find smallest number divisible by N with sum of digits as N - java

For a given number N(0<N<=100) find out the minimum positive integer X divisible by N, where the sum of digits of X is equal to N, and X is not equal to N.
public static int getSmallestNumber(int input1) {
int res =0;
for(int i=2;i<10000;i++) {
if(getSum(input1*i) == input1) {
res = input1*i;
break;
}
}
return res;
}
static int getSum(int n) {
int sum = 0;
while (n != 0) {
sum = sum + n % 10;
n = n/10;
}
return sum;
}
Example: Input: 9
output: 18
Explanation: 1+8 is 9 and 18 is divisible by 9
Example2: Input: 10
output: 190
Explanation: 1+9+0 is 10 and 190 is divisible by 10
My solution works for smaller integer but breaks for larger numbers like 98, 99 or 100.

we need to know that if we multiply multiple of 7, 35(3+5=8) with 7 again then obviously a larger number 42(4+2=6) comes but have lower sum of digits so the change in digits with each multiplication seems uncertain. So, if we can find a way to generalize this change in digits of upcoming next to next larger multiples of our number then a time efficient solution can be designed.

I think you need to add the actual check on the condition (i % input1 == 0) to check the divisibility.
public static int getSmallestNumber (int input1) {
int res = 0;
for (int i = input1; i < 10000; i++) {
if (getSum(i) == input1 && i % input1 == 0) {
res = i;
break;
}
}
return res;
}
static int getSum (int n) {
int sum = 0;
while (n != 0) {
sum = sum + n % 10;
n = n/10;
}
return sum;
}

Related

Armstrong Number Checker in Java

I am still somewhat of a beginner to Java, but I need help with my code. I wanted to write an Armstrong Number checker.
An Armstrong number is one whose sum of digits raised to the power three equals the number itself. 371, for example, is an Armstrong number because 3^3 + 7^3 + 1^3 = 371.
If I understand this concept correctly, then my code should work fine, but I don't know where I made mistakes. I would appreciate if you could help correct my mistakes, but still kind of stick with my solution to the problem, unless my try is completely wrong or most of it needs to change.
Here is the code:
public class ArmstrongChecker {
boolean confirm = false;
Integer input;
String converter;
int indices;
int result = 1;
void ArmstrongCheck(Integer input) {
this.input = input;
converter = input.toString();
char[] array = converter.toCharArray();
indices = array.length;
result = (int) Math.pow(array[0], indices);
for (int i = 1; i < array.length; i++) {
result = result + (int) Math.pow(array[i], indices);
}
if (result == input) {
confirm = true;
System.out.println(confirm);
} else {
System.out.println(confirm);
}
}
}
For my tries I used '153' as an input. Thank you for your help!
You aren't summing the digits, but the numeric values of the characters representing them. You can convert such a character to its numeric value by subtracting the character '0':
int result = 0;
for(int i = 0; i < array.length; i++) {
result = result + (int) Math.pow(array[i] - '0', indices);
}
Having said that, it's arguably (probably?) more elegant to read the input as an actual int number and iterate its digits by taking the reminder of 10 on each iteration. The number of digits itself can be calculated using a base-10 log.
int temp = input;
int result = 0;
int indices = (int) Math.log10(input) + 1;
while (temp != 0) {
int digit = temp % 10;
result += (int) Math.pow(digit, indices);
temp /= 10;
}
There is a small logical mistake in your code, You're not converting the character to an integer instead you're doing something like
Math.pow('1', 3) -> Math.pow(49, 3) // what you're doing
Math.pow(1, 3) // what should be done
You should first convert the character to the string using any method below
result = (int) Math.pow(array[0],indices);
for(int i = 1;i<array.length;i++) {
result = result + (int) Math.pow(array[i],indices);
}
For converting char to integer
int x = Character.getNumericValue(array[i]);
or
int x = Integer.parseInt(String.valueOf(array[i]));
or
int x = array[i] - '0';
Alternatively
You can also check for Armstrong's number without any conversion, using the logic below
public class Armstrong {
public static void main(String[] args) {
int number = 153, num, rem, res = 0;
num = number;
while (num != 0)
{
rem = num % 10;
res += Math.pow(rem, 3);
num /= 10;
}
if(res == num)
System.out.println("YES");
else
System.out.println("NO");
}
}
For any int >= 0 you can do it like this.
Print all the Armstrong numbers less than 10_000.
for (int i = 0; i < 10_000; i++) {
if (isArmstrong(i)) {
System.out.println(i);
}
}
prints
0
1
2
3
4
5
6
7
8
9
153
370
371
407
1634
8208
9474
The key is to use Math.log10 to compute the number of digits in the candidate number. This must be amended by adding 1. So Math.log10(923) returns 2.965201701025912. Casting to an int and adding 1 would be 3 digits.
The number of digits is then the power used for computation.
Then it's just a matter of summing up the digits raised to that power. The method short circuits and returns false if the sum exceeds the number before all the digits are processed.
public static boolean isArmstrong(int v) {
if (v < 0) {
throw new IllegalArgumentException("Argument must >= 0");
}
int temp = v;
int power = (int)Math.log10(temp)+1;
int sum = 0;
while (temp > 0) {
sum += Math.pow(temp % 10, power);
if (sum > v) {
return false;
}
temp/= 10;
}
return v == sum;
}

Maximum Remainder

Maximum remainder
You are given a number N. Write a program to find a natural number that is smaller than N such that N gives the highest remainder when divided by that number.
If there is more than one such number, print the smallest one.
Can anyone help I think I'm missing something like if 2 numbers will have same reaminders my code would overwrite the minDivisor to the upper value
static int findRemainder(int num){
int maxRemainder=0;
int minDivisor=0
int answer=0;
for(int i = 1; i<num; i++){
if(maxRemainder <= (num % i)) {
maxRemainder = num % i;
if(minDivisor < i && maxRemainder == num%i) {
} else {
minDivisor = i;
}
}
return minDivisor;
}
}
Check this out:
int largestRemainder = c % ((c/2) + 1);

java - Instead sum of the number then connect the number [duplicate]

Can anyone explain to me how to reverse an integer without using array or String. I got this code from online, but not really understand why + input % 10 and divide again.
while (input != 0) {
reversedNum = reversedNum * 10 + input % 10;
input = input / 10;
}
And how to do use this sample code to reverse only odd number. Example I got this input 12345, then it will reverse the odd number to output 531.
Java reverse an int value - Principles
Modding (%) the input int by 10 will extract off the rightmost digit. example: (1234 % 10) = 4
Multiplying an integer by 10 will "push it left" exposing a zero to the right of that number, example: (5 * 10) = 50
Dividing an integer by 10 will remove the rightmost digit. (75 / 10) = 7
Java reverse an int value - Pseudocode:
a. Extract off the rightmost digit of your input number. (1234 % 10) = 4
b. Take that digit (4) and add it into a new reversedNum.
c. Multiply reversedNum by 10 (4 * 10) = 40, this exposes a zero to the right of your (4).
d. Divide the input by 10, (removing the rightmost digit). (1234 / 10) = 123
e. Repeat at step a with 123
Java reverse an int value - Working code
public int reverseInt(int input) {
long reversedNum = 0;
long input_long = input;
while (input_long != 0) {
reversedNum = reversedNum * 10 + input_long % 10;
input_long = input_long / 10;
}
if (reversedNum > Integer.MAX_VALUE || reversedNum < Integer.MIN_VALUE) {
throw new IllegalArgumentException();
}
return (int) reversedNum;
}
You will never do anything like this in the real work-world. However, the process by which you use to solve it without help is what separates people who can solve problems from the ones who want to, but can't unless they are spoon fed by nice people on the blogoblags.
I am not clear about your Odd number.
The way this code works is (it is not a Java specific algorithm)
Eg.
input =2345
first time in the while loop
rev=5 input=234
second time
rev=5*10+4=54 input=23
third time
rev=54*10+3 input=2
fourth time
rev=543*10+2 input=0
So the reversed number is 5432.
If you just want only the odd numbers in the reversed number then.
The code is:
while (input != 0) {
last_digit = input % 10;
if (last_digit % 2 != 0) {
reversedNum = reversedNum * 10 + last_digit;
}
input = input / 10;
}
Simply you can use this
public int getReverseInt(int value) {
int resultNumber = 0;
for (int i = value; i !=0; i /= 10) {
resultNumber = resultNumber * 10 + i % 10;
}
return resultNumber;
}
You can use this method with the given value which you want revers.
while (num != 0) {
rev = rev * 10 + num % 10;
num /= 10;
}
That is the solution I used for this problem, and it works fine.
More details:
num % 10
This statement will get you the last digit from the original number.
num /= 10
This statement will eliminate the last digit from the original number, and hence we are sure that while loop will terminate.
rev = rev * 10 + num % 10
Here rev*10 will shift the value by left and then add the last digit from the original.
If the original number was 1258, and in the middle of the run time we have rev = 85, num = 12 so:
num%10 = 2
rev*10 = 850
rev*10 + num%10 = 852
int aa=456;
int rev=Integer.parseInt(new StringBuilder(aa+"").reverse());
import java.util.Scanner;
public class Reverse_order_integer {
private static Scanner scan;
public static void main(String[] args) {
System.out.println("\t\t\tEnter Number which you want to reverse.\n");
scan = new Scanner(System.in);
int number = scan.nextInt();
int rev_number = reverse(number);
System.out.println("\t\t\tYour reverse Number is = \"" + rev_number
+ "\".\n");
}
private static int reverse(int number) {
int backup = number;
int count = 0;
while (number != 0) {
number = number / 10;
count++;
}
number = backup;
int sum = 0;
for (int i = count; i > 0; i--) {
int sum10 = 1;
int last = number % 10;
for (int j = 1; j < i; j++) {
sum10 = sum10 * 10;
}
sum = sum + (last * sum10);
number = number / 10;
}
return sum;
}
}
See to get the last digit of any number we divide it by 10 so we either achieve zero or a digit which is placed on last and when we do this continuously we get the whole number as an integer reversed.
int number=8989,last_num,sum=0;
while(number>0){
last_num=number%10; // this will give 8989%10=9
number/=10; // now we have 9 in last and now num/ by 10= 898
sum=sum*10+last_number; // sum=0*10+9=9;
}
// last_num=9. number= 898. sum=9
// last_num=8. number =89. sum=9*10+8= 98
// last_num=9. number=8. sum=98*10+9=989
// last_num=8. number=0. sum=989*10+8=9898
// hence completed
System.out.println("Reverse is"+sum);
public static void main(String args[]) {
int n = 0, res = 0, n1 = 0, rev = 0;
int sum = 0;
Scanner scan = new Scanner(System.in);
System.out.println("Please Enter No.: ");
n1 = scan.nextInt(); // String s1=String.valueOf(n1);
int len = (n1 == 0) ? 1 : (int) Math.log10(n1) + 1;
while (n1 > 0) {
rev = res * ((int) Math.pow(10, len));
res = n1 % 10;
n1 = n1 / 10;
// sum+=res; //sum=sum+res;
sum += rev;
len--;
}
// System.out.println("sum No: " + sum);
System.out.println("sum No: " + (sum + res));
}
This will return reverse of integer
Just to add on, in the hope to make the solution more complete.
The logic by #sheki already gave the correct way of reversing an integer in Java. If you assume the input you use and the result you get always fall within the range [-2147483648, 2147483647], you should be safe to use the codes by #sheki. Otherwise, it'll be a good practice to catch the exception.
Java 8 introduced the methods addExact, subtractExact, multiplyExact and toIntExact. These methods will throw ArithmeticException upon overflow. Therefore, you can use the below implementation to implement a clean and a bit safer method to reverse an integer. Generally we can use the mentioned methods to do mathematical calculation and explicitly handle overflow issue, which is always recommended if there's a possibility of overflow in the actual usage.
public int reverse(int x) {
int result = 0;
while (x != 0){
try {
result = Math.multiplyExact(result, 10);
result = Math.addExact(result, x % 10);
x /= 10;
} catch (ArithmeticException e) {
result = 0; // Exception handling
break;
}
}
return result;
}
Java solution without the loop. Faster response.
int numberToReverse;//your number
StringBuilder sb=new StringBuilder();
sb.append(numberToReverse);
sb=sb.reverse();
String intermediateString=sb.toString();
int reversedNumber=Integer.parseInt(intermediateString);
import java.io.BufferedReader;
import java.io.InputStreamReader;
public class intreverse
{
public static void main(String...a)throws Exception
{
int no;
int rev = 0;
System.out.println("Enter The no to be reversed");
InputStreamReader str=new InputStreamReader(System.in);
BufferedReader br =new BufferedReader(str);
no=Integer.parseInt(br.readLine().toString());
while(no!=0)
{
rev=rev*10+no%10;
no=no/10;
}
System.out.println(rev);
}
}
public static int reverse(int x) {
boolean negetive = false;
if (x < 0) {
x = Math.abs(x);
negative = true;
}
int y = 0, i = 0;
while (x > 0) {
if (i > 0) {
y *= 10;
}
y += x % 10;
x = x / 10;
i++;
}
return negative ? -y : y;
}
Here is a complete solution(returns 0 if number is overflown):
public int reverse(int x) {
boolean flag = false;
// Helpful to check if int is within range of "int"
long num = x;
// if the number is negative then turn the flag on.
if(x < 0) {
flag = true;
num = 0 - num;
}
// used for the result.
long result = 0;
// continue dividing till number is greater than 0
while(num > 0) {
result = result*10 + num%10;
num= num/10;
}
if(flag) {
result = 0 - result;
}
if(result > Integer.MAX_VALUE || result < Integer.MIN_VALUE) {
return 0;
}
return (int) result;
}
Scanner input = new Scanner(System.in);
System.out.print("Enter number :");
int num = input.nextInt();
System.out.print("Reverse number :");
int value;
while( num > 0){
value = num % 10;
num /= 10;
System.out.print(value); //value = Reverse
}
int convert (int n)
{
long val = 0;
if(n==0)
return 0;
for(int i = 1; n > exponent(10, (i-1)); i++)
{
int mod = n%( (exponent(10, i))) ;
int index = mod / (exponent(10, i-1));
val *= 10;
val += index;
}
if (val < Integer.MIN_VALUE || val > Integer.MAX_VALUE)
{
throw new IllegalArgumentException
(val + " cannot be cast to int without changing its value.");
}
return (int) val;
}
static int exponent(int m, int n)
{
if(n < 0)
return 0;
if(0 == n)
return 1;
return (m * exponent(m, n-1));
}
It's good that you wrote out your original code. I have another way to code this concept of reversing an integer. I'm only going to allow up to 10 digits. However, I am going to make the assumption that the user will not enter a zero.
if((inputNum <= 999999999)&&(inputNum > 0 ))
{
System.out.print("Your number reversed is: ");
do
{
endInt = inputNum % 10; //to get the last digit of the number
inputNum /= 10;
system.out.print(endInt);
}
While(inputNum != 0);
System.out.println("");
}
else
System.out.println("You used an incorrect number of integers.\n");
System.out.println("Program end");
Even if negative integer is passed then it will give the negative integer
Try This...
public int reverse(int result) {
long newNum=0,old=result;
result=(result>0) ? result:(0-result);
while(result!=0){
newNum*=10;
newNum+=result%10;
result/=10;
if(newNum>Integer.MAX_VALUE||newNum<Integer.MIN_VALUE)
return 0;
}
if(old > 0)
return (int)newNum;
else if(old < 0)
return (int)(newNum*-1);
else
return 0;
}
This is the shortest code to reverse an integer
int i=5263;
System.out.println(Integer.parseInt(new StringBuffer(String.valueOf(i) ).reverse().toString()));
123 maps to 321, which can be calculated as 3*(10^2)+2*(10^1)+1
Two functions are used to calculate (10^N). The first function calculates the value of N. The second function calculates the value for ten to power N.
Function<Integer, Integer> powerN = x -> Double.valueOf(Math.log10(x)).intValue();
Function<Integer, Integer> ten2powerN = y -> Double.valueOf(Math.pow(10, y)).intValue();
// 123 => 321= 3*10^2 + 2*10 + 1
public int reverse(int number) {
if (number < 10) {
return number;
} else {
return (number % 10) * powerN.andThen(ten2powerN).apply(number) + reverse(number / 10);
}
}
If the idea is not to use arrays or string, reversing an integer has to be done by reading the digits of a number from the end one at a time. Below explanation is provided in detail to help the novice.
pseudocode :
lets start with reversed_number = 0 and some value for original_number which needs to be reversed.
the_last_digit = original_number % 10 (i.e, the reminder after dividing by 10)
original_number = original_number/10 (since we already have the last digit, remove the last digit from the original_number)
reversed_number = reversed_number * 10 + last_digit (multiply the reversed_number with 10, so as to add the last_digit to it)
repeat steps 2 to 4, till the original_number becomes 0. When original_number = 0, reversed_number would have the reverse of the original_number.
More info on step 4: If you are provided with a digit at a time, and asked to append it at the end of a number, how would you do it - by moving the original number one place to the left so as to accommodate the new digit. If number 23 has to become 234, you multiply 23 with 10 and then add 4.
234 = 23x10 + 4;
Code:
public static int reverseInt(int original_number) {
int reversed_number = 0;
while (original_number > 0) {
int last_digit = original_number % 10;
original_number = original_number / 10;
reversed_number = reversed_number * 10 + last_digit;
}
return reversed_number;
}
It is an outdated question, but as a reference for others
First of all reversedNum must be initialized to 0;
input%10 is used to get the last digit from input
input/10 is used to get rid of the last digit from input, which you have added to the reversedNum
Let's say input was 135
135 % 10 is 5
Since reversed number was initialized to 0
now reversedNum will be 5
Then we get rid of 5 by dividing 135 by 10
Now input will be just 13
Your code loops through these steps until all digits are added to the reversed number or in other words untill input becomes 0.
while (input != 0) {
reversedNum = reversedNum * 10 + input % 10;
input = input / 10;
}
let a number be 168,
+ input % 10 returns last digit as reminder i.e. 8 but next time it should return 6,hence number must be reduced to 16 from 168, as divide 168 by 10 that results to 16 instead of 16.8 as variable input is supposed to be integer type in the above program.
If you wanna reverse any number like 1234 and you want to revers this number to let it looks like 4321. First of all, initialize 3 variables int org ; int reverse = 0; and int reminder ;
then put your logic like
Scanner input = new Scanner (System.in);
System.out.println("Enter number to reverse ");
int org = input.nextInt();
int getReminder;
int r = 0;
int count = 0;
while (org !=0){
getReminder = org%10;
r = 10 * r + getReminder;
org = org/10;
}
System.out.println(r);
}
A method to get the greatest power of ten smaller or equal to an integer: (in recursion)
public static int powerOfTen(int n) {
if ( n < 10)
return 1;
else
return 10 * powerOfTen(n/10);
}
The method to reverse the actual integer:(in recursion)
public static int reverseInteger(int i) {
if (i / 10 < 1)
return i ;
else
return i%10*powerOfTen(i) + reverseInteger(i/10);
}
You can use recursion to solve this.
first get the length of an integer number by using following recursive function.
int Length(int num,int count){
if(num==0){
return count;
}
else{
count++;
return Lenght(num/10,count);
}
}
and then you can simply multiply remainder of a number by 10^(Length of integer - 1).
int ReturnReverse(int num,int Length,int reverse){
if(Length!=0){
reverse = reverse + ((num%10) * (int)(Math.pow(10,Length-1)));
return ReturnReverse(num/10,Length-1,reverse);
}
return reverse;
}
The whole Source Code :
import java.util.Scanner;
public class ReverseNumbers {
int Length(int num, int count) {
if (num == 0) {
return count;
} else {
return Length(num / 10, count + 1);
}
}
int ReturnReverse(int num, int Length, int reverse) {
if (Length != 0) {
reverse = reverse + ((num % 10) * (int) (Math.pow(10, Length - 1)));
return ReturnReverse(num / 10, Length - 1, reverse);
}
return reverse;
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int N = scanner.nextInt();
ReverseNumbers reverseNumbers = new ReverseNumbers();
reverseNumbers.ReturnReverse(N, reverseNumbers.Length(N, 0), reverseNumbers.ReturnReverse(N, reverseNumbers.Length(N, 0), 0));
scanner.close();
}
}
public int getReverseNumber(int number)
{
int reminder = 0, result = 0;
while (number !=0)
{
if (number >= 10 || number <= -10)
{
reminder = number % 10;
result = result + reminder;
result = result * 10;
number = number / 10;
}
else
{
result = result + number;
number /= 10;
}
}
return result;
}
// The above code will work for negative numbers also
Reversing integer
int n, reverse = 0;
Scanner in = new Scanner(System.in);
n = in.nextInt();
while(n != 0)
{
reverse = reverse * 10;
reverse = reverse + n%10;
n = n/10;
}
System.out.println("Reverse of the number is " + reverse);
public static int reverseInt(int i) {
int reservedInt = 0;
try{
String s = String.valueOf(i);
String reversed = reverseWithStringBuilder(s);
reservedInt = Integer.parseInt(reversed);
}catch (NumberFormatException e){
System.out.println("exception caught was " + e.getMessage());
}
return reservedInt;
}
public static String reverseWithStringBuilder(String str) {
System.out.println(str);
StringBuilder sb = new StringBuilder(str);
StringBuilder reversed = sb.reverse();
return reversed.toString();
}
public static int reverse(int x) {
int tmp = x;
int oct = 0;
int res = 0;
while (true) {
oct = tmp % 10;
tmp = tmp / 10;
res = (res+oct)*10;
if ((tmp/10) == 0) {
res = res+tmp;
return res;
}
}
}
public static double reverse(int num)
{
double num1 = num;
double ret = 0;
double counter = 0;
while (num1 > 1)
{
counter++;
num1 = num1/10;
}
while(counter >= 0)
{
int lastdigit = num%10;
ret += Math.pow(10, counter-1) * lastdigit;
num = num/10;
counter--;
}
return ret;
}

Multiples Program

Here is the programming problem i am trying to solve: 2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.
What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20?
Here is my solution so far, however the answer comes up as zero everytime so i think i have an error in my code. Any help would be appreciated.
public static boolean isDiv(int num){
boolean isDiv = false;
for (int i = 1; i <= 20; i++){
if (i == 20){
isDiv = true;
}
if ((num % i) == 0){
continue;
}
else {
break;
}
}
return isDiv;}
public static int smallMulti(int num){
boolean div = isDiv(num);
int answer = 0;
for (int i = num; num < 2520; i--){
if (div = true){
answer = i;
}
}
return answer;}
You are overcomplicating the whole problem, combined with multiple logical mistakes. Basicly you just need 2 loops. Here´s a the code checking for the first number beeing devisible by every number until Integer.MAX_VALUE. If you want to go higher you could adopt the code to work with long.
public static int smallMulti(int num) {
for (int i = 1; num <= Integer.MAX_VALUE; ++i) { // Check every int in the scope of the Integer
for (int j = 2;j<=num;++j) {
if(i % j != 0) {
break; // If i % j is unequal to 0 then this number isn´t valid.
}
if(j == num) {
return i; // If we reached j == num then everything was divisble yet so we can return i as the correct value;
}
}
}
return -1;
}
Heres the example output for this main
public static void main(String[] args) {
for(int i = 2; i <= 20; ++i)
System.out.println("Smallest Value divisible by 1-"+ i + " = " + smallMulti(i));
}
OutPut
Smallest Value divisible by 1-2 = 2
Smallest Value divisible by 1-3 = 6
Smallest Value divisible by 1-4 = 12
Smallest Value divisible by 1-5 = 60
Smallest Value divisible by 1-6 = 60
Smallest Value divisible by 1-7 = 420
Smallest Value divisible by 1-8 = 840
Smallest Value divisible by 1-9 = 2520
Smallest Value divisible by 1-10 = 2520
Smallest Value divisible by 1-11 = 27720
Smallest Value divisible by 1-12 = 27720
Smallest Value divisible by 1-13 = 360360
Smallest Value divisible by 1-14 = 360360
Smallest Value divisible by 1-15 = 360360
Smallest Value divisible by 1-16 = 720720
Smallest Value divisible by 1-17 = 12252240
Smallest Value divisible by 1-18 = 12252240
Smallest Value divisible by 1-19 = 232792560
Smallest Value divisible by 1-20 = 232792560
I implemented with lcm(least common multiple)
public static int lcm(int a, int b) {
return (a*b)/gcd(a, b);
}
public static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
public static int smallMulti(int n) {
int number = 1;
for (int i = 2; i <= n; i++) {
number = lcm(number, i);
}
return number;
}

Loops and Prime Numbers

Write a program that prompts the user for an integer and then prints out all prime numbers up to that integer. For example, when the user enters 20, the program should print
2 3 5 7 11 13 17 19
Recall that a number is a prime number if it is not divisible by any number except 1 and itself.
I am trying to write this program but I am having difficulties, can anyone show me how to write this code?
This is what I have written but it is completely wrong.
import java.util.Scanner;
public class PrimeNumbers
{
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
System.out.print("Enter Integers: ");
int x;
int n = in.nextInt();
for (int i = 2; i < n ; i++)
{
x = i;
if (n % i != 0 && i % x != 0)
{
System.out.println(i);
}
x--;
}
}
}
Computes the number of primes less than or equal to N using
the Sieve of Eratosthenes.
% java PrimeSieve 25
The number of primes <= 25 is 9
% java PrimeSieve 100
The number of primes <= 100 is 25
% java -Xmx100m PrimeSieve 100000000
The number of primes <= 100000000 is 5761455
% java PrimeSieve -Xmx1100m 1000000000
The number of primes <= 1000000000 is 50847534
The 110MB and 1100MB is the amount of memory you want to allocate
to the program. If your computer has less, make this number smaller,
but it may prevent you from solving the problem for very large
values of N.
class PrimeSieve {
public static void main(String[] args) {
int N = Integer.parseInt(args[0]);
// initially assume all integers are prime
boolean[] isPrime = new boolean[N + 1];
for (int i = 2; i <= N; i++) {
isPrime[i] = true;
}
// mark non-primes <= N using Sieve of Eratosthenes
for (int i = 2; i*i <= N; i++) {
// if i is prime, then mark multiples of i as nonprime
// suffices to consider mutiples i, i+1, ..., N/i
if (isPrime[i]) {
for (int j = i; i*j <= N; j++) {
isPrime[i*j] = false;
}
}
}
// count primes
int primes = 0;
for (int i = 2; i <= N; i++) {
if (isPrime[i]){ primes++; System.out.print(i+", ");}
}
System.out.println("\nThe number of primes <= " + N + " is " + primes);
}
}
Use this method to check if a given int is a prime.
public static boolean isPrime(int a)
{
if ( a == 2)
return true;
int midpoint = Math.round(a/2);
for(int i = 2; i < midpoint; i++)
{
if(a % i == 0)
return false;
}
return true;
}
Explanation:
Loop through all the numbers until midpoint and modulus until you encounter 0 or not. If you encounter 0 then return false because we know that it is not prime, if we encounter no zero then we return true because it is prime.
We loop until midpoint because there is no need to loop further.
You can implement it in your loop via
for (int i = 2; i < n ; i++)
{
if (isPrime(i))
{
System.out.println(i);
}
}

Categories