I have an RSA public key certificate. I can use the file that has a .PEM extension or simply use it as a String which has the following format:
-----BEGIN RSA PUBLIC KEY-----
{KEY}
-----END RSA PUBLIC KEY-----
I am trying to use this key in order to send an encrypted JSON to the server. I tried numerous solutions from other related stack overflow questions, but none of the answers didn't for me. This answer seems to makes sense https://stackoverflow.com/a/43534042, but something doesn't work properly, maybe it's because X509EncodedKeySpec expects DER encoded data not PEM according to one of the comments. But in this case what should i use for PEM encoded data?
As already commented by #Topaco your RSA Public Key is in PEM encoding but in PKCS#1 format and not in PKCS#8 format that is readable by Java "out of the box".
The following solution was provided by #Maarten Bodewes here on SO (https://stackoverflow.com/a/54246646/8166854) will do the job to read and transform it to a (Java) usable RSAPublicKey.
The solution is running on my OpenJdk11, if your'e using "Android Java" you may have to change the Base64-calls. There are no external libraries like Bouncy Castle necessary. Please obey the notes from Maarten regarding key lengths.
The simple output:
Load RSA PKCS#1 Public Keys
pkcs1PublicKey: Sun RSA public key, 2048 bits
params: null
modulus: 30333480050529072539152474433261825229175303911986187056546130987160889422922632165228273249976997833741424393377152058709551313162877595353675051556949998681388601725684016724167050111037861889500002806879899578986908702627237884089998121288607696752162223715667435607286689842713475938751449494999920670300421827737208147069624343973533326291094315256948284968840679921633097541211738122424891429452073949806872319418453594822983237338545978675594260211082913078702997218079517998196340177653632261614031770091082266225991043014081642881957716572923856737534043425399435601282335538921977379429228634484095086075971
public exponent: 65537
code:
import java.io.IOException;
import java.security.GeneralSecurityException;
import java.security.KeyFactory;
import java.security.NoSuchAlgorithmException;
import java.security.interfaces.RSAPublicKey;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.X509EncodedKeySpec;
import java.util.Base64;
public class LoadPkcs1PublicKeyPemSo {
// solution from https://stackoverflow.com/a/54246646/8166854 answered Jan 18 '19 at 1:36 Maarten Bodewes
private static final int SEQUENCE_TAG = 0x30;
private static final int BIT_STRING_TAG = 0x03;
private static final byte[] NO_UNUSED_BITS = new byte[] { 0x00 };
private static final byte[] RSA_ALGORITHM_IDENTIFIER_SEQUENCE =
{(byte) 0x30, (byte) 0x0d,
(byte) 0x06, (byte) 0x09, (byte) 0x2a, (byte) 0x86, (byte) 0x48, (byte) 0x86, (byte) 0xf7, (byte) 0x0d, (byte) 0x01, (byte) 0x01, (byte) 0x01,
(byte) 0x05, (byte) 0x00};
public static void main(String[] args) throws GeneralSecurityException, IOException {
System.out.println("Load RSA PKCS#1 Public Keys");
String rsaPublicKeyPem = "-----BEGIN RSA PUBLIC KEY-----\n" +
"MIIBCgKCAQEA8EmWJUZ/Osz4vXtUU2S+0M4BP9+s423gjMjoX+qP1iCnlcRcFWxt\n" +
"hQGN2CWSMZwR/vY9V0un/nsIxhZSWOH9iKzqUtZD4jt35jqOTeJ3PCSr48JirVDN\n" +
"Let7hRT37Ovfu5iieMN7ZNpkjeIG/CfT/QQl7R+kO/EnTmL3QjLKQNV/HhEbHS2/\n" +
"44x7PPoHqSqkOvl8GW0qtL39gTLWgAe801/w5PmcQ38CKG0oT2gdJmJqIxNmAEHk\n" +
"atYGHcMDtXRBpOhOSdraFj6SmPyHEmLBishaq7Jm8NPPNK9QcEQ3q+ERa5M6eM72\n" +
"PpF93g2p5cjKgyzzfoIV09Zb/LJ2aW2gQwIDAQAB\n" +
"-----END RSA PUBLIC KEY-----";
RSAPublicKey pkcs1PublicKey = getPkcs1PublicKeyFromString(rsaPublicKeyPem);
System.out.println("pkcs1PublicKey: " + pkcs1PublicKey);
}
public static RSAPublicKey getPkcs1PublicKeyFromString(String key) throws GeneralSecurityException {
String publicKeyPEM = key;
publicKeyPEM = publicKeyPEM.replace("-----BEGIN RSA PUBLIC KEY-----", "");
publicKeyPEM = publicKeyPEM.replace("-----END RSA PUBLIC KEY-----", "");
publicKeyPEM = publicKeyPEM.replaceAll("[\\r\\n]+", "");
byte[] pkcs1PublicKeyEncoding = Base64.getDecoder().decode(publicKeyPEM);
return decodePKCS1PublicKey(pkcs1PublicKeyEncoding);
}
/*
solution from https://stackoverflow.com/a/54246646/8166854 answered Jan 18 '19 at 1:36 Maarten Bodewes
The following code turns a PKCS#1 encoded public key into a SubjectPublicKeyInfo encoded public key,
which is the public key encoding accepted by the RSA KeyFactory using X509EncodedKeySpec -
as SubjectPublicKeyInfo is defined in the X.509 specifications.
Basically it is a low level DER encoding scheme which
wraps the PKCS#1 encoded key into a bit string (tag 0x03, and a encoding for the number of unused
bits, a byte valued 0x00);
adds the RSA algorithm identifier sequence (the RSA OID + a null parameter) in front -
pre-encoded as byte array constant;
and finally puts both of those into a sequence (tag 0x30).
No libraries are used. Actually, for createSubjectPublicKeyInfoEncoding, no import statements are even required.
Notes:
NoSuchAlgorithmException should probably be caught and put into a RuntimeException;
the private method createDERLengthEncoding should probably not accept negative sizes.
Larger keys have not been tested, please validate createDERLengthEncoding for those -
I presume it works, but better be safe than sorry.
*/
public static RSAPublicKey decodePKCS1PublicKey(byte[] pkcs1PublicKeyEncoding)
throws NoSuchAlgorithmException, InvalidKeySpecException
{
byte[] subjectPublicKeyInfo2 = createSubjectPublicKeyInfoEncoding(pkcs1PublicKeyEncoding);
KeyFactory rsaKeyFactory = KeyFactory.getInstance("RSA");
RSAPublicKey generatePublic = (RSAPublicKey) rsaKeyFactory.generatePublic(new X509EncodedKeySpec(subjectPublicKeyInfo2));
return generatePublic;
}
public static byte[] createSubjectPublicKeyInfoEncoding(byte[] pkcs1PublicKeyEncoding)
{
byte[] subjectPublicKeyBitString = createDEREncoding(BIT_STRING_TAG, concat(NO_UNUSED_BITS, pkcs1PublicKeyEncoding));
byte[] subjectPublicKeyInfoValue = concat(RSA_ALGORITHM_IDENTIFIER_SEQUENCE, subjectPublicKeyBitString);
byte[] subjectPublicKeyInfoSequence = createDEREncoding(SEQUENCE_TAG, subjectPublicKeyInfoValue);
return subjectPublicKeyInfoSequence;
}
private static byte[] concat(byte[] ... bas)
{
int len = 0;
for (int i = 0; i < bas.length; i++)
{
len += bas[i].length;
}
byte[] buf = new byte[len];
int off = 0;
for (int i = 0; i < bas.length; i++)
{
System.arraycopy(bas[i], 0, buf, off, bas[i].length);
off += bas[i].length;
}
return buf;
}
private static byte[] createDEREncoding(int tag, byte[] value)
{
if (tag < 0 || tag >= 0xFF)
{
throw new IllegalArgumentException("Currently only single byte tags supported");
}
byte[] lengthEncoding = createDERLengthEncoding(value.length);
int size = 1 + lengthEncoding.length + value.length;
byte[] derEncodingBuf = new byte[size];
int off = 0;
derEncodingBuf[off++] = (byte) tag;
System.arraycopy(lengthEncoding, 0, derEncodingBuf, off, lengthEncoding.length);
off += lengthEncoding.length;
System.arraycopy(value, 0, derEncodingBuf, off, value.length);
return derEncodingBuf;
}
private static byte[] createDERLengthEncoding(int size)
{
if (size <= 0x7F)
{
// single byte length encoding
return new byte[] { (byte) size };
}
else if (size <= 0xFF)
{
// double byte length encoding
return new byte[] { (byte) 0x81, (byte) size };
}
else if (size <= 0xFFFF)
{
// triple byte length encoding
return new byte[] { (byte) 0x82, (byte) (size >> Byte.SIZE), (byte) size };
}
throw new IllegalArgumentException("size too large, only up to 64KiB length encoding supported: " + size);
}
}
Michael Fehr's answer shows how to load a public key in PKCS#1 format without third party libraries. If the latter is a requirement, then that's the way you have to go.
Otherwise, if you use BouncyCastle, there are much less elaborate solutions that might also be considered and are therefore worth mentioning (although the given answer is already accepted):
The following method expects a public key in PKCS#1 format, PEM encoded and loads it into a java.security.PublicKey instance:
import org.bouncycastle.asn1.x509.SubjectPublicKeyInfo;
import org.bouncycastle.openssl.PEMParser;
import org.bouncycastle.openssl.jcajce.JcaPEMKeyConverter;
import java.security.PublicKey;
import java.io.StringReader;
...
private static PublicKey getPublicKey(String publicKeyc) throws Exception {
PEMParser pemParser = new PEMParser(new StringReader(publicKeyc));
JcaPEMKeyConverter jcaPEMKeyConverter = new JcaPEMKeyConverter();
SubjectPublicKeyInfo subjectPublicKeyInfo = (SubjectPublicKeyInfo)pemParser.readObject();
PublicKey publicKey = jcaPEMKeyConverter.getPublicKey(subjectPublicKeyInfo);
return publicKey;
}
Another similarly compact implementation can be found here.
To use BouncyCastle in Android, a dependency to BouncyCastle corresponding to the API level used must be referenced in the dependencies section of the build.gradle file. I used API Level 28 (Pie) and referenced the following dependency (assuming Android Studio):
implementation 'org.bouncycastle:bcpkix-jdk15on:1.65'
Related
In my Java code, I'm trying to encrypt a String using RSA, with a public key. The String is a Base64 encoded String that represents an Image (Image was converted to String). It will be decrypted using a private key.
During the Encryption, I first got an exception "javax.crypto.IllegalBlockSizeException: Data must not be longer than 190 bytes". So, I processed the String (plaintext) in blocks of 189 which then resolved it.
During the Decryption, I got another exception "javax.crypto.IllegalBlockSizeException: Data must not be longer than 256 bytes". So, I processed the byte[] (ciphertext), by converting it to a String first, in blocks of 256 which then resolved it as well.
Again, during my decryption process, I end up getting a "javax.crypto.BadPaddingException: Decryption error" Exception, which I have been unable to resolve.
Upon the recommendation of experts on this site, I used "OAEPWithSHA-256AndMGF1Padding". I even tried using No Padding, after other padding methods, to see if the Exception would go away, but it did not work. What have I done wrong?
I was able to identify that the Exception was thrown at the line - decryptedImagePartial = t.rsaDecrypt(cipherTextTrimmed.getBytes(), privateKey);
- which is in the decryption portion of the main method.
Please bear with me if my coding practices are poor. I'd really prefer to just find out the error behind the exception for now.
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.NoSuchAlgorithmException;
import java.security.PrivateKey;
import java.security.PublicKey;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
public class Tester
{
public KeyPair buildKeyPair() throws NoSuchAlgorithmException
{
final int keySize = 2048;
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(keySize);
return keyPairGenerator.genKeyPair();
}
public byte[] encrypt(PublicKey publicKey, String message) throws Exception
{
Cipher cipher = Cipher.getInstance("RSA/ECB/OAEPWithSHA-256AndMGF1Padding");
cipher.init(Cipher.ENCRYPT_MODE, publicKey);
return cipher.doFinal(message.getBytes());
}
public String decrypt(PrivateKey privateKey, byte [] encrypted) throws Exception
{
Cipher cipher = Cipher.getInstance("RSA/ECB/OAEPWithSHA-256AndMGF1Padding");
cipher.init(Cipher.DECRYPT_MODE, privateKey);
return new String(cipher.doFinal(encrypted));
}
public byte[] rsaEncrypt(String watermarkMsg, PublicKey publicKey) throws Exception
{
byte[] cipherText = encrypt(publicKey, watermarkMsg);
return cipherText;
}
public String rsaDecrypt(byte[] cipherText, PrivateKey privateKey) throws Exception
{
String plainText = decrypt(privateKey, cipherText);
return plainText;
}
public static void main(String args[]) throws NoSuchAlgorithmException
{
Tester t = new Tester();
String inputImageFilePath = "<file_path_here";
String stringOfImage = null;
byte[] encryptedImage = null;
byte[] encryptedImagePartial = null;
KeyPair keyPair = t.buildKeyPair();
PublicKey pubKey = keyPair.getPublic();
PrivateKey privateKey = keyPair.getPrivate()
//-----------IMAGE TO STRING CONVERSION----------------
//The imagetostring() function retrieves the image at the file path and converts it into a Base64 encoded String
try
{
stringOfImage = t.imagetostring(inputImageFilePath);
}
catch(Exception e)
{
System.out.println(e.toString());
}
//-----------ENCRYPTION OF STRING----------------
//The encryption is done in blocks of 189, because earlier I got an exception - "javax.crypto.IllegalBlockSizeException: Data must not be longer than 190 bytes"
try
{
String plaintext = stringOfImage;
String plaintextTrimmed = "";
System.out.println(stringOfImage);
encryptedImage = new byte[15512]; //The size is given as 15512 because the length of the particular string was found to be 15512
while(plaintext!="")
{
if(plaintext.length()>189)
{
plaintextTrimmed = plaintext.substring(0, 189);
plaintext = plaintext.substring(189);
}
else
{
plaintextTrimmed = plaintext;
plaintext = "";
}
encryptedImagePartial = t.rsaEncrypt(plaintextTrimmed, pubKey);
encryptedImage = t.concatenate(encryptedImage, encryptedImagePartial);
System.out.println(encryptedImage.length);
}
}
catch(Exception e)
{
System.out.println(e.toString());
}
t.byteDigest(encryptedImage);
//-----------DECRYPTION OF STRING--------------
//The decryption is done in blocks of 189, because earlier I got an exception - "javax.crypto.IllegalBlockSizeException: Data must not be longer than 256 bytes"
try
{
// The ciphertext is located in the variable encryptedImage which is a byte[]
String stringRepOfCipherText = new String(encryptedImage); String cipherTextTrimmed = "";
String decryptedImagePartial;
String decryptedImage = "";
while(stringRepOfCipherText!="")
{
if(stringRepOfCipherText.length()>189)
{
cipherTextTrimmed = stringRepOfCipherText.substring(0, 189);
stringRepOfCipherText = stringRepOfCipherText.substring(189);
}
else
{
cipherTextTrimmed = stringRepOfCipherText;
stringRepOfCipherText = "";
}
decryptedImagePartial = t.rsaDecrypt(cipherTextTrimmed.getBytes(), privateKey);
decryptedImage = decryptedImage + decryptedImagePartial;
}
}
catch(BadPaddingException e)
{
System.out.println(e.toString());
}
catch(Exception e)
{
System.out.println(e.toString());
}
}
}
Also, I noticed a few other examples where KeyFactory was used to generate the keys. Could anyone also tell me the difference between using KeyFactory and what I have used?
You can not cut the ciphertext into arbitrary chunks!
Since you specifically asked for plain RSA without symmetric algorithms involved (which I strongly recommend against!), this is what you need to do:
Find out the maximum payload size for your RSA configuration.
Split your plaintext into chunks of this size
Encrypt each chunk individually and do not simply concatenate them and discard chunk boundaries!
During decryption:
Pass each ciphertext chunk to the decrypt function using the original size it has after encryption. Do not append any data and do not create "substrings".
Concatenate the resulting plaintexts.
Ideally you should use a hybrid encryption scheme:
generate an encryption key (encKey)
encrypt your image using a symmetric algorithm with encKey
encrypt encKey using pubKey with RSA
Symmetric ciphers can be used in different modes of operation, that avoid such length limitations.
First of all, it makes absolutely no sense to first encode the image to base 64. The input of modern ciphers consist of bytes, and images are already bytes. You may want to base 64 encode the ciphertext if you want to store that a string.
The input block size is indeed 190 bytes. You can see a table for RSA / OAEP here (don't forget to upvote!). I'm not sure why you would want to use 189 in that case; my code is however generalized. The output block size is simply the key size for RSA as it is explicitly converted to the key size in bytes (even if it could be smaller).
During decryption you convert the ciphertext to a string. However, string decoding in Java is lossy; if the decoder finds a byte that doesn't represent a character then it is dropped silently. So this won't (always work), resulting for instance in a BadPaddingException. That's OK though, we can keep to binary ciphertext.
So without further ado, some code for you to look at. Note the expansion of the ciphertext with the 66 bytes per block and the poor performance of - mainly - the decryption. Using AES with RSA in a hybrid cryptosystem is highly recommended (and not for the first time for this question).
import java.io.ByteArrayOutputStream;
import java.nio.charset.StandardCharsets;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.NoSuchAlgorithmException;
import java.security.interfaces.RSAPrivateKey;
import java.security.interfaces.RSAPublicKey;
import java.util.Arrays;
import javax.crypto.Cipher;
public class Tester {
private static final int KEY_SIZE = 2048;
private static final int OAEP_MGF1_SHA256_OVERHEAD = 66;
public static KeyPair buildKeyPair() throws NoSuchAlgorithmException {
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(KEY_SIZE);
return keyPairGenerator.generateKeyPair();
}
public static void main(String args[]) throws Exception {
KeyPair keyPair = Tester.buildKeyPair();
RSAPublicKey pubKey = (RSAPublicKey) keyPair.getPublic();
RSAPrivateKey privateKey = (RSAPrivateKey) keyPair.getPrivate();
// assumes the bitLength is a multiple of 8 (check first!)
int keySizeBytes = pubKey.getModulus().bitLength() / Byte.SIZE;
byte[] image = new byte[1000];
Arrays.fill(image, (byte) 'm');
// --- encryption
final Cipher enc;
try {
enc = Cipher.getInstance("RSA/ECB/OAEPWithSHA-256AndMGF1Padding");
} catch (NoSuchAlgorithmException e) {
throw new RuntimeException("OAEP with MGF-1 using SHA-256 not available in this runtime", e);
}
enc.init(Cipher.ENCRYPT_MODE, pubKey);
int fragmentsize = keySizeBytes - OAEP_MGF1_SHA256_OVERHEAD;
ByteArrayOutputStream ctStream = new ByteArrayOutputStream();
int off = 0;
while (off < image.length) {
int toCrypt = Math.min(fragmentsize, image.length - off);
byte[] partialCT = enc.doFinal(image, off, toCrypt);
ctStream.write(partialCT);
off += toCrypt;
}
byte[] ct = ctStream.toByteArray();
// --- decryption
Cipher dec = Cipher.getInstance("RSA/ECB/OAEPWithSHA-256AndMGF1Padding");
dec.init(Cipher.DECRYPT_MODE, privateKey);
ByteArrayOutputStream ptStream = new ByteArrayOutputStream();
off = 0;
while (off < ct.length) {
int toCrypt = Math.min(keySizeBytes, ct.length - off);
byte[] partialPT = dec.doFinal(ct, off, toCrypt);
ptStream.write(partialPT);
off += toCrypt;
}
byte[] pt = ptStream.toByteArray();
// mmmm...
System.out.println(new String(pt, StandardCharsets.US_ASCII));
}
}
I'm trying to generate an AES key, encrypt it and decrypt it using RSA.
It kind of works, except that after decrypting the data and encoding with Base64 I get a pile of "A" letters before my actual string(the base64-encoded AES key). I guess these were zeros in byte.
The "RSA/ECB/NoPadding" parameters are mandatory. What am I doing wrong ? I need it to return the original string/bytes.
package szyfrator;
import java.io.BufferedInputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.security.KeyFactory;
import java.security.NoSuchAlgorithmException;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;
import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import org.apache.commons.compress.compressors.bzip2.BZip2CompressorInputStream;
import org.apache.commons.compress.utils.IOUtils;
import org.apache.tools.bzip2.CBZip2OutputStream;
import com.google.common.hash.HashCode;
import com.google.common.hash.Hashing;
import com.google.common.io.Files;
import com.sun.org.apache.xml.internal.security.utils.Base64;
public class Cryptography {
private static byte[] aesKey;
private static String base64AESKey;
private static byte[] encryptedAESKey;
private static String base64AESEncryptedKey;
private static byte[] aesKeyTransformed;
public static void main(String args[]){
Cryptography.generateAESkey();
Cryptography.encryptAESKey(new File("G:\\HASHBABYHASH\\public.txt"));
Cryptography.decryptAESKey(new File("G:\\HASHBABYHASH\\private.txt"));
System.out.println("String: " + Base64.encode(Cryptography.getAesKey()) + "\r\n");
System.out.println("Encrypted string: " + Cryptography.getBase64EncryptedKey() + "\r\n");
System.out.println("Decrypted String: " + Base64.encode(Cryptography.getAesKeyTransformed()) + "\r\n");
}
public static void generateAESkey(){
try {
KeyGenerator keyGen = KeyGenerator.getInstance("AES");
keyGen.init(256);
SecretKey secretKey = keyGen.generateKey();
byte[] keyBytes = secretKey.getEncoded();
base64AESKey = Base64.encode(keyBytes);
aesKey = keyBytes;
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
}
}
public static void encryptAESKey(File publicKeyFile){
try {
FileInputStream input = new FileInputStream(publicKeyFile);
byte[] decoded = Base64.decode(IOUtils.toByteArray(input));
X509EncodedKeySpec publicSpec = new X509EncodedKeySpec(decoded);
KeyFactory keyFactory = KeyFactory.getInstance("RSA");
PublicKey publicKey = keyFactory.generatePublic(publicSpec);
Cipher cipher = Cipher.getInstance("RSA/ECB/NoPadding");
cipher.init(Cipher.ENCRYPT_MODE, publicKey);
encryptedAESKey = cipher.doFinal(aesKey);
base64AESEncryptedKey = Base64.encode(encryptedAESKey);
input.close();
}catch (Exception e) {
e.printStackTrace();
}
}
public static void decryptAESKey(File privateKeyFile){
try {
FileInputStream input = new FileInputStream(privateKeyFile);
byte[] decoded = Base64.decode(IOUtils.toByteArray(input));
PKCS8EncodedKeySpec keySpec = new PKCS8EncodedKeySpec(decoded);
KeyFactory keyFactory = KeyFactory.getInstance("RSA");
PrivateKey privateKey = keyFactory.generatePrivate(keySpec);
Cipher cipher = Cipher.getInstance("RSA/ECB/NoPadding");
cipher.init(Cipher.DECRYPT_MODE, privateKey);
aesKeyTransformed = cipher.doFinal(encryptedAESKey);
input.close();
}catch (Exception e) {
e.printStackTrace();
}
}
}
Here is the result:
String: xVwH7Nbz84emVoH0J31sRHC+B669T9wCUVlTDhYgXiI=
Encrypted string: INTA8rx46hX6bZbDIl4iiWsUGO4ywCW0Aee1reqQ3wR5X7He5ztLHvyZoa0WZmUGYbYwprNGffRI
OVJFxczMHkxUfHU1WWCTzcfNylD+sWObIYrbyc13aZi9OL/r1GXuaGtkIgTJyqv0QPHfIri7iaH3
Lr/F4EIcyphJM3E2reQ=
Decrypted String: AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxVwH7Nbz84emVoH0J31sRHC+
B669T9wCUVlTDhYgXiI=
In RSA some data is encoded into a large number and calculated upon. NoPadding (unpadded or textbook RSA) means that you're fully responsible for the proper encoding of the message. All of the calculations are done against a large modulus (should be at least 2048 bit nowadays). Since Java assumes big-endian numbers, your message is encoded into the least significant bytes automatically, but the decryption returns the decoded message in the same size of the modulus, because it cannot know whether the leading zero-bytes where intentional or not.
In order to make this calculation correct and secure it is necessary to apply padding. The old-style PKCS#1 v1.5 padding is not considered secure nowadays, but it only has 11 bytes of overhead (only 2048/8-11=245 bytes can be encrypted with a key of 2048 bit). The newer PKCS#1 v2.1 padding (OAEP) is considered secure and should be used here. It does have an overhead of 42 bytes if SHA-1 is used.
The "RSA/ECB/NoPadding" parameters are mandatory.
This is really bad, because it is very insecure: Which attacks are possible against raw/textbook RSA?
If you're not willing to simply change the cipher string to Cipher.getInstance("RSA/ECB/OAEPWithSHA-256AndMGF1Padding");, you will have to remove the leading zeros yourself. The problem is of course that this "zero-padding" mode is ambiguous and if the plaintext begins with a 0x00 byte, you will not be able to distinguish it from a padding byte and will have to remove it, thus breaking your plaintext. If the plaintext is an AES key as in your case, there is a 0.3% chance that it begins with a 0x00 byte and thus breaks the key. You will have to make sure that the key is actually correct and fill up with zero bytes if it has not the correct length.
Here is how you can remove leading zero bytes:
byte[] unpadZeros(byte[] in) {
int i = 0;
while(in[i] == 0) i++;
return Arrays.copyOfRange(in, i, in.length);
}
If you know that you're decrypting an AES key, then it's possible to make the unpadding no produce wrong data:
byte[] unpadZerosToGetAesKey(byte[] in) {
int i = 0;
while(in[i] == 0) i++;
int len = in.length - i;
if (len <= 16) len = 16;
else if (len <= 24) len = 24;
else len = 32;
return Arrays.copyOfRange(in, in.length - len, in.length);
}
Blowfish is capable of strong encryption and can use key sizes up to 56 bytes (a 448 bit key).
The key must be a multiple of 8 bytes (up to a maximum of 56).
I want to write example will automatically pad and unpad the key to size. Because Blowfish creates blocks of 8 byte encrypted output, the output is also padded and unpadded to multiples of 8 bytes.
actually want to write java code to simulate-
http://webnet77.com/cgi-bin/helpers/blowfish.pl
I am using info for tool-
ALGORITM = "Blowfish";
HEX KEY = "92514c2df6e22f079acabedce08f8ac3";
PLAIN_TEXT = "sangasong#song.com"
Tool returns-
CD3A08381467823D4013960E75E465F0B00C5E3BAEFBECBB
Please suggest.
Tried the java code:
public class TestBlowfish
{
final String KEY = "92514c2df6e22f079acabedce08f8ac3";
final String PLAIN_TEXT = "sangasong#song.com";
byte[] keyBytes = DatatypeConverter.parseHexBinary(KEY);
}
public static void main(String[] args) throws Exception
{
try
{
byte[] encrypted = encrypt(keyBytes, PLAIN_TEXT);
System.out.println( "Encrypted hex: " + Hex.encodeHexString(encrypted));
}catch (GeneralSecurityException e)
{
e.printStackTrace();
}
}
private static byte[] encrypt(byte[] key, String plainText) throws GeneralSecurityException
{
SecretKey secret_key = new SecretKeySpec(key, "Blowfish");
Cipher cipher = Cipher.getInstance("Blowfish");
cipher.init(Cipher.ENCRYPT_MODE, secret_key);
return cipher.doFinal(plainText.getBytes());
}
Result -
Encrypted hex: 525bd4bd786a545fe7786b0076b3bbc2127425f0ea58c29d
So the script uses an incorrect version of PKCS#7 padding that does not pad when the size of the input is already dividable by the block size - both for the key and the plaintext. Furthermore it uses ECB mode encryption. Neither of which should be used in real life scenarios.
The following code requires the Bouncy Castle provider to be added to the JCE (Service.addProvider(new BouncyCastleProvider())) and that the Hex class of Bouncy Castle libraries is in the class path.
Warning: only tested with limited input, does not cut the key size if the size of the key is larger than the maximum.
WARNING: THE FOLLOWING CODE IS NOT CRYPTOGRAPHICALLY SOUND
import org.bouncycastle.util.encoders.Hex;
public class BadBlowfish {
private static SecretKey createKey(String theKey) {
final byte[] keyData = theKey.getBytes(StandardCharsets.US_ASCII);
final byte[] paddedKeyData = halfPadPKCS7(keyData, 8);
SecretKey secret = new SecretKeySpec(paddedKeyData, "Blowfish");
return secret;
}
private static byte[] halfUnpadPKCS7(final byte[] paddedPlaintext, int blocksize) {
int b = paddedPlaintext[paddedPlaintext.length - 1] & 0xFF;
if (b > 0x07) {
return paddedPlaintext.clone();
}
return Arrays.copyOf(paddedPlaintext, paddedPlaintext.length - b);
}
private static byte[] halfPadPKCS7(final byte[] plaintext, int blocksize) {
if (plaintext.length % blocksize == 0) {
return plaintext.clone();
}
int newLength = (plaintext.length / blocksize + 1) * blocksize;
int paddingLength = newLength - plaintext.length;
final byte[] paddedPlaintext = Arrays.copyOf(plaintext, newLength);
for (int offset = plaintext.length; offset < newLength; offset++) {
paddedPlaintext[offset] = (byte) paddingLength;
}
return paddedPlaintext;
}
public static void main(String[] args) throws Exception {
Cipher cipher = Cipher.getInstance("Blowfish/ECB/NoPadding");
SecretKey key = createKey("123456781234567");
cipher.init(Cipher.DECRYPT_MODE, key);
byte[] plaintextData = cipher.doFinal(Hex.decode("085585C60B3D23257763E6D8BB0A0891"));
byte[] unpaddedPlaintextData = halfUnpadPKCS7(plaintextData, cipher.getBlockSize());
String plaintextHex = Hex.toHexString(unpaddedPlaintextData);
System.out.println(plaintextHex);
String plaintext = new String(unpaddedPlaintextData, StandardCharsets.UTF_8);
System.out.println(plaintext);
}
}
I am not sure about the relevance of this question: IMHO there is no point of getting the same output as this script: you have no guaranty about how secure/efficient it is...
What raises my eyebrow is the part about the padding: there are several solution to pad a block, some of then are simple but very unsecured, and maybe this script is using one of these "bad" solution.
Did you check that your program is able to retrieve the correct plain text ? (you will need to code the matching decrypt function).
If so, it means that it works correctly and it can be used for whatever your original purpose was, regardless what the ouput of this script is...
I have data encrypted in ColdFusion that I need to be able to decrypt and encrypt to the same exact value using Java. I was hoping someone may be able to help me with this. I will specify everything used in ColdFusion except for the actual PasswordKey, which I must keep secret for security purposes. The PasswordKey is 23 characters long. It uses upper and lowercase letters, numbers, and the + and = signs. I know this is a lot to ask, but any help would be greatly appreciated.
I tried using a Java encryption example I found online and just replacing the line below with the 23 characters used in our CF app:
private static final byte[] keyValue = new byte[] {'T', 'h', 'i', 's', 'I', 's', 'A', 'S', 'e', 'c', 'r', 'e', 't', 'K', 'e', 'y' };`
But I get the error:
java.security.InvalidKeyException: Invalid AES key length: 23 bytes
The CF code is:
Application.PasswordKey = "***********************";
Application.Algorithm = "AES";
Application.Encoding = "hex";
<cffunction name="encryptValue" access="public" returntype="string">
<cfargument name="strEncryptThis" required="yes">
<cfreturn Encrypt(TRIM(strEncryptThis), Application.PasswordKey, Application.Algorithm, Application.Encoding)>
</cffunction>
<cffunction name="decryptValue" access="public" returntype="string">
<cfargument name="strDecryptThis" required="yes">
<cfreturn Decrypt(TRIM(strDecryptThis), Application.PasswordKey, Application.Algorithm, Application.Encoding)>
</cffunction>
Your secret key is most likely a Base64 encoded key (23 chars should decode to about 16 bytes, which is the right length for a 128 bit key for AES).
So, in your java code, first run your secret key string through a Base64 decoder to get a byte[] of the appropriate length (16 bytes) for the AES algorithm.
128 but AES Encryption supports key key size of 16 bytes.
16 * 8 = 128 bits, even in the example the key is 16 bytes.
Sounds like your key is in Base64 so use Base64.decode(key or key.getBytes()) to get the byte array, check its in 16 bytes otherwise make it 16 bytes by padding.
Thank you everyone for your help. I wanted to post my final solution for others to use. I am including my entire encryption package code minus the specific password key (again for security). This code creates the same hex string as the CF code listed in the question, and decrypts it back to the proper english text string.
I found the bytesToHex and hexStringToByteArray functions in other question on stackoverflow, so my thanks to users maybeWeCouldStealAVan and Dave L. respectively also. I think I will look into other base 64 encoders/decoders in case the one from sun is ever made unavailable, but this definitely works for now. Thanks again.
package encryptionpackage;
import java.security.*;
import java.security.spec.InvalidKeySpecException;
import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.*;
public class encryption
{
// Note: The full CF default is "AES/ECB/PKCS5Padding"
private static final String ALGORITHM = "AES";
// The 24 character key from my CF app (base64 encoded)
// typically generated with: generateSecretKey("AES")
private static final String passKey = "***********************";
public static String encrypt(String valueToEnc) throws Exception
{
Key key = generateKey();
Cipher c = Cipher.getInstance(ALGORITHM);
c.init(Cipher.ENCRYPT_MODE, key);
byte[] encValue = c.doFinal(valueToEnc.getBytes());
String encryptedValue = bytesToHex(encValue);
return encryptedValue;
}
public static String decrypt(String encryptedValue) throws Exception
{
Key key = generateKey();
Cipher c = Cipher.getInstance(ALGORITHM);
c.init(Cipher.DECRYPT_MODE, key);
byte[] decordedValue = hexStringToByteArray(encryptedValue);
byte[] decValue = c.doFinal(decordedValue);
String decryptedValue = new String(decValue);
return decryptedValue;
}
private static Key generateKey() throws Exception
{
byte[] keyValue;
keyValue = new BASE64Decoder().decodeBuffer(passKey);
Key key = new SecretKeySpec(keyValue, ALGORITHM);
return key;
}
public static String bytesToHex(byte[] bytes)
{
final char[] hexArray = {'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'};
char[] hexChars = new char[bytes.length * 2];
int v;
for ( int j = 0; j < bytes.length; j++ )
{
v = bytes[j] & 0xFF;
hexChars[j * 2] = hexArray[v >>> 4];
hexChars[j * 2 + 1] = hexArray[v & 0x0F];
}
return new String(hexChars);
}
public static byte[] hexStringToByteArray(String s)
{
int len = s.length();
byte[] data = new byte[len / 2];
for (int i = 0; i < len; i += 2)
{
data[i / 2] = (byte) ((Character.digit(s.charAt(i), 16) << 4)
+ Character.digit(s.charAt(i+1), 16));
}
return data;
}
}
AES Encryption only supports a key-size of 128 bits, 192 bits or 256 bits.
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
You can't just take any byte array and use it as an AES key. In the sample code you see above, the example cleverly used 16 characters, which corresponds to a 128-bit key.
This is because 1 character or rather 1 byte corresponds to 8 bits.
A 16-value byte array will then correspond to 16 * 8 = 128 bits
23 characters = 23 * 8 = 184 bits, thus it is an invalid key-size.
You need either 16 characters, 24 characters, or 32 characters.
That being said, using merely characters for AES encryption is extremely insecure. Do use a proper and secure random key for encrypt purposes.
To generate a secure and random AES key:
SecureRandom random = new SecureRandom();
byte [] secret = new byte[16];
random.nextBytes(secret);
http://docs.oracle.com/javase/6/docs/api/java/security/SecureRandom.html
Someone asked me to decrypt with PHP a string encrypted with the following Java Class.
public class CryptoLibrary {
private Cipher encryptCipher;
private sun.misc.BASE64Encoder encoder = new sun.misc.BASE64Encoder();
public CryptoLibrary() throws SecurityException{
java.security.Security.addProvider(new com.sun.crypto.provider.SunJCE());
char[] pass = "NNSHHETJKKSNKH".toCharArray();
byte[] salt = {
(byte) 0xa3, (byte) 0x21, (byte) 0x24, (byte) 0x2c,
(byte) 0xf2, (byte) 0xd2, (byte) 0x3e, (byte) 0x19 };
init(pass, salt, iterations);
}
public void init(char[] pass, byte[] salt, int iterations)throws SecurityException{
PBEParameterSpec ps = new javax.crypto.spec.PBEParameterSpec(salt, 20);
SecretKeyFactory kf = SecretKeyFactory.getInstance("PBEWithMD5AndDES");
SecretKey k = kf.generateSecret(new javax.crypto.spec.PBEKeySpec(pass));
encryptCipher = Cipher.getInstance("PBEWithMD5AndDES/CBC/PKCS5Padding");
encryptCipher.init(Cipher.ENCRYPT_MODE, k, ps);
}
}
public synchronized String encrypt(String str) throws SecurityException{
if(str!=null){
byte[] utf8 = str.getBytes("UTF8");
byte[] enc = encryptCipher.doFinal(utf8);
return encoder.encode(enc);
}
else {
return null;
}
}
}
I don't know any Java so I need some help to understand this encryption.
1) what is the meaning of this line?
PBEParameterSpec ps = new javax.crypto.spec.PBEParameterSpec(salt,20);
2) what value should I use for the first parameter of
string mcrypt_encrypt ( string $cipher , string $key , string $data , string $mode [, string $iv ] )
3) When should I use MD5 in my php script?
I had to do the same thing for a customer of mine and wrote a few lines of code to help with issue: https://github.com/kevinsandow/PBEWithMD5AndDES
1) It creates the parameters for Password Based Encryption, the salt, which is included in the hash calculations, and the number of iterations that the hash method is executed (on it's own output). It is used to defeat rainbow table attacks, basically an attacker has to go through the same number of iterations to check if the password is correct, and he cannot use a precalculated table because the salt will be different for each password (so you cannot see if somebody has the same password as another user).
2) MCRYPT_DES, and you will need MCRYPT_MODE_CBC for the mode, and PKCS#5 padding of course.
3) Only when you are absolutely sure that its weaknesses are not exposed or when absolutely required for compatibility. Fortunately, it is relatively secure for key derivation functions. Download a pbkdf1 method for PHP and put it in there - if not already included.