I need to implement an ETL-like function to Migrate Mysql Data to another system via http calls. A high degree of real-time data is required in the process
I tried to combine spring-cloud-starter-stream-source-jdbc and spring-cloud-starter-stream-processor-httpclient. Instead, I got spring-cloud-starter-stream-source-jdbc without main class error.
jdbc --spring.datasource.driver-class-name=org.mariadb.jdbc.Driver --spring.datasource.username='******' --spring.dataso… | http …
At first, I reconstructed it with reference to the https://github.com/spring-cloud/spring-cloud-stream-samples/tree/master/source-samples/jdbc-source . I added main class and rabbit binder. The stream is running as scheduled. I didn't think it was supposed to be this complicated, and then I switched to jdbc-source-rabbit, which is exactly what I expected
I'm quite new to Apache Camel and trying to bring some routes into action.
I have a TCP server which serves large JSON-Messages (up to ~30-50kB in size, where i do not have any control about the source size) that contain lots of measurement data which i want to process using certain additional routes that work fine.
I'm using camel 2.20 within spring-boot environment 1.5.7.
I faced the problem that if i commented out every other routes except the incoming reduced netty4 route (only from and to a counter), see below
#Bean
public RouteBuilder getRoute() {
String fromSource = String.format("netty4:tcp://%s:%d?clientMode=true&textline=true&receiveBufferSize=64000&decoderMaxLineLength=64000",sourceIp,sourcePort);
return new RouteBuilder() {
from(fromSource)
.to("metrics:counter:incomingCounter");
};
}
The route works nearly fine but consumes more and more heap-space (around 2MB every second, where there are messages served with a frequency of around 20-30Hz) until java throws java.lang.OutOfMemoryError: Java heap space.
Without any route no memory-leak was registered, as i can focus the problem to the netty-route
Any help will be appreciated.
Thanks in advance.
I found the resolution myself by debugging the code.
I forgot to set property sync=false in netty4-camel endpoint as i don't want to process message and send an answer back to the server after processing, just consuming - while sync=true (default settings) buffers all incoming data for later response which caused my "memory-leak".
The behavior of "sync" was not totally clear from the netty4-camel documentation (http://camel.apache.org/netty4.html) - i'll suggest an improvement of the documentation (will write a mail with a proposal) to make the usage a little more clearly.
Maybe this helps someone another having a similar problem.
Best
I'm trying to build a custom mq exit to archive messages that hit a queue. I have the following code.
class MyMqExits implements WMQSendExit, WMQReceiveExit{
#Override
public ByteBuffer channelReceiveExit(MQCXP arg0, MQCD arg1, ByteBuffer arg2) {
// TODO Auto-generated method stub
if ( arg2){
def _bytes = arg2.array()
def results = new String(_bytes)
println results;
}
return arg2;
}
...
The content of the message (header/body) is in the byte buffer, along with some unreadable binary information. How can I parse the message (including the body and the queue name) from arg2? We've gone through IBM's documentation, but haven't found an object or anything that makes this easy.
Assuming the following two points:
1) Your sender application has not hard coded the queue name where it puts messages. So you can change the application configuration to send messages to a different object.
2) MessageId of the archived message is not important, only message body is important.
Then one alternative I can think of is to create an Alias queue that resolves to a Topic and use two subscribers to receive messages.
1) Subscriber 1: An administratively defined durable subscriber with a queue provided to receive messages. Provide the same queue name from which your existing consumer application is receiving messages.
2) Subscriber 2: Another administratively defined durable subscriber with queue provided. You can write a simple java application to get messages from this queue and archive.
3) Both subscribers subscribe to the same topic.
Here are steps:
// Create a topic
define topic(ANY.TOPIC) TOPICSTR('/ANY_TOPIC')
// Create an alias queue that points to above created topic
define qalias(QA.APP) target(ANY.TOPIC) targtype(TOPIC)
// Create a queue for your application that does business logic. If one is available already then no need to create.
define ql(Q.BUSLOGIC)
// Create a durable subscription with destination queue as created in previous step.
define sub(SB.BUSLOGIC) topicstr('/ANY_TOPIC') dest(Q.BUSLOGIC)
// Create a queue for application that archives messages.
define ql(Q.ARCHIVE)
// Create another subscription with destination queue as created in previous step.
define sub(SB.ARCHIVE) topicstr('/ANY_TOPIC') dest(Q.ARCHIVE)
Write a simple MQ Java/JMS application to get messages from Q.ARCHIVE and archive messages.
A receive exit is not going to give you the whole message. Send and receive exits operate on the transmission buffers sent/received by channels. These will contain various protocol flows which are not documented because the protocol is not public, and part of those protocol flows will be chunks of the messages broken down to fit into 32Kb chunks.
You don't give enough information in your question for me to know what type of channel you are using, but I'm guessing it's on the client side since you are writing it in Java and that is the only environment where that is applicable.
Writing the exit at the client side, you'll need to be careful you deal with the cases where the message is not successfully put to the target queue, and you'll need to manage syncpoints etc.
If you were using QMgr-QMgr channels, you should use a message exit to capture the MQXR_MSG invocations where the whole message is given to you. If you put any further messages in a channel message exit, the messages you put are included in the channel's Syncpoint and so committed if the original messages were committed.
Since you are using client-QMgr channels, you could look at an API Exit on the QMgr end (currently client side API Exits are only supported for C clients) and catch all the MQPUT calls. This exit would also give you the MQPUT return codes so you could code your exit to look out for, and deal with failed puts.
Of course, writing an exit is a complicated task, so it may be worth finding out if there are any pre-written tools that could do this for you instead of starting from scratch.
I fully agree with Morag & Shashi, wrong approach. There is an open source project called Message Multiplexer (MMX) that will get a message from a queue and output it to one or more queues. Context information is maintained across the message put(s). For more info on MMX go to: http://www.capitalware.com/mmx_overview.html
If you cannot change the source or target queues to insert MMX into the mix then an API Exit may do the trick. Here is a blog posting about message replication via an API Exit: http://www.capitalware.com/rl_blog/?p=3304
This is quite an old question but it's worth replying with an update that's relevant to MQ 9.2.3 or later. There is a new feature called Streaming Queues (see https://www.ibm.com/docs/en/ibm-mq/9.2?topic=scenarios-streaming-queues) and one of the use-cases it is designed to support is putting a copy of every message sent to a given queue, to an alternative queue. Another application can then consume the duplicate messages and archive them separately to the application that is processing the original messages.
I have an interface that I've exposed as a regular SOAP web service. One method of the interface consists for the client to send a file to the server, then the server processes the file and returns a result file. Processing the file may take some time, so I think using asynchronous invocation of this method is a better idea. I thought about the following flow:
The client invokes the asynchronous method and sends the file using an attachment (MTOM).
When the file is received by the server, a response is sent back to the client indicating that the file has been received and that it will be processed shortly.
Once the file is processes, a response is sent back to the client indicating it has been processed and a result file is returned in the response also as an attachment.
Is it possible using SOAP with CXF?
Thanks
You can use Callback approach of Asynchronous InvocationModel.
Callback approach - in this case, to invoke the remote operation, you
call another special method that takes a reference to a callback
object (of javax.xml.ws.AsyncHandler type) as one of its parameters.
Whenever the response message arrives at the client, the CXF runtime
calls back on the AsyncHandler object to give it the contents of the
response message
More information can be had from the following:
Apache CXF
If you use some tool like WSDL2Java for client generation, you can even choose to generate an asynchronous client.
It will generate for you a callback handler with empty methods for each of the service operations and exceptions of the service. You then can just implement those methods to set the actions to do when the response is received.
Remember that when an asynchronous call is done a new thread is started.
Yes, Once you receive the file, you may return the request id to client and start processing on server side and do maintain various states of processing. Client can come back in different interval, and will receive the processing status or the output if it is completed.
I've been writing a little application that will let people upload & download files to me. I've added a web service to this applciation to provide the upload/download functionality that way but I'm not too sure on how well my implementation is going to cope with large files.
At the moment the definitions of the upload & download methods look like this (written using Apache CXF):
boolean uploadFile(#WebParam(name = "username") String username,
#WebParam(name = "password") String password,
#WebParam(name = "filename") String filename,
#WebParam(name = "fileContents") byte[] fileContents)
throws UploadException, LoginException;
byte[] downloadFile(#WebParam(name = "username") String username,
#WebParam(name = "password") String password,
#WebParam(name = "filename") String filename) throws DownloadException,
LoginException;
So the file gets uploaded and downloaded as a byte array. But if I have a file of some stupid size (e.g. 1GB) surely this will try and put all that information into memory and crash my service.
So my question is - is it possible to return some kind of stream instead? I would imagine this isn't going to be terribly OS independent though. Although I know the theory behind web services, the practical side is something that I still need to pick up a bit of information on.
Cheers for any input,
Lee
Yes, it is possible with Metro. See the Large Attachments example, which looks like it does what you want.
JAX-WS RI provides support for sending and receiving large attachments in a streaming fashion.
Use MTOM and DataHandler in the programming model.
Cast the DataHandler to StreamingDataHandler and use its methods.
Make sure you call StreamingDataHandler.close() and also close the StreamingDataHandler.readOnce() stream.
Enable HTTP chunking on the client-side.
Stephen Denne has a Metro implementation that satisfies your requirement. My answer is provided below after a short explination as to why that is the case.
Most Web Service implementations that are built using HTTP as the message protocol are REST compliant, in that they only allow simple send-receive patterns and nothing more. This greatly improves interoperability, as all the various platforms can understand this simple architecture (for instance a Java web service talking to a .NET web service).
If you want to maintain this you could provide chunking.
boolean uploadFile(String username, String password, String fileName, int currentChunk, int totalChunks, byte[] chunk);
This would require some footwork in cases where you don't get the chunks in the right order (Or you can just require the chunks come in the right order), but it would probably be pretty easy to implement.
When you use a standardized web service the sender and reciever do rely on the integrity of the XML data send from the one to the other. This means that a web service request and answer only are complete when the last tag was sent. Having this in mind, a web service cannot be treated as a stream.
This is logical because standardized web services do rely on the http-protocol. That one is "stateless", will say it works like "open connection ... send request ... receive data ... close request". The connection will be closed at the end, anyway. So something like streaming is not intended to be used here. Or he layers above http (like web services).
So sorry, but as far as I can see there is no possibility for streaming in web services. Even worse: depending on the implementation/configuration of a web service, byte[] - data may be translated to Base64 and not the CDATA-tag and the request might get even more bloated.
P.S.: Yup, as others wrote, "chuinking" is possible. But this is no streaming as such ;-) - anyway, it may help you.
I hate to break it to those of you who think a streaming web service is not possible, but in reality, all http requests are stream based. Every browser doing a GET to a web site is stream based. Every call to a web service is stream based. Yes, all. We don't notice this at the level where we are implementing services or pages because lower levels of the architecture are dealing with this for you - but it is being done.
Have you ever noticed in a browser that sometimes it can take a while to fetch a page - the browser just keeps cranking away showing the hourglass? That is because the browser is waiting on a stream.
Streams are the reason mime/types have to be sent before the actual data - it's all just a byte stream to the browser, it wouldn't be able to identify a photo if you didn't tell it what it was first. It's also why you have to pass the size of a binary before sending - the browser won't be able to tell where the image stops and the page picks up again.
It's all just a stream of bytes to the client. If you want to prove this for yourself, just get a hold of the output stream at any point in the processing of a request and close() it. You will blow up everything. The browser will immediately stop showing the hourglass, and will display a "cannot find" or "connection reset at server" or some other such message.
That a lot of people don't know that all of this stuff is stream based shows just how much stuff has been layered on top of it. Some would say too much stuff - I am one of those.
Good luck and happy development - relax those shoulders!
For WCF I think its possible to define a member on a message as stream and set the binding appropriately - I've seen this work with wcf talking to Java web service.
You need to set the transferMode="StreamedResponse" in the httpTransport configuration and use mtomMessageEncoding (need to use a custom binding section in the config).
I think one limitation is that you can only have a single message body member if you want to stream (which kind of makes sense).
Apache CXF supports sending and receiving streams.
One way to do it is to add a uploadFileChunk(byte[] chunkData, int size, int offset, int totalSize) method (or something like that) that uploads parts of the file and the servers writes it the to disk.
Keep in mind that a web service request basically boils down to a single HTTP POST.
If you look at the output of a .ASMX file in .NET , it shows you exactly what the POST request and response will look like.
Chunking, as mentioned by #Guvante, is going to be the closest thing to what you want.
I suppose you could implement your own web client code to handle the TCP/IP and stream things into your application, but that would be complex to say the least.
I think using a simple servlet for this task would be a much easier approach, or is there any reason you can not use a servlet?
For instance you could use the Commons open source library.
The RMIIO library for Java provides for handing a RemoteInputStream across RMI - we only needed RMI, though you should be able to adapt the code to work over other types of RMI . This may be of help to you - especially if you can have a small application on the user side. The library was developed with the express purpose of being able to limit the size of the data pushed to the server to avoid exactly the type of situation you describe - effectively a DOS attack by filling up ram or disk.
With the RMIIO library, the server side gets to decide how much data it is willing to pull, where with HTTP PUT and POSTs, the client gets to make that decision, including the rate at which it pushes.
Yes, a webservice can do streaming. I created a webservice using Apache Axis2 and MTOM to support rendering PDF documents from XML. Since the resulting files could be quite large, streaming was important because we didn't want to keep it all in memory. Take a look at Oracle's documentation on streaming SOAP attachments.
Alternately, you can do it yourself, and tomcat will create the Chunked headers. This is an example of a spring controller function that streams.
#RequestMapping(value = "/stream")
public void hellostreamer(HttpServletRequest request, HttpServletResponse response) throws CopyStreamException, IOException
{
response.setContentType("text/xml");
OutputStreamWriter writer = new OutputStreamWriter (response.getOutputStream());
writer.write("this is streaming");
writer.close();
}
It's actually not that hard to "handle the TCP/IP and stream things into your application". Try this...
class MyServlet extends HttpServlet
{
public void doGet(HttpServletRequest request, HttpServletResponse response)
{
response.getOutputStream().println("Hello World!");
}
}
And that is all there is to it. You have, in the above code, responded to an HTTP GET request sent from a browser, and returned to that browser the text "Hello World!".
Keep in mind that "Hello World!" is not valid HTML, so you may end up with an error on the browser, but that really is all there is to it.
Good Luck in your development!
Rodney