Memory discrepancies between JVM and k8s pod stats [duplicate] - java

For my application, the memory used by the Java process is much more than the heap size.
The system where the containers are running starts to have memory problem because the container is taking much more memory than the heap size.
The heap size is set to 128 MB (-Xmx128m -Xms128m) while the container takes up to 1GB of memory. Under normal condition, it needs 500MB. If the docker container has a limit below (e.g. mem_limit=mem_limit=400MB) the process gets killed by the out of memory killer of the OS.
Could you explain why the Java process is using much more memory than the heap? How to size correctly the Docker memory limit? Is there a way to reduce the off-heap memory footprint of the Java process?
I gather some details about the issue using command from Native memory tracking in JVM.
From the host system, I get the memory used by the container.
$ docker stats --no-stream 9afcb62a26c8
CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM % NET I/O BLOCK I/O PIDS
9afcb62a26c8 xx-xxxxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.0acbb46bb6fe3ae1b1c99aff3a6073bb7b7ecf85 0.93% 461MiB / 9.744GiB 4.62% 286MB / 7.92MB 157MB / 2.66GB 57
From inside the container, I get the memory used by the process.
$ ps -p 71 -o pcpu,rss,size,vsize
%CPU RSS SIZE VSZ
11.2 486040 580860 3814600
$ jcmd 71 VM.native_memory
71:
Native Memory Tracking:
Total: reserved=1631932KB, committed=367400KB
- Java Heap (reserved=131072KB, committed=131072KB)
(mmap: reserved=131072KB, committed=131072KB)
- Class (reserved=1120142KB, committed=79830KB)
(classes #15267)
( instance classes #14230, array classes #1037)
(malloc=1934KB #32977)
(mmap: reserved=1118208KB, committed=77896KB)
( Metadata: )
( reserved=69632KB, committed=68272KB)
( used=66725KB)
( free=1547KB)
( waste=0KB =0.00%)
( Class space:)
( reserved=1048576KB, committed=9624KB)
( used=8939KB)
( free=685KB)
( waste=0KB =0.00%)
- Thread (reserved=24786KB, committed=5294KB)
(thread #56)
(stack: reserved=24500KB, committed=5008KB)
(malloc=198KB #293)
(arena=88KB #110)
- Code (reserved=250635KB, committed=45907KB)
(malloc=2947KB #13459)
(mmap: reserved=247688KB, committed=42960KB)
- GC (reserved=48091KB, committed=48091KB)
(malloc=10439KB #18634)
(mmap: reserved=37652KB, committed=37652KB)
- Compiler (reserved=358KB, committed=358KB)
(malloc=249KB #1450)
(arena=109KB #5)
- Internal (reserved=1165KB, committed=1165KB)
(malloc=1125KB #3363)
(mmap: reserved=40KB, committed=40KB)
- Other (reserved=16696KB, committed=16696KB)
(malloc=16696KB #35)
- Symbol (reserved=15277KB, committed=15277KB)
(malloc=13543KB #180850)
(arena=1734KB #1)
- Native Memory Tracking (reserved=4436KB, committed=4436KB)
(malloc=378KB #5359)
(tracking overhead=4058KB)
- Shared class space (reserved=17144KB, committed=17144KB)
(mmap: reserved=17144KB, committed=17144KB)
- Arena Chunk (reserved=1850KB, committed=1850KB)
(malloc=1850KB)
- Logging (reserved=4KB, committed=4KB)
(malloc=4KB #179)
- Arguments (reserved=19KB, committed=19KB)
(malloc=19KB #512)
- Module (reserved=258KB, committed=258KB)
(malloc=258KB #2356)
$ cat /proc/71/smaps | grep Rss | cut -d: -f2 | tr -d " " | cut -f1 -dk | sort -n | awk '{ sum += $1 } END { print sum }'
491080
The application is a web server using Jetty/Jersey/CDI bundled inside a fat far of 36 MB.
The following version of OS and Java are used (inside the container). The Docker image is based on openjdk:11-jre-slim.
$ java -version
openjdk version "11" 2018-09-25
OpenJDK Runtime Environment (build 11+28-Debian-1)
OpenJDK 64-Bit Server VM (build 11+28-Debian-1, mixed mode, sharing)
$ uname -a
Linux service1 4.9.125-linuxkit #1 SMP Fri Sep 7 08:20:28 UTC 2018 x86_64 GNU/Linux
https://gist.github.com/prasanthj/48e7063cac88eb396bc9961fb3149b58

Virtual memory used by a Java process extends far beyond just Java Heap. You know, JVM includes many subsytems: Garbage Collector, Class Loading, JIT compilers etc., and all these subsystems require certain amount of RAM to function.
JVM is not the only consumer of RAM. Native libraries (including standard Java Class Library) may also allocate native memory. And this won't be even visible to Native Memory Tracking. Java application itself can also use off-heap memory by means of direct ByteBuffers.
So what takes memory in a Java process?
JVM parts (mostly shown by Native Memory Tracking)
1. Java Heap
The most obvious part. This is where Java objects live. Heap takes up to -Xmx amount of memory.
2. Garbage Collector
GC structures and algorithms require additional memory for heap management. These structures are Mark Bitmap, Mark Stack (for traversing object graph), Remembered Sets (for recording inter-region references) and others. Some of them are directly tunable, e.g. -XX:MarkStackSizeMax, others depend on heap layout, e.g. the larger are G1 regions (-XX:G1HeapRegionSize), the smaller are remembered sets.
GC memory overhead varies between GC algorithms. -XX:+UseSerialGC and -XX:+UseShenandoahGC have the smallest overhead. G1 or CMS may easily use around 10% of total heap size.
3. Code Cache
Contains dynamically generated code: JIT-compiled methods, interpreter and run-time stubs. Its size is limited by -XX:ReservedCodeCacheSize (240M by default). Turn off -XX:-TieredCompilation to reduce the amount of compiled code and thus the Code Cache usage.
4. Compiler
JIT compiler itself also requires memory to do its job. This can be reduced again by switching off Tiered Compilation or by reducing the number of compiler threads: -XX:CICompilerCount.
5. Class loading
Class metadata (method bytecodes, symbols, constant pools, annotations etc.) is stored in off-heap area called Metaspace. The more classes are loaded - the more metaspace is used. Total usage can be limited by -XX:MaxMetaspaceSize (unlimited by default) and -XX:CompressedClassSpaceSize (1G by default).
6. Symbol tables
Two main hashtables of the JVM: the Symbol table contains names, signatures, identifiers etc. and the String table contains references to interned strings. If Native Memory Tracking indicates significant memory usage by a String table, it probably means the application excessively calls String.intern.
7. Threads
Thread stacks are also responsible for taking RAM. The stack size is controlled by -Xss. The default is 1M per thread, but fortunately things are not so bad. The OS allocates memory pages lazily, i.e. on the first use, so the actual memory usage will be much lower (typically 80-200 KB per thread stack). I wrote a script to estimate how much of RSS belongs to Java thread stacks.
There are other JVM parts that allocate native memory, but they do not usually play a big role in total memory consumption.
Direct buffers
An application may explicitly request off-heap memory by calling ByteBuffer.allocateDirect. The default off-heap limit is equal to -Xmx, but it can be overridden with -XX:MaxDirectMemorySize. Direct ByteBuffers are included in Other section of NMT output (or Internal before JDK 11).
The amount of direct memory in use is visible through JMX, e.g. in JConsole or Java Mission Control:
Besides direct ByteBuffers there can be MappedByteBuffers - the files mapped to virtual memory of a process. NMT does not track them, however, MappedByteBuffers can also take physical memory. And there is no a simple way to limit how much they can take. You can just see the actual usage by looking at process memory map: pmap -x <pid>
Address Kbytes RSS Dirty Mode Mapping
...
00007f2b3e557000 39592 32956 0 r--s- some-file-17405-Index.db
00007f2b40c01000 39600 33092 0 r--s- some-file-17404-Index.db
^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^
Native libraries
JNI code loaded by System.loadLibrary can allocate as much off-heap memory as it wants with no control from JVM side. This also concerns standard Java Class Library. In particular, unclosed Java resources may become a source of native memory leak. Typical examples are ZipInputStream or DirectoryStream.
JVMTI agents, in particular, jdwp debugging agent - can also cause excessive memory consumption.
This answer describes how to profile native memory allocations with async-profiler.
Allocator issues
A process typically requests native memory either directly from OS (by mmap system call) or by using malloc - standard libc allocator. In turn, malloc requests big chunks of memory from OS using mmap, and then manages these chunks according to its own allocation algorithm. The problem is - this algorithm can lead to fragmentation and excessive virtual memory usage.
jemalloc, an alternative allocator, often appears smarter than regular libc malloc, so switching to jemalloc may result in a smaller footprint for free.
Conclusion
There is no guaranteed way to estimate full memory usage of a Java process, because there are too many factors to consider.
Total memory = Heap + Code Cache + Metaspace + Symbol tables +
Other JVM structures + Thread stacks +
Direct buffers + Mapped files +
Native Libraries + Malloc overhead + ...
It is possible to shrink or limit certain memory areas (like Code Cache) by JVM flags, but many others are out of JVM control at all.
One possible approach to setting Docker limits would be to watch the actual memory usage in a "normal" state of the process. There are tools and techniques for investigating issues with Java memory consumption: Native Memory Tracking, pmap, jemalloc, async-profiler.
Update
Here is a recording of my presentation Memory Footprint of a Java Process.
In this video, I discuss what may consume memory in a Java process, how to monitor and restrain the size of certain memory areas, and how to profile native memory leaks in a Java application.

https://developers.redhat.com/blog/2017/04/04/openjdk-and-containers/:
Why is it when I specify -Xmx=1g my JVM uses up more memory than 1gb
of memory?
Specifying -Xmx=1g is telling the JVM to allocate a 1gb heap. It’s not
telling the JVM to limit its entire memory usage to 1gb. There are
card tables, code caches, and all sorts of other off heap data
structures. The parameter you use to specify total memory usage is
-XX:MaxRAM. Be aware that with -XX:MaxRam=500m your heap will be approximately 250mb.
Java sees host memory size and it is not aware of any container memory limitations. It doesn't create memory pressure, so GC also doesn't need to release used memory. I hope XX:MaxRAM will help you to reduce memory footprint. Eventually, you can tweak GC configuration (-XX:MinHeapFreeRatio,-XX:MaxHeapFreeRatio, ...)
There is many types of memory metrics. Docker seems to be reporting RSS memory size, that can be different than "committed" memory reported by jcmd (older versions of Docker report RSS+cache as memory usage).
Good discussion and links: Difference between Resident Set Size (RSS) and Java total committed memory (NMT) for a JVM running in Docker container
(RSS) memory can be eaten also by some other utilities in the container - shell, process manager, ... We don't know what else is running in the container and how do you start processes in container.

TL;DR
The detail usage of the memory is provided by Native Memory Tracking (NMT) details (mainly code metadata and garbage collector). In addition to that, the Java compiler and optimizer C1/C2 consume the memory not reported in the summary.
The memory footprint can be reduced using JVM flags (but there is impacts).
The Docker container sizing must be done through testing with the expected load the application.
Detail for each components
The shared class space can be disabled inside a container since the classes won't be shared by another JVM process. The following flag can be used. It will remove the shared class space (17MB).
-Xshare:off
The garbage collector serial has a minimal memory footprint at the cost of longer pause time during garbage collect processing (see Aleksey Shipilëv comparison between GC in one picture). It can be enabled with the following flag. It can save up to the GC space used (48MB).
-XX:+UseSerialGC
The C2 compiler can be disabled with the following flag to reduce profiling data used to decide whether to optimize or not a method.
-XX:+TieredCompilation -XX:TieredStopAtLevel=1
The code space is reduced by 20MB. Moreover, the memory outside JVM is reduced by 80MB (difference between NMT space and RSS space). The optimizing compiler C2 needs 100MB.
The C1 and C2 compilers can be disabled with the following flag.
-Xint
The memory outside the JVM is now lower than the total committed space. The code space is reduced by 43MB. Beware, this has a major impact on the performance of the application. Disabling C1 and C2 compiler reduces the memory used by 170 MB.
Using Graal VM compiler (replacement of C2) leads to a bit smaller memory footprint. It increases of 20MB the code memory space and decreases of 60MB from outside JVM memory.
The article Java Memory Management for JVM provides some relevant information the different memory spaces.
Oracle provides some details in Native Memory Tracking documentation. More details about compilation level in advanced compilation policy and in disable C2 reduce code cache size by a factor 5. Some details on Why does a JVM report more committed memory than the Linux process resident set size? when both compilers are disabled.

Java needs a lot a memory. JVM itself needs a lot of memory to run. The heap is the memory which is available inside the virtual machine, available to your application. Because JVM is a big bundle packed with all goodies possible it takes a lot of memory just to load.
Starting with java 9 you have something called project Jigsaw, which might reduce the memory used when you start a java app(along with start time). Project jigsaw and a new module system were not necessarily created to reduce the necessary memory, but if it's important you can give a try.
You can take a look at this example: https://steveperkins.com/using-java-9-modularization-to-ship-zero-dependency-native-apps/. By using the module system it resulted in CLI application of 21MB(with JRE embeded). JRE takes more than 200mb. That should translate to less allocated memory when the application is up(a lot of unused JRE classes will no longer be loaded).
Here is another nice tutorial: https://www.baeldung.com/project-jigsaw-java-modularity
If you don't want to spend time with this you can simply get allocate more memory. Sometimes it's the best.

How to size correctly the Docker memory limit?
Check the application by monitoring it for some-time. To restrict container's memory try using -m, --memory bytes option for docker run command - or something equivalant if you are running it otherwise
like
docker run -d --name my-container --memory 500m <iamge-name>
can't answer other questions.

Related

Why the container has used 30GB of memory more than 25Gb expected [duplicate]

For my application, the memory used by the Java process is much more than the heap size.
The system where the containers are running starts to have memory problem because the container is taking much more memory than the heap size.
The heap size is set to 128 MB (-Xmx128m -Xms128m) while the container takes up to 1GB of memory. Under normal condition, it needs 500MB. If the docker container has a limit below (e.g. mem_limit=mem_limit=400MB) the process gets killed by the out of memory killer of the OS.
Could you explain why the Java process is using much more memory than the heap? How to size correctly the Docker memory limit? Is there a way to reduce the off-heap memory footprint of the Java process?
I gather some details about the issue using command from Native memory tracking in JVM.
From the host system, I get the memory used by the container.
$ docker stats --no-stream 9afcb62a26c8
CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM % NET I/O BLOCK I/O PIDS
9afcb62a26c8 xx-xxxxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.0acbb46bb6fe3ae1b1c99aff3a6073bb7b7ecf85 0.93% 461MiB / 9.744GiB 4.62% 286MB / 7.92MB 157MB / 2.66GB 57
From inside the container, I get the memory used by the process.
$ ps -p 71 -o pcpu,rss,size,vsize
%CPU RSS SIZE VSZ
11.2 486040 580860 3814600
$ jcmd 71 VM.native_memory
71:
Native Memory Tracking:
Total: reserved=1631932KB, committed=367400KB
- Java Heap (reserved=131072KB, committed=131072KB)
(mmap: reserved=131072KB, committed=131072KB)
- Class (reserved=1120142KB, committed=79830KB)
(classes #15267)
( instance classes #14230, array classes #1037)
(malloc=1934KB #32977)
(mmap: reserved=1118208KB, committed=77896KB)
( Metadata: )
( reserved=69632KB, committed=68272KB)
( used=66725KB)
( free=1547KB)
( waste=0KB =0.00%)
( Class space:)
( reserved=1048576KB, committed=9624KB)
( used=8939KB)
( free=685KB)
( waste=0KB =0.00%)
- Thread (reserved=24786KB, committed=5294KB)
(thread #56)
(stack: reserved=24500KB, committed=5008KB)
(malloc=198KB #293)
(arena=88KB #110)
- Code (reserved=250635KB, committed=45907KB)
(malloc=2947KB #13459)
(mmap: reserved=247688KB, committed=42960KB)
- GC (reserved=48091KB, committed=48091KB)
(malloc=10439KB #18634)
(mmap: reserved=37652KB, committed=37652KB)
- Compiler (reserved=358KB, committed=358KB)
(malloc=249KB #1450)
(arena=109KB #5)
- Internal (reserved=1165KB, committed=1165KB)
(malloc=1125KB #3363)
(mmap: reserved=40KB, committed=40KB)
- Other (reserved=16696KB, committed=16696KB)
(malloc=16696KB #35)
- Symbol (reserved=15277KB, committed=15277KB)
(malloc=13543KB #180850)
(arena=1734KB #1)
- Native Memory Tracking (reserved=4436KB, committed=4436KB)
(malloc=378KB #5359)
(tracking overhead=4058KB)
- Shared class space (reserved=17144KB, committed=17144KB)
(mmap: reserved=17144KB, committed=17144KB)
- Arena Chunk (reserved=1850KB, committed=1850KB)
(malloc=1850KB)
- Logging (reserved=4KB, committed=4KB)
(malloc=4KB #179)
- Arguments (reserved=19KB, committed=19KB)
(malloc=19KB #512)
- Module (reserved=258KB, committed=258KB)
(malloc=258KB #2356)
$ cat /proc/71/smaps | grep Rss | cut -d: -f2 | tr -d " " | cut -f1 -dk | sort -n | awk '{ sum += $1 } END { print sum }'
491080
The application is a web server using Jetty/Jersey/CDI bundled inside a fat far of 36 MB.
The following version of OS and Java are used (inside the container). The Docker image is based on openjdk:11-jre-slim.
$ java -version
openjdk version "11" 2018-09-25
OpenJDK Runtime Environment (build 11+28-Debian-1)
OpenJDK 64-Bit Server VM (build 11+28-Debian-1, mixed mode, sharing)
$ uname -a
Linux service1 4.9.125-linuxkit #1 SMP Fri Sep 7 08:20:28 UTC 2018 x86_64 GNU/Linux
https://gist.github.com/prasanthj/48e7063cac88eb396bc9961fb3149b58
Virtual memory used by a Java process extends far beyond just Java Heap. You know, JVM includes many subsytems: Garbage Collector, Class Loading, JIT compilers etc., and all these subsystems require certain amount of RAM to function.
JVM is not the only consumer of RAM. Native libraries (including standard Java Class Library) may also allocate native memory. And this won't be even visible to Native Memory Tracking. Java application itself can also use off-heap memory by means of direct ByteBuffers.
So what takes memory in a Java process?
JVM parts (mostly shown by Native Memory Tracking)
1. Java Heap
The most obvious part. This is where Java objects live. Heap takes up to -Xmx amount of memory.
2. Garbage Collector
GC structures and algorithms require additional memory for heap management. These structures are Mark Bitmap, Mark Stack (for traversing object graph), Remembered Sets (for recording inter-region references) and others. Some of them are directly tunable, e.g. -XX:MarkStackSizeMax, others depend on heap layout, e.g. the larger are G1 regions (-XX:G1HeapRegionSize), the smaller are remembered sets.
GC memory overhead varies between GC algorithms. -XX:+UseSerialGC and -XX:+UseShenandoahGC have the smallest overhead. G1 or CMS may easily use around 10% of total heap size.
3. Code Cache
Contains dynamically generated code: JIT-compiled methods, interpreter and run-time stubs. Its size is limited by -XX:ReservedCodeCacheSize (240M by default). Turn off -XX:-TieredCompilation to reduce the amount of compiled code and thus the Code Cache usage.
4. Compiler
JIT compiler itself also requires memory to do its job. This can be reduced again by switching off Tiered Compilation or by reducing the number of compiler threads: -XX:CICompilerCount.
5. Class loading
Class metadata (method bytecodes, symbols, constant pools, annotations etc.) is stored in off-heap area called Metaspace. The more classes are loaded - the more metaspace is used. Total usage can be limited by -XX:MaxMetaspaceSize (unlimited by default) and -XX:CompressedClassSpaceSize (1G by default).
6. Symbol tables
Two main hashtables of the JVM: the Symbol table contains names, signatures, identifiers etc. and the String table contains references to interned strings. If Native Memory Tracking indicates significant memory usage by a String table, it probably means the application excessively calls String.intern.
7. Threads
Thread stacks are also responsible for taking RAM. The stack size is controlled by -Xss. The default is 1M per thread, but fortunately things are not so bad. The OS allocates memory pages lazily, i.e. on the first use, so the actual memory usage will be much lower (typically 80-200 KB per thread stack). I wrote a script to estimate how much of RSS belongs to Java thread stacks.
There are other JVM parts that allocate native memory, but they do not usually play a big role in total memory consumption.
Direct buffers
An application may explicitly request off-heap memory by calling ByteBuffer.allocateDirect. The default off-heap limit is equal to -Xmx, but it can be overridden with -XX:MaxDirectMemorySize. Direct ByteBuffers are included in Other section of NMT output (or Internal before JDK 11).
The amount of direct memory in use is visible through JMX, e.g. in JConsole or Java Mission Control:
Besides direct ByteBuffers there can be MappedByteBuffers - the files mapped to virtual memory of a process. NMT does not track them, however, MappedByteBuffers can also take physical memory. And there is no a simple way to limit how much they can take. You can just see the actual usage by looking at process memory map: pmap -x <pid>
Address Kbytes RSS Dirty Mode Mapping
...
00007f2b3e557000 39592 32956 0 r--s- some-file-17405-Index.db
00007f2b40c01000 39600 33092 0 r--s- some-file-17404-Index.db
^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^
Native libraries
JNI code loaded by System.loadLibrary can allocate as much off-heap memory as it wants with no control from JVM side. This also concerns standard Java Class Library. In particular, unclosed Java resources may become a source of native memory leak. Typical examples are ZipInputStream or DirectoryStream.
JVMTI agents, in particular, jdwp debugging agent - can also cause excessive memory consumption.
This answer describes how to profile native memory allocations with async-profiler.
Allocator issues
A process typically requests native memory either directly from OS (by mmap system call) or by using malloc - standard libc allocator. In turn, malloc requests big chunks of memory from OS using mmap, and then manages these chunks according to its own allocation algorithm. The problem is - this algorithm can lead to fragmentation and excessive virtual memory usage.
jemalloc, an alternative allocator, often appears smarter than regular libc malloc, so switching to jemalloc may result in a smaller footprint for free.
Conclusion
There is no guaranteed way to estimate full memory usage of a Java process, because there are too many factors to consider.
Total memory = Heap + Code Cache + Metaspace + Symbol tables +
Other JVM structures + Thread stacks +
Direct buffers + Mapped files +
Native Libraries + Malloc overhead + ...
It is possible to shrink or limit certain memory areas (like Code Cache) by JVM flags, but many others are out of JVM control at all.
One possible approach to setting Docker limits would be to watch the actual memory usage in a "normal" state of the process. There are tools and techniques for investigating issues with Java memory consumption: Native Memory Tracking, pmap, jemalloc, async-profiler.
Update
Here is a recording of my presentation Memory Footprint of a Java Process.
In this video, I discuss what may consume memory in a Java process, how to monitor and restrain the size of certain memory areas, and how to profile native memory leaks in a Java application.
https://developers.redhat.com/blog/2017/04/04/openjdk-and-containers/:
Why is it when I specify -Xmx=1g my JVM uses up more memory than 1gb
of memory?
Specifying -Xmx=1g is telling the JVM to allocate a 1gb heap. It’s not
telling the JVM to limit its entire memory usage to 1gb. There are
card tables, code caches, and all sorts of other off heap data
structures. The parameter you use to specify total memory usage is
-XX:MaxRAM. Be aware that with -XX:MaxRam=500m your heap will be approximately 250mb.
Java sees host memory size and it is not aware of any container memory limitations. It doesn't create memory pressure, so GC also doesn't need to release used memory. I hope XX:MaxRAM will help you to reduce memory footprint. Eventually, you can tweak GC configuration (-XX:MinHeapFreeRatio,-XX:MaxHeapFreeRatio, ...)
There is many types of memory metrics. Docker seems to be reporting RSS memory size, that can be different than "committed" memory reported by jcmd (older versions of Docker report RSS+cache as memory usage).
Good discussion and links: Difference between Resident Set Size (RSS) and Java total committed memory (NMT) for a JVM running in Docker container
(RSS) memory can be eaten also by some other utilities in the container - shell, process manager, ... We don't know what else is running in the container and how do you start processes in container.
TL;DR
The detail usage of the memory is provided by Native Memory Tracking (NMT) details (mainly code metadata and garbage collector). In addition to that, the Java compiler and optimizer C1/C2 consume the memory not reported in the summary.
The memory footprint can be reduced using JVM flags (but there is impacts).
The Docker container sizing must be done through testing with the expected load the application.
Detail for each components
The shared class space can be disabled inside a container since the classes won't be shared by another JVM process. The following flag can be used. It will remove the shared class space (17MB).
-Xshare:off
The garbage collector serial has a minimal memory footprint at the cost of longer pause time during garbage collect processing (see Aleksey Shipilëv comparison between GC in one picture). It can be enabled with the following flag. It can save up to the GC space used (48MB).
-XX:+UseSerialGC
The C2 compiler can be disabled with the following flag to reduce profiling data used to decide whether to optimize or not a method.
-XX:+TieredCompilation -XX:TieredStopAtLevel=1
The code space is reduced by 20MB. Moreover, the memory outside JVM is reduced by 80MB (difference between NMT space and RSS space). The optimizing compiler C2 needs 100MB.
The C1 and C2 compilers can be disabled with the following flag.
-Xint
The memory outside the JVM is now lower than the total committed space. The code space is reduced by 43MB. Beware, this has a major impact on the performance of the application. Disabling C1 and C2 compiler reduces the memory used by 170 MB.
Using Graal VM compiler (replacement of C2) leads to a bit smaller memory footprint. It increases of 20MB the code memory space and decreases of 60MB from outside JVM memory.
The article Java Memory Management for JVM provides some relevant information the different memory spaces.
Oracle provides some details in Native Memory Tracking documentation. More details about compilation level in advanced compilation policy and in disable C2 reduce code cache size by a factor 5. Some details on Why does a JVM report more committed memory than the Linux process resident set size? when both compilers are disabled.
Java needs a lot a memory. JVM itself needs a lot of memory to run. The heap is the memory which is available inside the virtual machine, available to your application. Because JVM is a big bundle packed with all goodies possible it takes a lot of memory just to load.
Starting with java 9 you have something called project Jigsaw, which might reduce the memory used when you start a java app(along with start time). Project jigsaw and a new module system were not necessarily created to reduce the necessary memory, but if it's important you can give a try.
You can take a look at this example: https://steveperkins.com/using-java-9-modularization-to-ship-zero-dependency-native-apps/. By using the module system it resulted in CLI application of 21MB(with JRE embeded). JRE takes more than 200mb. That should translate to less allocated memory when the application is up(a lot of unused JRE classes will no longer be loaded).
Here is another nice tutorial: https://www.baeldung.com/project-jigsaw-java-modularity
If you don't want to spend time with this you can simply get allocate more memory. Sometimes it's the best.
How to size correctly the Docker memory limit?
Check the application by monitoring it for some-time. To restrict container's memory try using -m, --memory bytes option for docker run command - or something equivalant if you are running it otherwise
like
docker run -d --name my-container --memory 500m <iamge-name>
can't answer other questions.

What is the reason that the size of java native tracking total committed memory and the RES memory of the top command are different? [duplicate]

For my application, the memory used by the Java process is much more than the heap size.
The system where the containers are running starts to have memory problem because the container is taking much more memory than the heap size.
The heap size is set to 128 MB (-Xmx128m -Xms128m) while the container takes up to 1GB of memory. Under normal condition, it needs 500MB. If the docker container has a limit below (e.g. mem_limit=mem_limit=400MB) the process gets killed by the out of memory killer of the OS.
Could you explain why the Java process is using much more memory than the heap? How to size correctly the Docker memory limit? Is there a way to reduce the off-heap memory footprint of the Java process?
I gather some details about the issue using command from Native memory tracking in JVM.
From the host system, I get the memory used by the container.
$ docker stats --no-stream 9afcb62a26c8
CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM % NET I/O BLOCK I/O PIDS
9afcb62a26c8 xx-xxxxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.0acbb46bb6fe3ae1b1c99aff3a6073bb7b7ecf85 0.93% 461MiB / 9.744GiB 4.62% 286MB / 7.92MB 157MB / 2.66GB 57
From inside the container, I get the memory used by the process.
$ ps -p 71 -o pcpu,rss,size,vsize
%CPU RSS SIZE VSZ
11.2 486040 580860 3814600
$ jcmd 71 VM.native_memory
71:
Native Memory Tracking:
Total: reserved=1631932KB, committed=367400KB
- Java Heap (reserved=131072KB, committed=131072KB)
(mmap: reserved=131072KB, committed=131072KB)
- Class (reserved=1120142KB, committed=79830KB)
(classes #15267)
( instance classes #14230, array classes #1037)
(malloc=1934KB #32977)
(mmap: reserved=1118208KB, committed=77896KB)
( Metadata: )
( reserved=69632KB, committed=68272KB)
( used=66725KB)
( free=1547KB)
( waste=0KB =0.00%)
( Class space:)
( reserved=1048576KB, committed=9624KB)
( used=8939KB)
( free=685KB)
( waste=0KB =0.00%)
- Thread (reserved=24786KB, committed=5294KB)
(thread #56)
(stack: reserved=24500KB, committed=5008KB)
(malloc=198KB #293)
(arena=88KB #110)
- Code (reserved=250635KB, committed=45907KB)
(malloc=2947KB #13459)
(mmap: reserved=247688KB, committed=42960KB)
- GC (reserved=48091KB, committed=48091KB)
(malloc=10439KB #18634)
(mmap: reserved=37652KB, committed=37652KB)
- Compiler (reserved=358KB, committed=358KB)
(malloc=249KB #1450)
(arena=109KB #5)
- Internal (reserved=1165KB, committed=1165KB)
(malloc=1125KB #3363)
(mmap: reserved=40KB, committed=40KB)
- Other (reserved=16696KB, committed=16696KB)
(malloc=16696KB #35)
- Symbol (reserved=15277KB, committed=15277KB)
(malloc=13543KB #180850)
(arena=1734KB #1)
- Native Memory Tracking (reserved=4436KB, committed=4436KB)
(malloc=378KB #5359)
(tracking overhead=4058KB)
- Shared class space (reserved=17144KB, committed=17144KB)
(mmap: reserved=17144KB, committed=17144KB)
- Arena Chunk (reserved=1850KB, committed=1850KB)
(malloc=1850KB)
- Logging (reserved=4KB, committed=4KB)
(malloc=4KB #179)
- Arguments (reserved=19KB, committed=19KB)
(malloc=19KB #512)
- Module (reserved=258KB, committed=258KB)
(malloc=258KB #2356)
$ cat /proc/71/smaps | grep Rss | cut -d: -f2 | tr -d " " | cut -f1 -dk | sort -n | awk '{ sum += $1 } END { print sum }'
491080
The application is a web server using Jetty/Jersey/CDI bundled inside a fat far of 36 MB.
The following version of OS and Java are used (inside the container). The Docker image is based on openjdk:11-jre-slim.
$ java -version
openjdk version "11" 2018-09-25
OpenJDK Runtime Environment (build 11+28-Debian-1)
OpenJDK 64-Bit Server VM (build 11+28-Debian-1, mixed mode, sharing)
$ uname -a
Linux service1 4.9.125-linuxkit #1 SMP Fri Sep 7 08:20:28 UTC 2018 x86_64 GNU/Linux
https://gist.github.com/prasanthj/48e7063cac88eb396bc9961fb3149b58
Virtual memory used by a Java process extends far beyond just Java Heap. You know, JVM includes many subsytems: Garbage Collector, Class Loading, JIT compilers etc., and all these subsystems require certain amount of RAM to function.
JVM is not the only consumer of RAM. Native libraries (including standard Java Class Library) may also allocate native memory. And this won't be even visible to Native Memory Tracking. Java application itself can also use off-heap memory by means of direct ByteBuffers.
So what takes memory in a Java process?
JVM parts (mostly shown by Native Memory Tracking)
1. Java Heap
The most obvious part. This is where Java objects live. Heap takes up to -Xmx amount of memory.
2. Garbage Collector
GC structures and algorithms require additional memory for heap management. These structures are Mark Bitmap, Mark Stack (for traversing object graph), Remembered Sets (for recording inter-region references) and others. Some of them are directly tunable, e.g. -XX:MarkStackSizeMax, others depend on heap layout, e.g. the larger are G1 regions (-XX:G1HeapRegionSize), the smaller are remembered sets.
GC memory overhead varies between GC algorithms. -XX:+UseSerialGC and -XX:+UseShenandoahGC have the smallest overhead. G1 or CMS may easily use around 10% of total heap size.
3. Code Cache
Contains dynamically generated code: JIT-compiled methods, interpreter and run-time stubs. Its size is limited by -XX:ReservedCodeCacheSize (240M by default). Turn off -XX:-TieredCompilation to reduce the amount of compiled code and thus the Code Cache usage.
4. Compiler
JIT compiler itself also requires memory to do its job. This can be reduced again by switching off Tiered Compilation or by reducing the number of compiler threads: -XX:CICompilerCount.
5. Class loading
Class metadata (method bytecodes, symbols, constant pools, annotations etc.) is stored in off-heap area called Metaspace. The more classes are loaded - the more metaspace is used. Total usage can be limited by -XX:MaxMetaspaceSize (unlimited by default) and -XX:CompressedClassSpaceSize (1G by default).
6. Symbol tables
Two main hashtables of the JVM: the Symbol table contains names, signatures, identifiers etc. and the String table contains references to interned strings. If Native Memory Tracking indicates significant memory usage by a String table, it probably means the application excessively calls String.intern.
7. Threads
Thread stacks are also responsible for taking RAM. The stack size is controlled by -Xss. The default is 1M per thread, but fortunately things are not so bad. The OS allocates memory pages lazily, i.e. on the first use, so the actual memory usage will be much lower (typically 80-200 KB per thread stack). I wrote a script to estimate how much of RSS belongs to Java thread stacks.
There are other JVM parts that allocate native memory, but they do not usually play a big role in total memory consumption.
Direct buffers
An application may explicitly request off-heap memory by calling ByteBuffer.allocateDirect. The default off-heap limit is equal to -Xmx, but it can be overridden with -XX:MaxDirectMemorySize. Direct ByteBuffers are included in Other section of NMT output (or Internal before JDK 11).
The amount of direct memory in use is visible through JMX, e.g. in JConsole or Java Mission Control:
Besides direct ByteBuffers there can be MappedByteBuffers - the files mapped to virtual memory of a process. NMT does not track them, however, MappedByteBuffers can also take physical memory. And there is no a simple way to limit how much they can take. You can just see the actual usage by looking at process memory map: pmap -x <pid>
Address Kbytes RSS Dirty Mode Mapping
...
00007f2b3e557000 39592 32956 0 r--s- some-file-17405-Index.db
00007f2b40c01000 39600 33092 0 r--s- some-file-17404-Index.db
^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^
Native libraries
JNI code loaded by System.loadLibrary can allocate as much off-heap memory as it wants with no control from JVM side. This also concerns standard Java Class Library. In particular, unclosed Java resources may become a source of native memory leak. Typical examples are ZipInputStream or DirectoryStream.
JVMTI agents, in particular, jdwp debugging agent - can also cause excessive memory consumption.
This answer describes how to profile native memory allocations with async-profiler.
Allocator issues
A process typically requests native memory either directly from OS (by mmap system call) or by using malloc - standard libc allocator. In turn, malloc requests big chunks of memory from OS using mmap, and then manages these chunks according to its own allocation algorithm. The problem is - this algorithm can lead to fragmentation and excessive virtual memory usage.
jemalloc, an alternative allocator, often appears smarter than regular libc malloc, so switching to jemalloc may result in a smaller footprint for free.
Conclusion
There is no guaranteed way to estimate full memory usage of a Java process, because there are too many factors to consider.
Total memory = Heap + Code Cache + Metaspace + Symbol tables +
Other JVM structures + Thread stacks +
Direct buffers + Mapped files +
Native Libraries + Malloc overhead + ...
It is possible to shrink or limit certain memory areas (like Code Cache) by JVM flags, but many others are out of JVM control at all.
One possible approach to setting Docker limits would be to watch the actual memory usage in a "normal" state of the process. There are tools and techniques for investigating issues with Java memory consumption: Native Memory Tracking, pmap, jemalloc, async-profiler.
Update
Here is a recording of my presentation Memory Footprint of a Java Process.
In this video, I discuss what may consume memory in a Java process, how to monitor and restrain the size of certain memory areas, and how to profile native memory leaks in a Java application.
https://developers.redhat.com/blog/2017/04/04/openjdk-and-containers/:
Why is it when I specify -Xmx=1g my JVM uses up more memory than 1gb
of memory?
Specifying -Xmx=1g is telling the JVM to allocate a 1gb heap. It’s not
telling the JVM to limit its entire memory usage to 1gb. There are
card tables, code caches, and all sorts of other off heap data
structures. The parameter you use to specify total memory usage is
-XX:MaxRAM. Be aware that with -XX:MaxRam=500m your heap will be approximately 250mb.
Java sees host memory size and it is not aware of any container memory limitations. It doesn't create memory pressure, so GC also doesn't need to release used memory. I hope XX:MaxRAM will help you to reduce memory footprint. Eventually, you can tweak GC configuration (-XX:MinHeapFreeRatio,-XX:MaxHeapFreeRatio, ...)
There is many types of memory metrics. Docker seems to be reporting RSS memory size, that can be different than "committed" memory reported by jcmd (older versions of Docker report RSS+cache as memory usage).
Good discussion and links: Difference between Resident Set Size (RSS) and Java total committed memory (NMT) for a JVM running in Docker container
(RSS) memory can be eaten also by some other utilities in the container - shell, process manager, ... We don't know what else is running in the container and how do you start processes in container.
TL;DR
The detail usage of the memory is provided by Native Memory Tracking (NMT) details (mainly code metadata and garbage collector). In addition to that, the Java compiler and optimizer C1/C2 consume the memory not reported in the summary.
The memory footprint can be reduced using JVM flags (but there is impacts).
The Docker container sizing must be done through testing with the expected load the application.
Detail for each components
The shared class space can be disabled inside a container since the classes won't be shared by another JVM process. The following flag can be used. It will remove the shared class space (17MB).
-Xshare:off
The garbage collector serial has a minimal memory footprint at the cost of longer pause time during garbage collect processing (see Aleksey Shipilëv comparison between GC in one picture). It can be enabled with the following flag. It can save up to the GC space used (48MB).
-XX:+UseSerialGC
The C2 compiler can be disabled with the following flag to reduce profiling data used to decide whether to optimize or not a method.
-XX:+TieredCompilation -XX:TieredStopAtLevel=1
The code space is reduced by 20MB. Moreover, the memory outside JVM is reduced by 80MB (difference between NMT space and RSS space). The optimizing compiler C2 needs 100MB.
The C1 and C2 compilers can be disabled with the following flag.
-Xint
The memory outside the JVM is now lower than the total committed space. The code space is reduced by 43MB. Beware, this has a major impact on the performance of the application. Disabling C1 and C2 compiler reduces the memory used by 170 MB.
Using Graal VM compiler (replacement of C2) leads to a bit smaller memory footprint. It increases of 20MB the code memory space and decreases of 60MB from outside JVM memory.
The article Java Memory Management for JVM provides some relevant information the different memory spaces.
Oracle provides some details in Native Memory Tracking documentation. More details about compilation level in advanced compilation policy and in disable C2 reduce code cache size by a factor 5. Some details on Why does a JVM report more committed memory than the Linux process resident set size? when both compilers are disabled.
Java needs a lot a memory. JVM itself needs a lot of memory to run. The heap is the memory which is available inside the virtual machine, available to your application. Because JVM is a big bundle packed with all goodies possible it takes a lot of memory just to load.
Starting with java 9 you have something called project Jigsaw, which might reduce the memory used when you start a java app(along with start time). Project jigsaw and a new module system were not necessarily created to reduce the necessary memory, but if it's important you can give a try.
You can take a look at this example: https://steveperkins.com/using-java-9-modularization-to-ship-zero-dependency-native-apps/. By using the module system it resulted in CLI application of 21MB(with JRE embeded). JRE takes more than 200mb. That should translate to less allocated memory when the application is up(a lot of unused JRE classes will no longer be loaded).
Here is another nice tutorial: https://www.baeldung.com/project-jigsaw-java-modularity
If you don't want to spend time with this you can simply get allocate more memory. Sometimes it's the best.
How to size correctly the Docker memory limit?
Check the application by monitoring it for some-time. To restrict container's memory try using -m, --memory bytes option for docker run command - or something equivalant if you are running it otherwise
like
docker run -d --name my-container --memory 500m <iamge-name>
can't answer other questions.

phantom jvm memory usage, native allocations, and sizing k8s pods [duplicate]

For my application, the memory used by the Java process is much more than the heap size.
The system where the containers are running starts to have memory problem because the container is taking much more memory than the heap size.
The heap size is set to 128 MB (-Xmx128m -Xms128m) while the container takes up to 1GB of memory. Under normal condition, it needs 500MB. If the docker container has a limit below (e.g. mem_limit=mem_limit=400MB) the process gets killed by the out of memory killer of the OS.
Could you explain why the Java process is using much more memory than the heap? How to size correctly the Docker memory limit? Is there a way to reduce the off-heap memory footprint of the Java process?
I gather some details about the issue using command from Native memory tracking in JVM.
From the host system, I get the memory used by the container.
$ docker stats --no-stream 9afcb62a26c8
CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM % NET I/O BLOCK I/O PIDS
9afcb62a26c8 xx-xxxxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.0acbb46bb6fe3ae1b1c99aff3a6073bb7b7ecf85 0.93% 461MiB / 9.744GiB 4.62% 286MB / 7.92MB 157MB / 2.66GB 57
From inside the container, I get the memory used by the process.
$ ps -p 71 -o pcpu,rss,size,vsize
%CPU RSS SIZE VSZ
11.2 486040 580860 3814600
$ jcmd 71 VM.native_memory
71:
Native Memory Tracking:
Total: reserved=1631932KB, committed=367400KB
- Java Heap (reserved=131072KB, committed=131072KB)
(mmap: reserved=131072KB, committed=131072KB)
- Class (reserved=1120142KB, committed=79830KB)
(classes #15267)
( instance classes #14230, array classes #1037)
(malloc=1934KB #32977)
(mmap: reserved=1118208KB, committed=77896KB)
( Metadata: )
( reserved=69632KB, committed=68272KB)
( used=66725KB)
( free=1547KB)
( waste=0KB =0.00%)
( Class space:)
( reserved=1048576KB, committed=9624KB)
( used=8939KB)
( free=685KB)
( waste=0KB =0.00%)
- Thread (reserved=24786KB, committed=5294KB)
(thread #56)
(stack: reserved=24500KB, committed=5008KB)
(malloc=198KB #293)
(arena=88KB #110)
- Code (reserved=250635KB, committed=45907KB)
(malloc=2947KB #13459)
(mmap: reserved=247688KB, committed=42960KB)
- GC (reserved=48091KB, committed=48091KB)
(malloc=10439KB #18634)
(mmap: reserved=37652KB, committed=37652KB)
- Compiler (reserved=358KB, committed=358KB)
(malloc=249KB #1450)
(arena=109KB #5)
- Internal (reserved=1165KB, committed=1165KB)
(malloc=1125KB #3363)
(mmap: reserved=40KB, committed=40KB)
- Other (reserved=16696KB, committed=16696KB)
(malloc=16696KB #35)
- Symbol (reserved=15277KB, committed=15277KB)
(malloc=13543KB #180850)
(arena=1734KB #1)
- Native Memory Tracking (reserved=4436KB, committed=4436KB)
(malloc=378KB #5359)
(tracking overhead=4058KB)
- Shared class space (reserved=17144KB, committed=17144KB)
(mmap: reserved=17144KB, committed=17144KB)
- Arena Chunk (reserved=1850KB, committed=1850KB)
(malloc=1850KB)
- Logging (reserved=4KB, committed=4KB)
(malloc=4KB #179)
- Arguments (reserved=19KB, committed=19KB)
(malloc=19KB #512)
- Module (reserved=258KB, committed=258KB)
(malloc=258KB #2356)
$ cat /proc/71/smaps | grep Rss | cut -d: -f2 | tr -d " " | cut -f1 -dk | sort -n | awk '{ sum += $1 } END { print sum }'
491080
The application is a web server using Jetty/Jersey/CDI bundled inside a fat far of 36 MB.
The following version of OS and Java are used (inside the container). The Docker image is based on openjdk:11-jre-slim.
$ java -version
openjdk version "11" 2018-09-25
OpenJDK Runtime Environment (build 11+28-Debian-1)
OpenJDK 64-Bit Server VM (build 11+28-Debian-1, mixed mode, sharing)
$ uname -a
Linux service1 4.9.125-linuxkit #1 SMP Fri Sep 7 08:20:28 UTC 2018 x86_64 GNU/Linux
https://gist.github.com/prasanthj/48e7063cac88eb396bc9961fb3149b58
Virtual memory used by a Java process extends far beyond just Java Heap. You know, JVM includes many subsytems: Garbage Collector, Class Loading, JIT compilers etc., and all these subsystems require certain amount of RAM to function.
JVM is not the only consumer of RAM. Native libraries (including standard Java Class Library) may also allocate native memory. And this won't be even visible to Native Memory Tracking. Java application itself can also use off-heap memory by means of direct ByteBuffers.
So what takes memory in a Java process?
JVM parts (mostly shown by Native Memory Tracking)
1. Java Heap
The most obvious part. This is where Java objects live. Heap takes up to -Xmx amount of memory.
2. Garbage Collector
GC structures and algorithms require additional memory for heap management. These structures are Mark Bitmap, Mark Stack (for traversing object graph), Remembered Sets (for recording inter-region references) and others. Some of them are directly tunable, e.g. -XX:MarkStackSizeMax, others depend on heap layout, e.g. the larger are G1 regions (-XX:G1HeapRegionSize), the smaller are remembered sets.
GC memory overhead varies between GC algorithms. -XX:+UseSerialGC and -XX:+UseShenandoahGC have the smallest overhead. G1 or CMS may easily use around 10% of total heap size.
3. Code Cache
Contains dynamically generated code: JIT-compiled methods, interpreter and run-time stubs. Its size is limited by -XX:ReservedCodeCacheSize (240M by default). Turn off -XX:-TieredCompilation to reduce the amount of compiled code and thus the Code Cache usage.
4. Compiler
JIT compiler itself also requires memory to do its job. This can be reduced again by switching off Tiered Compilation or by reducing the number of compiler threads: -XX:CICompilerCount.
5. Class loading
Class metadata (method bytecodes, symbols, constant pools, annotations etc.) is stored in off-heap area called Metaspace. The more classes are loaded - the more metaspace is used. Total usage can be limited by -XX:MaxMetaspaceSize (unlimited by default) and -XX:CompressedClassSpaceSize (1G by default).
6. Symbol tables
Two main hashtables of the JVM: the Symbol table contains names, signatures, identifiers etc. and the String table contains references to interned strings. If Native Memory Tracking indicates significant memory usage by a String table, it probably means the application excessively calls String.intern.
7. Threads
Thread stacks are also responsible for taking RAM. The stack size is controlled by -Xss. The default is 1M per thread, but fortunately things are not so bad. The OS allocates memory pages lazily, i.e. on the first use, so the actual memory usage will be much lower (typically 80-200 KB per thread stack). I wrote a script to estimate how much of RSS belongs to Java thread stacks.
There are other JVM parts that allocate native memory, but they do not usually play a big role in total memory consumption.
Direct buffers
An application may explicitly request off-heap memory by calling ByteBuffer.allocateDirect. The default off-heap limit is equal to -Xmx, but it can be overridden with -XX:MaxDirectMemorySize. Direct ByteBuffers are included in Other section of NMT output (or Internal before JDK 11).
The amount of direct memory in use is visible through JMX, e.g. in JConsole or Java Mission Control:
Besides direct ByteBuffers there can be MappedByteBuffers - the files mapped to virtual memory of a process. NMT does not track them, however, MappedByteBuffers can also take physical memory. And there is no a simple way to limit how much they can take. You can just see the actual usage by looking at process memory map: pmap -x <pid>
Address Kbytes RSS Dirty Mode Mapping
...
00007f2b3e557000 39592 32956 0 r--s- some-file-17405-Index.db
00007f2b40c01000 39600 33092 0 r--s- some-file-17404-Index.db
^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^
Native libraries
JNI code loaded by System.loadLibrary can allocate as much off-heap memory as it wants with no control from JVM side. This also concerns standard Java Class Library. In particular, unclosed Java resources may become a source of native memory leak. Typical examples are ZipInputStream or DirectoryStream.
JVMTI agents, in particular, jdwp debugging agent - can also cause excessive memory consumption.
This answer describes how to profile native memory allocations with async-profiler.
Allocator issues
A process typically requests native memory either directly from OS (by mmap system call) or by using malloc - standard libc allocator. In turn, malloc requests big chunks of memory from OS using mmap, and then manages these chunks according to its own allocation algorithm. The problem is - this algorithm can lead to fragmentation and excessive virtual memory usage.
jemalloc, an alternative allocator, often appears smarter than regular libc malloc, so switching to jemalloc may result in a smaller footprint for free.
Conclusion
There is no guaranteed way to estimate full memory usage of a Java process, because there are too many factors to consider.
Total memory = Heap + Code Cache + Metaspace + Symbol tables +
Other JVM structures + Thread stacks +
Direct buffers + Mapped files +
Native Libraries + Malloc overhead + ...
It is possible to shrink or limit certain memory areas (like Code Cache) by JVM flags, but many others are out of JVM control at all.
One possible approach to setting Docker limits would be to watch the actual memory usage in a "normal" state of the process. There are tools and techniques for investigating issues with Java memory consumption: Native Memory Tracking, pmap, jemalloc, async-profiler.
Update
Here is a recording of my presentation Memory Footprint of a Java Process.
In this video, I discuss what may consume memory in a Java process, how to monitor and restrain the size of certain memory areas, and how to profile native memory leaks in a Java application.
https://developers.redhat.com/blog/2017/04/04/openjdk-and-containers/:
Why is it when I specify -Xmx=1g my JVM uses up more memory than 1gb
of memory?
Specifying -Xmx=1g is telling the JVM to allocate a 1gb heap. It’s not
telling the JVM to limit its entire memory usage to 1gb. There are
card tables, code caches, and all sorts of other off heap data
structures. The parameter you use to specify total memory usage is
-XX:MaxRAM. Be aware that with -XX:MaxRam=500m your heap will be approximately 250mb.
Java sees host memory size and it is not aware of any container memory limitations. It doesn't create memory pressure, so GC also doesn't need to release used memory. I hope XX:MaxRAM will help you to reduce memory footprint. Eventually, you can tweak GC configuration (-XX:MinHeapFreeRatio,-XX:MaxHeapFreeRatio, ...)
There is many types of memory metrics. Docker seems to be reporting RSS memory size, that can be different than "committed" memory reported by jcmd (older versions of Docker report RSS+cache as memory usage).
Good discussion and links: Difference between Resident Set Size (RSS) and Java total committed memory (NMT) for a JVM running in Docker container
(RSS) memory can be eaten also by some other utilities in the container - shell, process manager, ... We don't know what else is running in the container and how do you start processes in container.
TL;DR
The detail usage of the memory is provided by Native Memory Tracking (NMT) details (mainly code metadata and garbage collector). In addition to that, the Java compiler and optimizer C1/C2 consume the memory not reported in the summary.
The memory footprint can be reduced using JVM flags (but there is impacts).
The Docker container sizing must be done through testing with the expected load the application.
Detail for each components
The shared class space can be disabled inside a container since the classes won't be shared by another JVM process. The following flag can be used. It will remove the shared class space (17MB).
-Xshare:off
The garbage collector serial has a minimal memory footprint at the cost of longer pause time during garbage collect processing (see Aleksey Shipilëv comparison between GC in one picture). It can be enabled with the following flag. It can save up to the GC space used (48MB).
-XX:+UseSerialGC
The C2 compiler can be disabled with the following flag to reduce profiling data used to decide whether to optimize or not a method.
-XX:+TieredCompilation -XX:TieredStopAtLevel=1
The code space is reduced by 20MB. Moreover, the memory outside JVM is reduced by 80MB (difference between NMT space and RSS space). The optimizing compiler C2 needs 100MB.
The C1 and C2 compilers can be disabled with the following flag.
-Xint
The memory outside the JVM is now lower than the total committed space. The code space is reduced by 43MB. Beware, this has a major impact on the performance of the application. Disabling C1 and C2 compiler reduces the memory used by 170 MB.
Using Graal VM compiler (replacement of C2) leads to a bit smaller memory footprint. It increases of 20MB the code memory space and decreases of 60MB from outside JVM memory.
The article Java Memory Management for JVM provides some relevant information the different memory spaces.
Oracle provides some details in Native Memory Tracking documentation. More details about compilation level in advanced compilation policy and in disable C2 reduce code cache size by a factor 5. Some details on Why does a JVM report more committed memory than the Linux process resident set size? when both compilers are disabled.
Java needs a lot a memory. JVM itself needs a lot of memory to run. The heap is the memory which is available inside the virtual machine, available to your application. Because JVM is a big bundle packed with all goodies possible it takes a lot of memory just to load.
Starting with java 9 you have something called project Jigsaw, which might reduce the memory used when you start a java app(along with start time). Project jigsaw and a new module system were not necessarily created to reduce the necessary memory, but if it's important you can give a try.
You can take a look at this example: https://steveperkins.com/using-java-9-modularization-to-ship-zero-dependency-native-apps/. By using the module system it resulted in CLI application of 21MB(with JRE embeded). JRE takes more than 200mb. That should translate to less allocated memory when the application is up(a lot of unused JRE classes will no longer be loaded).
Here is another nice tutorial: https://www.baeldung.com/project-jigsaw-java-modularity
If you don't want to spend time with this you can simply get allocate more memory. Sometimes it's the best.
How to size correctly the Docker memory limit?
Check the application by monitoring it for some-time. To restrict container's memory try using -m, --memory bytes option for docker run command - or something equivalant if you are running it otherwise
like
docker run -d --name my-container --memory 500m <iamge-name>
can't answer other questions.

Difference between Resident Set Size (RSS) and Java total committed memory (NMT) for a JVM running in Docker container

Scenario:
I have a JVM running in a docker container. I did some memory analysis using two tools: 1) top 2) Java Native Memory Tracking. The numbers look confusing and I am trying to find whats causing the differences.
Question:
The RSS is reported as 1272MB for the Java process and the Total Java Memory is reported as 790.55 MB. How can I explain where did the rest of the memory 1272 - 790.55 = 481.44 MB go?
Why I want to keep this issue open even after looking at this question on SO:
I did see the answer and the explanation makes sense. However, after getting output from Java NMT and pmap -x , I am still not able to concretely map which java memory addresses are actually resident and physically mapped. I need some concrete explanation (with detailed steps) to find whats causing this difference between RSS and Java Total committed memory.
Top Output
Java NMT
Docker memory stats
Graphs
I have a docker container running for most than 48 hours. Now, when I see a graph which contains:
Total memory given to the docker container = 2 GB
Java Max Heap = 1 GB
Total committed (JVM) = always less than 800 MB
Heap Used (JVM) = always less than 200 MB
Non Heap Used (JVM) = always less than 100 MB.
RSS = around 1.1 GB.
So, whats eating the memory between 1.1 GB (RSS) and 800 MB (Java Total committed memory)?
You have some clue in "
Analyzing java memory usage in a Docker container" from Mikhail Krestjaninoff:
(And to be clear, in May 2019, three years later, the situation does improves with openJDK 8u212 )
Resident Set Size is the amount of physical memory currently allocated and used by a process (without swapped out pages). It includes the code, data and shared libraries (which are counted in every process which uses them)
Why does docker stats info differ from the ps data?
Answer for the first question is very simple - Docker has a bug (or a feature - depends on your mood): it includes file caches into the total memory usage info. So, we can just avoid this metric and use ps info about RSS.
Well, ok - but why is RSS higher than Xmx?
Theoretically, in case of a java application
RSS = Heap size + MetaSpace + OffHeap size
where OffHeap consists of thread stacks, direct buffers, mapped files (libraries and jars) and JVM code itse
Since JDK 1.8.40 we have Native Memory Tracker!
As you can see, I’ve already added -XX:NativeMemoryTracking=summary property to the JVM, so we can just invoke it from the command line:
docker exec my-app jcmd 1 VM.native_memory summary
(This is what the OP did)
Don’t worry about the “Unknown” section - seems that NMT is an immature tool and can’t deal with CMS GC (this section disappears when you use an another GC).
Keep in mind, that NMT displays “committed” memory, not "resident" (which you get through the ps command). In other words, a memory page can be committed without considering as a resident (until it directly accessed).
That means that NMT results for non-heap areas (heap is always preinitialized) might be bigger than RSS values.
(that is where "Why does a JVM report more committed memory than the linux process resident set size?" comes in)
As a result, despite the fact that we set the jvm heap limit to 256m, our application consumes 367M. The “other” 164M are mostly used for storing class metadata, compiled code, threads and GC data.
First three points are often constants for an application, so the only thing which increases with the heap size is GC data.
This dependency is linear, but the “k” coefficient (y = kx + b) is much less then 1.
More generally, this seems to be followed by issue 15020 which reports a similar issue since docker 1.7
I'm running a simple Scala (JVM) application which loads a lot of data into and out of memory.
I set the JVM to 8G heap (-Xmx8G). I have a machine with 132G memory, and it can't handle more than 7-8 containers because they grow well past the 8G limit I imposed on the JVM.
(docker stat was reported as misleading before, as it apparently includes file caches into the total memory usage info)
docker stat shows that each container itself is using much more memory than the JVM is supposed to be using. For instance:
CONTAINER CPU % MEM USAGE/LIMIT MEM % NET I/O
dave-1 3.55% 10.61 GB/135.3 GB 7.85% 7.132 MB/959.9 MB
perf-1 3.63% 16.51 GB/135.3 GB 12.21% 30.71 MB/5.115 GB
It almost seems that the JVM is asking the OS for memory, which is allocated within the container, and the JVM is freeing memory as its GC runs, but the container doesn't release the memory back to the main OS. So... memory leak.
Disclaimer: I am not an expert
I had a production incident recently when under heavy load, pods had a big jump in RSS and Kubernetes killed the pods. There was no OOM error exception, but Linux stopped the process in the most hardcore way.
There was a big gap between RSS and total reserved space by JVM. Heap memory, native memory, threads, everything looked ok, however RSS was big.
It was found out that it is due to the fact how malloc works internally. There are big gaps in the memory where malloc takes chunks of memory from. If there are a lot of cores on your machine, malloc tries to adapt and give every core each own space to take free memory from to avoid resource contention. Setting up export MALLOC_ARENA_MAX=2 solved the issue. You can find more about this situation here:
Growing resident memory usage (RSS) of Java Process
https://devcenter.heroku.com/articles/tuning-glibc-memory-behavior
https://www.gnu.org/software/libc/manual/html_node/Malloc-Tunable-Parameters.html
https://github.com/jeffgriffith/native-jvm-leaks
P.S. I don't know why there was a jump in RSS memory. Pods are built on Spring Boot + Kafka.

Java app calls C++ DLL via JNI; how best to allocate memory?

Basic summary of question is:
How do I best optimize my memory allocation to give as much memory to the DLLs I access through JNI as possible? What should I aim to minimize, what should I aim to maximize, etc.
SYSTEM:
Running JBoss 6 as a Windows 32 Service in a 32-bit system with 4 GB RAM. I do understand there are maximum restrictions on memory for Java Heap. JVM is JRE1.6.0_26
SERVICE:
Installed under JBoss is a webapp which receives requests from clients; each request calls the C++-built DLL through JNI to process an image file in some fashion or other.
ISSUE:
Occasionally, with larger or some (not all) LZW-compression images, the calling java class receives a message that the DLL experienced a Global Memory Depletion and failed to complete the requested process.
There is nothing else actively running on the server beyond basic windows processes.
Current JBOSS App Server memory settings are as follows, but may be excessive:
-Xms1024m -Xmx1024m -Xss1024k -XX:MaxPermSize=128m
I am trying to determine the best memory settings to give as much resources to the JNI DLL, as I understand JNI does not use any memory allocated to the Java Heap.
I have read these, but did not find them helpful to answer my question:
Java JNI : Memory allocation / partitioning
Can jconsole be used to identify memory leaks in JNI C++ objects?
The two answers currently supplied do not address the inherient question.
Current memory of JBoss server after one week with JVM params set as above (TaskManager indicates java.exe process at 750,672k)
Total Memory Pools: 5
Pool: Code Cache (Non-heap memory)
Peak Usage : init:2359296, used:7317312, committed:7438336, max:50331648
Current Usage : init:2359296, used:7306496, committed:7438336, max:50331648
|---------| committed:7.09Mb
+---------------------------------------------------------------------+
|/////////| | max:48Mb
+---------------------------------------------------------------------+
|---------| used:6.97Mb
Pool: PS Eden Space (Heap memory)
Peak Usage : init:268500992, used:354811904, committed:354811904, max:355991552
Current Usage : init:268500992, used:270153472, committed:354091008, max:354156544
|--------------------------------------------------------------------| committed:337.69Mb
+---------------------------------------------------------------------+
|///////////////////////////////////////////////////// || max:337.75Mb
+---------------------------------------------------------------------+
|----------------------------------------------------| used:257.64Mb
Pool: PS Survivor Space (Heap memory)
Peak Usage : init:44695552, used:44694896, committed:78643200, max:78643200
Current Usage : init:44695552, used:0, committed:1835008, max:1835008
|---------------------------------------------------------------------| committed:1.75Mb
+---------------------------------------------------------------------+
| | max:1.75Mb
+---------------------------------------------------------------------+
| used:0b
Pool: PS Old Gen (Heap memory)
Peak Usage : init:715849728, used:123671968, committed:715849728, max:715849728
Current Usage : init:715849728, used:104048648, committed:715849728, max:715849728
|---------------------------------------------------------------------| committed:682.69Mb
+---------------------------------------------------------------------+
|////////// | max:682.69Mb
+---------------------------------------------------------------------+
|---------| used:99.23Mb
Pool: PS Perm Gen (Non-heap memory)
Peak Usage : init:16777216, used:91989664, committed:134217728, max:134217728
Current Usage : init:16777216, used:90956472, committed:90963968, max:134217728
|----------------------------------------------| committed:86.75Mb
+---------------------------------------------------------------------+
|//////////////////////////////////////////////| | max:128Mb
+---------------------------------------------------------------------+
|----------------------------------------------| used:86.74Mb
Memory allocated by the native code wrapped by JNI is allocated to the JVM process, but is not under the control of your Java code. It is not part of the heap, and is not tunable via JVM parameters. Basically, anything allocated with a native malloc must be managed by that native code. If you are in control of the libraries you are using, its imperative that you go through it and check for resource leaks. This is especially important if this is being used in a long lived process.
In my experience the best approach would be to examine your actual memory use by pulling the JMX stats exposed by the JVM. Once you have an idea about how much memory your Java app consumes You'll have a better idea about where to set your max heap settings. Permgen space is used for class definitions and such, so you really shouldn't need much memory there unless you are doing a bunch of dynamic class loading.
While you cannot tune the memory available for the JNI library, tuning the memory reserved for your heap and such will potentially free up resources for use by the library.
As would be expected, adding the heap memory peaks together it comes out to about 1022.19 (the max size of your heap). When the heap is exhausted a full GC run is kicked off and dirty heap is reclaimed. Based on the numbers that you have provided, I'd suggest starting with a Xmx512m. This will give your JNI code room to breath.
If you find that the JVM is thrashing due to excessive garbage collection, meaning that you're running out of Java heap too quickly, you could grow that allocation. However, if it is eating up 512mb rapidly enough to cause a noticeable performance impact, its unlikely that anything short of a significant increase will have much effect. This all depends heavily on your program, how quickly it eats the Java heap, and how effective the full GC run is.

Categories