I am currently have a spring service consuming an REST service via autogenerated code.
I placed an internal interface to have an abstraction from the REST interface since it is still in development.
The REST service is in fact two on the same host.
So I generate two times code having two components I can inject into my internal interface implementation.
In the interface implementation I do adapt the base paths of the REST client components via #PostConstruct since the URL is dependent on the deployment environment.
This works so far so good. Even though I believe it would be better to adapt the base path not in the internal interface implementation but instead in another place.
Thankful for any hints here.
The Problem
Now the tricky part.
The REST Services I consume exists multiple times with different data in the environment.
Some times there are two, some times three and so on.
The user of our website should be able to select which backend he wants to consume.
The information about which service backends are available should be configurable for the environment.
To be able to configure these environment dependent I would thought about adding a map in the properties like:
service-name: url
second-name: url
and so on.
This map would contain a default with the always existing service.
Via environment variables it can be overwritten to list more backend services.
So, now I want to be able to route the website request to the chosen backend service.
My idea is, that I would need some kind of service.
The service holds the internal interfaces with the different backend instances and can identify which to use based on the name.
The question is now, how to build this with Spring?
More specifically:
How do I construct multiple time my InternalRestClient with different dependencies?
How can I tell them apart/Identify and use them?
Thank you very much for your suggestions in advance.
Code Examples
The internal Rest Interface
public interface InternalRestClient {
String someAbstractMethodUsingBothServices(String someDate);
}
The Implementation
#Service
public class InternalRestClientImpl implements InternalRestClient{
#Value("${url}")
private String url;
private FirstRestService firstService;
private SecondRestService secondService;
public InternalRestClientImpl(FirstRestService firstService, SecondRestService secondService) {
this.firstService = firstService;
this.secondService = secondService;
}
#PostConstruct
void correctPaths() {
firstService.setBasePath(url);
secondService.setBasePath(url);
}
#Override
public String someAbstractMethodUsingBothServices(String someDate) {
return null;
}
}
The autogenerated openapi components
#Component
public class FirstRestService {
private String basePath;
public void setBasePath(String basePath) {
this.basePath = basePath;
}
// some methods
}
#Component
public class SecondRestService {
private String basePath;
public void setBasePath(String basePath) {
this.basePath = basePath;
}
// some other methods
}
Related
Our application calls many external API's which take a session token of the current user as input. So what we currently do is in a controller, get the session token for the user and pass it into a service which in turn might call another service or some API client. To give an idea, we end up with something like this (example is .NET but something similar is I think possible in Java)
public IActionResult DoSomething(string something)
{
this.someService.DoSomethingForUser(this.HttpContext.SessionToken, something);
return View();
}
And then we have
public class SomeService
{
private readonly IApiClient apiClient;
public SomeService(IApiClient apiClient)
{
this.apiClient = apiClient;
}
public void DoSomethingForUser(string sessionToken, something)
{
this.apiClient.DoSomethingForUser(sessionToken, something);
}
}
It can also happen that in SomeService another service is injected which in turn calls the IApiClient instead of SomeService calling IApiClient directly, basically adding another "layer".
We had a discussion with the team if it isn't better to instead of passing the session token, inject it using DI so you get something like this:
public IActionResult DoSomething(string something)
{
this.someService.DoSomethingForUser(something);
return View();
}
And then we have
public class SomeService
{
private readonly IUserService userService;
private readonly IApiClient apiClient;
public SomeService(IUserService userService, IApiClient apiClient)
{
this.userService = userService;
this.apiClient = apiClient;
}
public void DoSomethingForUser(string something)
{
this.apiClient.DoSomethingForUser(userService.SessionToken, something);
}
}
The IUserService would have an IHttpContextAccessor injected:
public class UserService : IUserService
{
private readonly IHttpContextAccessor httpContextAccessor;
public UserService(IHttpContextAccessor httpContextAccessor)
{
this.httpContextAccessor = httpContextAccessor;
}
public string SessionToken => httpContextAccessor.HttpContext.SessionToken;
}
The benefits of this pattern are I think pretty clear. Especially with many services, it keeps the code "cleaner" and you end up with less boilerplate code to pass a token around.
Still, I don't like it. To me the downsides of this pattern are more important than its benefit:
I like that passing the token in the methods is concise. It is clear that the service needs some sort of authentication token for it to function. I'm not sure if you can call it a side effect but the fact that a session token is magically injected three layers deep is impossible to tell just by reading the code
Unit testing is a bit more tedious if you have to Mock the IUserService
You run into problems when calling this in another thread, e.g. calling SomeService from another thread. Although these problems can be mitigated by injecting another concrete type of IUserService which gets the token from some place else, it feels like a chore.
To me it strongly feels like an anti pattern but apart from the arguments above it is mostly a feeling. There was a lot of discussion and not everybody was convinced that it was a bad idea. Therefor, my question is, is it an anti pattern or is it perfectly valid? What are some strong arguments for and against it, hopefully so there can be not much debate that this pattern is indeed, either perfectly valid or something to avoid.
I would say the main point is to enable your desired separation of concerns. I think it is a good question if expressed in those terms. As Kit says, different people may prefer different solutions.
REQUEST SCOPED OBJECTS
These occur quite naturally in APIs. Consider the following example, where a UI calls an Orders API, then the Orders API forwards the JWT to an upstream Billing API. A unique Request ID is also sent, in case the flow experiences a temporary problem. If the flow is retried, the Request ID can be used by APIs to prevent data duplication. Yet business logic should not need to know about either the Request ID or the JWT.
BUSINESS LOGIC CLASS DESIGN
I would start by designing my logic classes with my desired inputs, then work out the DI later. In my example the OrderService class might use claims to get the user identity and also for authorization. But I would not want it to know about HTTP level concerns:
public class OrderService
{
private readonly IBillingApiClient billingClient;
public OrderService(IBillingApiClient billingClient, ClaimsPrincipal user)
{
this.billingClient = billingClient;
}
public async void CreateOrder(OrderInput data)
{
this.Authorize();
var order = this.CreateOrder(data);
await this.billingClient.CreateInvoice(order);
}
}
DI SETUP
To enable my preferred business logic, I would write a little DI plumbing, so that I could inject request scoped dependencies in my preferred way. First, when the app starts, I would create a small middleware class. This will run early in the HTTP request pipeline:
private void ConfigureApiMiddleware(IApplicationBuilder api)
{
api.UseMiddleware<ClientContextMiddleware>();
}
In the middleware class I would then create a ClientContext object from runtime data. The OrderService class will run later, after next() is called:
public class ClientContextMiddleware
{
public async Task Invoke(HttpContext context)
{
var jwt = readJwt(context.Request);
var requestId = readRequestId(context.Request);
var holder = context.RequestServices.GetService<ClientContextHolder>();
holder.ClientContext = new ClientContext(jwt, requestIO);
await this.next(context);
}
}
In my DI composition at application startup I would express that the API client should be created when it is first referenced. In the HTTP request pipeline, the OrderService request scoped object will be constructed after the middleware has run. The below lambda will then be invoked:
private void RegisterDependencies(IServiceCollection services)
{
this.services.AddScoped<IApiClient>(
ctx =>
{
var holder = ctx.GetService<ClientContextHolder>();
return new ApiClient(holder.context);
});
this.services.AddScoped<ClientContextHolder>();
}
The holder object is just due to a technology limitation. The MS stack does not allow you to create new request scoped injectable objects at runtime, so you have to update an existing one. In a previous .NET tech stack, the concept of child container per request was made available to developers, so the holder object was not needed.
ASYNC AWAIT
Request scoped objects are stored against the HTTP request object, which is the correct behaviour when using async await. The current thread ID may switch, eg from 4 to 6 after the call to the Billing API.
If the OrderService class has a transient scope, it could get recreated when the flow resumes on thread 6. If this is the case, then resolution will continue to work.
SUMMARY
Designing inputs first, then writing some support code if needed is a good approach I think, and it is also useful to know the DI techniques. Personally I think natural request scoped objects that need to be created at runtime should be usable in DI. Some people may prefer a different approach though.
See in dotnet the area that I am an expert is not an anti standard on the contrary it is the model that many adopt but it is not a model that I would follow for the following reasons
it is not clear where is the token for those who read and use it being an anti clean code
you load important information in a place that is frequently accessed by the framework in the case of .netCore
your classes will reference a large property carrying a lot of unnecessary information when you could have created a more clean model that costs less memory and allocation time, I'm saying this because the HttpAcessor carries all the information relevant to your request
As I would take care of readability (clean code) and improve my performance
I would make a middleware or filter in my flow mvc where I would do the authentication part and create a class like:
public class TokenAuthenciationValues
{
public string TokenClient { get; set; }
public string TokenValue { get; set; }
}
Of course my method is an example but in my middleware I would implement it by loading its token values after calling the necessary apis (of course this model needs an interface and it needs to be configured as .AddScoped() in the case of .net)
That way I would use it in my methods only instantiating my ITokenAuthenciationValues in the constructor and I would have clear and clean information loaded in memory during the entire request
If it is necessary in the middle of the request to change the token any class can access it and change its value
I would have less memory allocated unused in my classes since the IHttpAcessor contract the ITokenAuthenciationValues only has relevant information
Hope this helps
I read "Clean Code" book ((c) Robert C. Martin) and try to use SRP(single responsibility principle). And I have some questions about it. I have some service in my application, and I do not know how can I refactor it so it matched the right approach. For example, I have service:
public interface SendRequestToThirdPartySystemService {
void sendRequest();
}
What does it do if you look at the class name? - send a request to the third party system. But I have this implementation:
#Slf4j
#Service
public class SendRequestToThirdPartySystemServiceImpl implements SendRequestToThirdPartySystemService {
#Value("${topic.name}")
private String topicName;
private final EventBus eventBus;
private final ThirdPartyClient thirdPartyClient;
private final CryptoService cryptoService;
private final Marshaller marshaller;
public SendRequestToThirdPartySystemServiceImpl(EventBus eventBus, ThirdPartyClient thirdPartyClient, CryptoService cryptoService, Marshaller marshaller) {
this.eventBus = eventBus;
this.thirdPartyClient = thirdPartyClient;
this.cryptoService = cryptoService;
this.marshaller = marshaller;
}
#Override
public void sendRequest() {
try {
ThirdPartyRequest thirdPartyRequest = createThirdPartyRequest();
Signature signature = signRequest(thirdPartyRequest);
thirdPartyRequest.setSignature(signature);
ThirdPartyResponse response = thirdPartyClient.getResponse(thirdPartyRequest);
byte[] serialize = SerializationUtils.serialize(response);
eventBus.sendToQueue(topicName, serialize);
} catch (Exception e) {
log.error("Send request was filed with exception: {}", e.getMessage());
}
}
private ThirdPartyRequest createThirdPartyRequest() {
...
return thirdPartyRequest;
}
private Signature signRequest(ThirdPartyRequest thirdPartyRequest) {
byte[] elementForSignBytes = marshaller.marshal(thirdPartyRequest);
Element element = cryptoService.signElement(elementForSignBytes);
Signature signature = new Signature(element);
return signature;
}
What does it do actually? - create a request -> sign this request -> send this request -> to send the response to Queue
This service inject 4 another services: eventBus, thirdPartyClient, cryptoSevice and marshaller. And in sendRequest method calls each this service.
If I want to create a unit test for this service, I need mock 4 services. I think it's too much.
Can somebody indicate how can this service be changed?
Change the class name and leave as is?
Split into several classes?
Something else?
The SRP is a tricky one.
Let's ask two questions:
What is a responsibility?
What are the different types of responsibilities?
One important thing about responsibilities is that they have a Scope and you can define them in different levels of Granularity. and are hierarchical in nature.
Everything in your application can have a responsibility.
Let's start with Modules. Each module has responsibilities an can adhere to the SRP.
Then this Module can be made of Layers. Each Layer has a responsibility and can adhere to the SRP.
Each Layer is made of different Objects, Functions etc. Each Object and/or Function has responsibilities and can adhere to the SRP.
Each Object has Methods. Each Method can adhere to the SRP. Objects can contain other objects and so on.
Each Function or Method in an Object is made of statements and can be broken down to more Functions/Methods. Each statement can have responsibilities too.
Let's give an example. Let's say we have a Billing module. If this module is implemented in a single huge class, does this module adhere to the SRP?
From the point of view of the system, the module does indeed adhere to the SRP. The fact that it's a mess doesn't affect this fact.
From the point of view of the module, the class that represents this module doesn't adhere to the SRP as it will do a lot of other things, like communicate with DB, send Emails, do business logic etc.
Let's take a look at the different types of responsibilities.
When something should be done
How it should be dome
Let's take an example.
public class UserService_v1 {
public class SomeOperation(Guid userID) {
var user = getUserByID(userID);
// do something with the user
}
public User GetUserByID(Guid userID) {
var query = "SELECT * FROM USERS WHERE ID = {userID}";
var dbResult = db.ExecuteQuery(query);
return CreateUserFromDBResult(dbResult);
}
public User CreateUserFromDBResult(DbResult result) {
// parse and return User
}
}
public class UserService_v2 {
public void SomeOperation(Guid userID) {
var user = UserRepository.getByID(userID);
// do something with the user
}
}
Let's take a look at these two implementations.
UserService_v1 and UserService_v2 do exactly the same thing but different ways. From the point of view of the System, these services adhere to the SRP as they contain operations related to Users.
Now let's take a look at what they actually do to complete their work.
UserService_v1 does these things:
Builds a SQL query string.
Calls the db to execute the query
Takes the specific DbResult and creates a User from it.
Does the operation on the User
UserService_v2 does these things:
1. Requests from the repository the User by ID
2. Does the operation on the User
UserService_v1 contains:
How specific query is build
How the specific DbResult is mapped to a User
When this query need to be called (in the begging of the operation in this case)
UserService_v1 contains:
When a User should be retrieved from the DB
UserRepository contains:
How specific query is build
How the specific DbResult is mapped to a User
What we do here is to move the responsibility of How from the Service to the Repository. This way each class has one reason to change. If how changes, we change the Repository. If when changes, we change the Service.
This way we create objects that collaborate with each other to do specific work, by dividing responsibilities. The tricky parts is: what responsibilities we divide?
If we have a UserService and OrderService we don't divide when and how here. We divide what so we can have one service per Entity in our system.
It's natural for there services to need other objects to do their work. We can of course add all of the responsibilities of what, when and how to a single object but that just makes to the messy, unreadable and hard to change.
In this regard the SRP helps us to achieve cleaner code by having more smaller parts that collaborate with and use each other.
Let's take a look at your specific case.
If you can move the responsibility of how the ClientRequest is created and signed by moving it to the ThirdPartyClient, your SendRequestToThirdPartySystemService will only tell when this request should be sent. This will remove Marshaller, and CryptoService as dependencies from your SendRequestToThirdPartySystemService.
Also you have SerializationUtils that you probably rename to Serializer to capture the intent better as Utils is something that we stick to objects that we just don't know how to name and contains a lot of logic (and probably multiple responsibilities).
This will reduce the number of dependencies and your tests will have less things to mock.
Here's a version of the sendRequest method with less responsibilities.
#Override
public void sendRequest() {
try {
// params are not clear as you don't show them to your code
ThirdPartyResponse response = thirdPartyClient.sendRequest(param1, param2);
byte[] serializedMessage = SerializationUtils.serialize(response);
eventBus.sendToQueue(topicName, serialize);
} catch (Exception e) {
log.error("Send request was filed with exception: {}", e.getMessage());
}
}
From your code I'm not sure if you can also move the responsibility of serialization and deserialization to the EventBus, but if you can do that, it will remove Seriazaliation from your service also. This will make the EventBus responsible for how it serialized and stores the things inside it making it more cohesive. Other objects that collaborate with it will just tell it to send and object to the queue not caring how this objects get's there.
In most of Java cases there exist two classes: one responsible for apply my business rules - Service layer - and another one responsible for interacting with my database - Dao/Repository layer. However, in PHP cases I just have one class that represents model Layer. My question is, assuming Laravel Framework, should I put my business rules inside a unique model class or there is another approach similar with JSF for instance? Can I use a Middleware class as a Service layer?
To be honest you can use Service/Repo Layers in PHP as well.
So what happens is
Controller passes the inputs to the service and service decides what action is to be done.
The Service Layer then calls the repo for receiving entries from database wherever necessary and perform all the business logic.
The Repo calls the model and data from the model is returned.
The Model only keeps Model specific data (like relations, appended attributes, casts array etc etc...)
To follow this approach, something like this can be done.
Controller
use App\Services\PostService;
class PostController
{
public function __construct()
{
$this->postService = new PostService;
}
public function show($id)
{
$viewData = $this->postService->getPostData($id);
return view('posts.show', $viewData);
}
}
Service Layer
use App\Repositories\PostRepository;
use App\Repositories\CommentRepository;
class PostService
{
public function __construct()
{
$this->postRepo = new PostRepository;
$this->commentRepo = new CommentRepository;
}
public function getPostData($id)
{
$post = $this->postRepo->get($id);
$recentComments = $this->commentsRepo->getRecentComments();
return collect(compact('post', 'recentComments'));
}
}
Repository Layer
use App\Models\Post;
public function PostRepository
{
public function get()
{
return Post::findOrFail($id);
}
}
Also, for your last question, I'd like to say, Middlewares are meant to be used as a per-requisite only. In other words, lets say you want to ensure a user is logged in to view that particular route, then you'll apply the auth middleware and protect your routes from other not-logged in users... According to me, using Service Layer as Middleware isn't really required. You can obviously call a service layer in a Middleware by $this->myService = new Service but making it as a middleware doesn't really sound a good practice.
Hope I answered your question well enough :)
I'm currently working on a project that involves creating an abstraction layer. The goal of the project is to support multiple implementations of server software in the event that I might need to switch over to it. The list of features to be abstracted is rather long, so I'm going to want to look into a rather painless way to do it.
Other applications will be able to interact with my project and make calls that will eventually boil down to being passed to the server I'm using.
Herein lies the problem. I haven't much experience in this area and I'm really not sure how to make this not become a sandwich of death. Here's a chain of roughly what it's supposed to look like (and what I'm trying to accomplish).
/*
Software that is dependent on mine
|
Public API layer (called by other software)
|
Abstraction between API and my own internal code (this is the issue)
|
Internal code (this gets replaced per-implementation, as in, each implementation needs its own layer of this, so it's a different package of entirely different classes for each implementation)
|
The software I'm actually using to write this (which is called by the internal code)
*/
The abstraction layer (the one in the very middle, obviously) is what I'm struggling to put together.
Now, I'm only stuck on one silly aspect. How can I possibly make the abstraction layer something that isn't a series of
public void someMethod() {
if(Implementation.getCurrentImplementation() == Implementation.TYPE1) {
// whatever we need to do for this specific implementation
else {
throw new NotImplementedException();
}
}
(forgive the pseudo-code; also, imagine the same situation but for a switch/case since that's probably better than a chain of if's for each method) for each and every method in each and every abstraction-level class.
This seems very elementary but I can't come up with a logical solution to address this. If I haven't explained my point clearly, please explain with what I need to elaborate on. Maybe I'm thinking about this whole thing wrong?
Why not using inversion of control ?
You have your set of abstractions, you create several implementations, and then you configure your public api to use one of the implementations.
Your API is protected by the set of interfaces that the implementations inherit. You can add new implementations later without modifying the API code, and you can switch even at runtime.
I don't know anymore if inversion of control IS dependency injection, or if DI is a form of Ioc but... it's just that you remove the responsibility of dependency management from your component.
Here, you are going to have
API layer (interface that the client uses)
implementations (infinite)
wrapper (that does the IoC by bringing the impl)
API layer:
// my-api.jar
public interface MyAPI {
String doSomething();
}
public interface MyAPIFactory {
MyAPI getImplementationOfMyAPI();
}
implementations:
// red-my-api.jar
public class RedMyAPI implements MyAPI {
public String doSomething() {
return "red";
}
}
// green-my-api.jar
public class GreenMyAPI implements MyAPI {
public String doSomething() {
return "green";
}
}
// black-my-api.jar
public class BlackMyAPI implements MyAPI {
public String doSomething() {
return "black";
}
}
Some wrapper provide a way to configure the right implementation. Here, you can hide your switch case in the factory, or load the impl from a config.
// wrapper-my-api.jar
public class NotFunnyMyAPIFactory implements MyAPIFactory {
private Config config;
public MyAPI getImplementationOfMyAPI() {
if (config.implType == GREEN) {
return new GreenMyAPI();
} else if (config.implType == BLACK) {
return new BlackMyAPI();
} else if (config.implType == RED) {
return new RedMyAPI();
} else {
// throw...
}
}
}
public class ReflectionMyAPIFactory implements MyAPIFactory {
private Properties prop;
public MyAPI getImplementationOfMyAPI() {
return (MyAPI) Class.forName(prop.get('myApi.implementation.className'))
}
}
// other possible strategies
The factory allows to use several strategies to load the class. Depending on the solution, you only have to add a new dependency and change a configuration (and reload the app... or not) to change the implementation.
You might want to test the performances as well.
If you use Spring, you can only use the interface in your code, and you inject the right implementation from a configuration class (Spring is a DI container). But no need to use Spring, you can do that on the Main entry point directly (you inject from the nearest of your entry point).
The my-api.jar does not have dependencies (or maybe some towards the internal layers).
All the jar for implementations depend on my-api.jar and on you internal code.
The wrapper jar depends on my-api.jar and on some of the impl jar.
So the client load the jar he wants, use the factory he wants or a configuration that inject the impl, and use your code. It depends also on how you expose your api.
So I'm writing a web service architecture which includes FunctionProvider classes which do the actual processing of requests, and a main Endpoint class which receives and delegates requests to the proper FunctionProvider.
I don't know exactly the FunctionProviders available at runtime, so I need to be able to 'register' (if that's the right word) them with my main Endpoint class, and query them to see if they match an incoming request.
public class MyFunc implements FunctionProvider{
static {
MyEndpoint.register(MyFunc);
}
public Boolean matchesRequest(Request req){...}
public void processRequest(Request req){...}
}
public class MyEndpoint{
private static ArrayList<FunctionProvider> functions = new ArrayList<FunctionProvider>();
public void register(Class clz){
functions.add(clz);
}
public void doPost(Request request){
//find the FunctionProvider in functions
//matching the request
}
}
I've really not done much reflective Java like this (and the above is likely wrong, but hopefully demonstrates my intentions).
What's the nicest way to implement this without getting hacky?
Do not let the FunctionProviders self register. Bootstrap the endpoint through some application init. call with a list of FunctionProviders. That way you can configure priority (what if two providers both claim they can process a request?). The way you set it up now you need to invoke the class somehow to trigger the static constructor, too indirect.
If detecting whether or not a FunctionProvider supports a given request is trivial consider making it part of configuration. If this is in the request map it to that FunctionProvider. This would seperate concerns a bit better. If the detection is complicated consider doing it in seperate classes from the FunctionProvider.
By configuring a delegate/function pointer you can possibly prevent from needing a FunctionProvider altogether (not sure if/how Java supports delegates).