search for relevant questions on Stack Overflow, always looking for the java.time answers (there’s a wealth of old answers using the outdated classes, skip those). Even more places on the net hold valuable resources. Your search engine and your ability to distinguish good from poor are your friends.

Java: Convert MST to EST

I've been trying to convert the time since epoch until today and display it in Eastern Standard Time. Here is what outputs on the remote machine (it's remotely hosted):
Date now = new Date(System.currentTimeMillis());
System.out.println(now.toString());
// Thu Apr 24 14:36:11 MST 2014
No idea what MST is, but I want to get the current milliseconds since epoch in EST, and display the result in EST.
No matter what I do, I can't get daylights savings to work (it's currently Daylights Savings Time in the EST Time Zone); I either end up in PST, GMT or UTC, and when I do get "EST" it's either some random value or 1 hour behind or 3 hours behind.
I would like the output to be formatted using this DateFormat:
DateFormat EXPIRE_FORMAT = new SimpleDateFormat("MMM dd, yyyy h:mm a z");
Just set the time zone you want the time to be displayed in using DateFormat#setTimeZone(TimeZone)
Date now = new Date(System.currentTimeMillis());
DateFormat EXPIRE_FORMAT = new SimpleDateFormat("MMM dd, yyyy h:mm a z");
EXPIRE_FORMAT.setTimeZone(TimeZone.getTimeZone("America/Montreal")); // or whatever relevant TimeZone id
System.out.println(EXPIRE_FORMAT.format(now));
AFAIK, there is no EST currently. It's all EDT in Spring.
The above prints
Apr 24, 2014 5:53 PM EDT
The comments and the answer by Sotirios Delimanolis are correct.
Avoid 3 or 4 Letter Time Zone Codes
You should avoid the 3 or 4 letter codes for time zones as they are neither standardized nor unique. Instead use proper time zone names, usually a continent+city.
Avoid j.u.Date
The java.util.Date and .Calendar & SimpleDateFormat classes bundled with Java are notoriously troublesome. Use a decent date-time library with an updated time zone database. For Java, that means either Joda-Time or the new java.time package in Java 8 (inspired by Joda-Time).
Avoid Milliseconds-Since-Epoch
I suggest you avoid working with milliseconds since epoch. Gets confusing fast as the number is meaningless when read by a human. Let the date-time library manage the milliseconds for you.
Specify Time Zone
Generally best to specify the desired/intended time zone. If you omit the time zone, all the major date-time libraries (java.util.Date, Joda-Time, java.time) apply the JVM's default time zone.
Joda-Time Example
Example code in Joda-Time 2.3.
DateTimeZone timeZoneToronto = DateTimeZone.forID( "America/Toronto" );
DateTime dateTimeToronto = new DateTime( timeZoneToronto ); // Current moment.
DateTime dateTimeUTC = dateTimeToronto.withZone( DateTimeZone.UTC );
DateTime dateTimeParis = dateTimeToronto.withZone( DateTimeZone.forID( "Europe/Paris" ) );
If you really want the milliseconds since epoch, call the getMillis method. In example code above, all three DateTime objects have the same number of milliseconds-since-epoch.
long millis = dateTimeToronto.getMillis();
If you need a java.util.Date for use with other classes…
java.util.Date date = dateTimeToronto.toDate();
While Joda-Time uses the ISO 8601 standard formats as its defaults, you may specify other formats for generating strings.
DateTimeFormatter formatter = DateTimeFormat.forPattern( "MMM dd, yyyy h:mm a z" );
String output = formatter.print( dateTimeToronto );

how to parse output of new Date().toString()

I need a date format (maybe SimpleDateFormat) that parses reliable the output I get when I call toString() on a Date object. Output on my german(!) system is: "Sun Dec 12 13:45:12 CET 2010", so it doesn't seem to honor locales, which seems to make it easy.
Anyone?
That format is specified in the Date#toString().
Converts this Date object to a String of the form:
dow mon dd hh:mm:ss zzz yyyy
So, in SimpleDateFormat pattern terms:
EEE MMM dd HH:mm:ss zzz yyyy
Unrelated to the problem, I wonder if it wasn't in first place a bad idea to use Date#toString() instead of SimpleDateFormat#format() to output dates. I would consider to fix it straight there.
BalusC gave you the correct format, you I'd say - don't. The toString() method must not be used for anything other than logging.
You can use SimpleDateFormat for both formatting and parsing.
TL;DR
Instant parsedBack = Instant.parse(Instant.now().toString());
System.out.println(parsedBack);
2019-05-30T08:36:47.966274Z
Use ISO 8601 and java.time
If your real goal is to serialize and deserialize a date and time (for data transfer or for persistence, for example), serialize to ISO 8601, the standard format for date and time data.
Skip the long outdated Date class. The modern Java date and time API known as java.time is so much nicer to work with. The class you need from it is probably Instant (this depends on your more exact requirements).
The two points go nicely hand in hand:
Instant i = Instant.now();
String s = i.toString();
Instant theSameInstant = Instant.parse(s);
The modern classes’ toString methods produce ISO 8601 format (e.g., 2018-01-11T10:59:45.036Z), and their parse methods read the same format back. So this snippet is all you need, and you get an instant equal to the first, with nanosecond precision.
If you cannot control the string you get, and you get the result from Date.toString(), the format pattern string in BalusC’s answer works with java.time too:
DateTimeFormatter dtf
= DateTimeFormatter.ofPattern("EEE MMM dd HH:mm:ss zzz yyyy", Locale.ROOT);
Date d = new Date();
String s = d.toString();
Instant nearlyTheSameInstant = ZonedDateTime.parse(s, dtf).toInstant();
Some warnings, though:
Milliseconds from the original Date are lost since they are not in the string, leading to an inaccuracy of up to 999 milliseconds (which was why I named the variable nearlyTheSameInstant).
The era from the original Date is not in the string either. So if your original Date was in year 44 BCE, you will get the corresponding date in year 44 CE (AD) (in which case the variable name nearlyTheSameInstant was a lie anyway).
The time zone abbreviation in the string is often (most often?) ambiguous, so there is a great risk of getting the wrong time zone and hence a wrong time. To make matters worse, an ambiguous time zone abbreviation will be interpreted differently on different JVMs
It’s essential to provide a locale. Otherwise the JVM’s default locale will be used, and if it’s not English, parsing will fail. In the worst case you will see your code running fine for many years and suddenly it will break when one day someone runs it on a computer or device with a different locale setting. I use Locale.ROOT for “the locale neutral locale” or “don’t apply any locale specific processing”. It seems to be the correct approach here.
Links
Oracle tutorial: Date Time explaining how to use java.time.
Wikipedia article: ISO 8601
you can use jdk8's DateTimeFormatter
DateTimeFormatter dtf
= DateTimeFormatter.ofPattern("EEE MMM dd HH:mm:ss zzz yyyy", Locale.ROOT);
Date d = new Date();
String s = d.toString();
Instant nearlyTheSameInstant = ZonedDateTime.parse(s, dtf).toInstant();
Date nearlyTheSameInstantDate = Date.from(nearlyTheSameInstant);
DateTime dateTime = new DateTime(nearlyTheSameInstantDate);
String str = dateTime.toString("yyyy/MM/dd");
System.out.println("str = " + str);

Categories