I've managed to get COM4J to use some functionality in the windows IMAPI (CD writing).
However I've failed to get any of the calls that return SAFEARRAYs working, but this project doesn't appear to be currently active ...
The DLL is usually in C:\Windows\System32\imapi2.dll, and using it also requires using C:\Windows\System32\imapi2fs.dll
Looking around for a JAVA-COM bridge project that is active led me to JNA.
The remit of the project to simplify JAVA-COM bridging intrigued me .... however I fell at the first hurdle, and am hoping someone can help.
So far I've taken the Microsoft IMAPI examples and written a Powershell application, from which I have the series of calls I need to make to the API.[CDInterface][1]
The first thing you need to do with IMAPI is create an Instance of IDiskMaster2, so I've declared that via an Imapi2 interface, like so
public interface Imapi2 extends Library {
Imapi2 INSTANCE = (Imapi2)
Native.load("C:/Windows/System32/imapi2.dll" , Imapi2.class);
public static class IDiscMaster2 extends Structure {
int getCount;
public int getCount() {
return getCount;
}
}
IDiscMaster2 createMsftDiscMaster2();
}
Then in the main code
Imapi2.IDiscMaster2 recorderList = Imapi2.INSTANCE.createMsftDiscMaster2();
System.out.println("Found " + recorderList.getCount() + " Recorders");
Just putting 'imapi2' in the call to Native.load() didn't work either.
I'm guessing I'm doing something fundamentally wrong, but it's not clear how you get JNA to 'see' a new dll you want to interface to ..... and also I am kind of afraid there is something very different about this API from the othe APIs that people are using JNA to talk to, so may not be worth trying!
public interface Imapi2 extends Library {
Imapi2 INSTANCE = (Imapi2)
Native.load("C:/Windows/System32/imapi2.dll" , Imapi2.class);
public class IDiscMaster2 extends Dispatch {
public static final CLSID CLSID_MsftDiscMaster2 = new CLSID("2735412F-7F64-5B0F-8F00-5D77AFBE261E");
public IDiscMaster2() {
}
private IDiscMaster2(Pointer pvInstance) {
super(pvInstance);
}
public static IDiscMaster2 create() {
PointerByReference pbr = new PointerByReference();
WinNT.HRESULT hres = Ole32.INSTANCE.CoCreateInstance(CLSID_MsftDiscMaster2, null, WTypes.CLSCTX_ALL, null, pbr);
if (COMUtils.FAILED(hres)) {
System.out.println("ERROR: Failed to create instance");
return null;
}
return new IDiscMaster2(pbr.getValue());
}
public WinNT.HRESULT _getCount(Pointer count ){
return (WinNT.HRESULT) _invokeNativeObject(2, new Object[]{count}, WinNT.HRESULT.class);
}
public long getCount() {
try {
long count = -1;
Pointer ptr = new Pointer(count);
WinNT.HRESULT result = _getCount(ptr);
COMUtils.checkRC(result);
return count;
} catch ( Exception e ) {
System.out.println("Error : " + e.getMessage());
}
return -1;
}
}
Then invocation in main changed to
Imapi2 imapi2Lib = Imapi2.INSTANCE;
Imapi2.IDiscMaster2 recorderList = new Imapi2.IDiscMaster2();
System.out.println("Found " + recorderList.getCount() + " Recorders");
IntelliJ shows up uninvoked methods, so it doesn't look like create() is getting called. Not sure if this is because I need to call it, or down to the function implementing IDispatch not IUnknown.
[1]: https://github.com/nosdod/CDInterface
I've answered this in a similar question which I originally marked this as a duplicate of. However, given the difficulty loading this, your case is unique enough that I'll attempt to give a separate answer.
The general case for COM is that there is an API function that creates the object. You have mapped this as createMsftDiscMaster2(). Note that you have allocated a resource here and it needs to be disposed of when you are done with it; the API documentation should tell you how to do that (possibly by calling Release() from IUnknown.)
Your next step is to map the IDiscMaster2 COM class. I see two mappings here, so I'm confused as to which one you want. The one at the top of your question is incorrect, but the one extending Dispatch later is the correct way to start, but I'm not clear where you've gone after that. The rest of the class should look similar to the internals of the Dispatch class in JNA.
In that class you can see the boilerplate that you will follow. Note that it extends Unknown which follows the same boilerplate for offsets 0, 1, and 2 for the first 3 COM functions QueryInterface, AddRef, and Release. Dispatch picks up with offsets 3, 4, 5, and 6 for COM functions GetTypeInfoCount, GetTypeInfo, GetIDsOfNames, and Invoke.
So in your mapping for DiskMaster2 you will pick up with offset 7, and your mapping will look like:
public HRESULT TheFunctionName(FOO foo, BAR bar) {
return (HRESULT) this._invokeNativeObject(7,
new Object[] { this.getPointer(), foo, bar },
HRESULT.class);
}
This is where you need to locate the actual header file for this class to determine the order in which the functions appear in the Vtbl. It looks like you attempted to do this with your code, but the offset 2 is already assigned in Unknown, the lowest one you'll be able to use is 7 (and continue on with 8, 9, 10 for each function in this COM interface, in the correct order -- which you must determine from the Vtbl.)
Based on this header, you can see those functions mapped in order and your offsets should be: 7: get__NewEnum, 8: get_Item, 9: get_Count, and 10: get_IsSupportedEnvironment. Use those header function mappings as a start and change them to the _invokeNativeObject() format above. (They all return HRESULT, you'll just be changing the argument list.)
Related
I am sorry for the vague question. I am not sure what I'm looking for here.
I have a Java class, let's call it Bar. In that class is an instance variable, let's call it foo. foo is a String.
foo cannot just have any value. There is a long list of strings, and foo must be one of them.
Then, for each of those strings in the list I would like the possibility to set some extra conditions as to whether that specific foo can belong in that specific type of Bar (depending on other instance variables in that same Bar).
What approach should I take here? Obviously, I could put the list of strings in a static class somewhere and upon calling setFoo(String s) check whether s is in that list. But that would not allow me to check for extra conditions - or I would need to put all that logic for every value of foo in the same method, which would get ugly quickly.
Is the solution to make several hundred classes for every possible value of foo and insert in each the respective (often trivial) logic to determine what types of Bar it fits? That doesn't sound right either.
What approach should I take here?
Here's a more concrete example, to make it more clear what I am looking for. Say there is a Furniture class, with a variable material, which can be lots of things, anything from mahogany to plywood. But there is another variable, upholstery, and you can make furniture containing cotton of plywood but not oak; satin furniture of oak but not walnut; other types of fabric go well with any material; et cetera.
I wouldn't suggest creating multiple classes/templates for such a big use case. This is very opinion based but I'll take a shot at answering as best as I can.
In such a case where your options can be numerous and you want to keep a maintainable code base, the best solution is to separate the values and the logic. I recommend that you store your foo values in a database. At the same time, keep your client code as clean and small as possible. So that it doesn't need to filter through the data to figure out which data is valid. You want to minimize dependency to data in your code. Think of it this way: tomorrow you might need to add a new material to your material list. Do you want to modify all your code for that? Or do you want to just add it to your database and everything magically works? Obviously the latter is a better option. Here is an example on how to design such a system. Of course, this can vary based on your use case or variables but it is a good guideline. The basic rule of thumb is: your code should have as little dependency to data as possible.
Let's say you want to create a Bar which has to have a certain foo. In this case, I would create a database for BARS which contains all the possible Bars. Example:
ID NAME FOO
1 Door 1,4,10
I will also create a database FOOS which contains the details of each foo. For example:
ID NAME PROPERTY1 PROPERTY2 ...
1 Oak Brown Soft
When you create a Bar:
Bar door = new Bar(Bar.DOOR);
in the constructor you would go to the BARS table and query the foos. Then you would query the FOOS table and load all the material and assign them to the field inside your new object.
This way whenever you create a Bar the material can be changed and loaded from DB without changing any code. You can add as many types of Bar as you can and change material properties as you goo. Your client code however doesn't change much.
You might ask why do we create a database for FOOS and refer to it's ids in the BARS table? This way, you can modify the properties of each foo as much as you want. Also you can share foos between Bars and vice versa but you only need to change the db once. cross referencing becomes a breeze. I hope this example explains the idea clearly.
You say:
Is the solution to make several hundred classes for every possible
value of foo and insert in each the respective (often trivial) logic
to determine what types of Bar it fits? That doesn't sound right
either.
Why not have separate classes for each type of Foo? Unless you need to define new types of Foo without changing the code you can model them as plain Java classes. You can go with enums as well but it does not really give you any advantage since you still need to update the enum when adding a new type of Foo.
In any case here is type safe approach that guarantees compile time checking of your rules:
public static interface Material{}
public static interface Upholstery{}
public static class Oak implements Material{}
public static class Plywood implements Material{}
public static class Cotton implements Upholstery{}
public static class Satin implements Upholstery{}
public static class Furniture<M extends Material, U extends Upholstery>{
private M matrerial = null;
private U upholstery = null;
public Furniture(M matrerial, U upholstery){
this.matrerial = matrerial;
this.upholstery = upholstery;
}
public M getMatrerial() {
return matrerial;
}
public U getUpholstery() {
return upholstery;
}
}
public static Furniture<Plywood, Cotton> cottonFurnitureWithPlywood(Plywood plywood, Cotton cotton){
return new Furniture<>(plywood, cotton);
}
public static Furniture<Oak, Satin> satinFurnitureWithOak(Oak oak, Satin satin){
return new Furniture<>(oak, satin);
}
It depends on what you really want to achieve. Creating objects and passing them around will not magically solve your domain-specific problems.
If you cannot think of any real behavior to add to your objects (except the validation), then it might make more sense to just store your data and read them into memory whenever you want. Even treat rules as data.
Here is an example:
public class Furniture {
String name;
Material material;
Upholstery upholstery;
//getters, setters, other behavior
public Furniture(String name, Material m, Upholstery u) {
//Read rule files from memory or disk and do all the checks
//Do not instantiate if validation does not pass
this.name = name;
material = m;
upholstery = u;
}
}
To specify rules, you will then create three plain text files (e.g. using csv format). File 1 will contain valid values for material, file 2 will contain valid values for upholstery, and file 3 will have a matrix format like the following:
upholstery\material plywood mahogany oak
cotton 1 0 1
satin 0 1 0
to check if a material goes with an upholstery or not, just check the corresponding row and column.
Alternatively, if you have lots of data, you can opt for a database system along with an ORM. Rule tables then can be join tables and come with extra nice features a DBMS may provide (like easy checking for duplicate values). The validation table could look something like:
MaterialID UpholsteryID Compatability_Score
plywood cotton 1
oak satin 0
The advantage of using this approach is that you quickly get a working application and you can decide what to do as you add new behavior to your application. And even if it gets way more complex in the future (new rules, new data types, etc) you can use something like the repository pattern to keep your data and business logic decoupled.
Notes about Enums:
Although the solution suggested by #Igwe Kalu solves the specific case described in the question, it is not scalable. What if you want to find what material goes with a given upholstery (the reverse case)? You will need to create another enum which does not add anything meaningful to the program, or add complex logic to your application.
This is a more detailed description of the idea I threw out there in the comment:
Keep Furniture a POJO, i.e., just hold the data, no behavior or rules implemented in it.
Implement the rules in separate classes, something along the lines of:
interface FurnitureRule {
void validate(Furniture furniture) throws FurnitureRuleException;
}
class ValidMaterialRule implements FurnitureRule {
// this you can load in whatever way suitable in your architecture -
// from enums, DB, an XML file, a JSON file, or inject via Spring, etc.
private Set<String> validMaterialNames;
#Overload
void validate(Furniture furniture) throws FurnitureRuleException {
if (!validMaterialNames.contains(furniture.getMaterial()))
throws new FurnitureRuleException("Invalid material " + furniture.getMaterial());
}
}
class UpholsteryRule implements FurnitureRule {
// Again however suitable to implement/config this
private Map<String, Set<String>> validMaterialsPerUpholstery;
#Overload
void validate(Furniture furniture) throws FurnitureRuleException {
Set<String> validMaterialNames = validMaterialsPerUpholstery.get(furniture.getUpholstery();
if (validMaterialNames != null && !validMaterialNames.contains(furniture.getMaterial()))
throws new FurnitureRuleException("Invalid material " + furniture.getMaterial() + " for upholstery " + furniture.getUpholstery());
}
}
// and more complex rules if you need to
Then have some service along the lines of FurnitureManager. It's the "gatekeeper" for all Furniture creation/updates:
class FurnitureManager {
// configure these via e.g. Spring.
private List<FurnitureRule> rules;
public void updateFurniture(Furniture furniture) throws FurnitureRuleException {
rules.forEach(rule -> rule.validate(furniture))
// proceed to persist `furniture` in the database or whatever else you do with a valid piece of furniture.
}
}
material should be of type Enum.
public enum Material {
MAHOGANY,
TEAK,
OAK,
...
}
Furthermore you can have a validator for Furniture that contains the logic which types of Furniture make sense, and then call that validator in every method that can change the material or upholstery variable (typically only your setters).
public class Furniture {
private Material material;
private Upholstery upholstery; //Could also be String depending on your needs of course
public void setMaterial(Material material) {
if (FurnitureValidator.isValidCombination(material, this.upholstery)) {
this.material = material;
}
}
...
private static class FurnitureValidator {
private static boolean isValidCombination(Material material, Upholstery upholstery) {
switch(material) {
case MAHOGANY: return upholstery != Upholstery.COTTON;
break;
//and so on
}
}
}
}
We often are oblivious of the power inherent in enum types. The Java™ Tutorials clearly states "you should use enum types any time you need to represent a fixed set of constants."
How do you simply make the best of enum in resolving the challenge you presented? - Here goes:
public enum Material {
MAHOGANY( "satin", "velvet" ),
PLYWOOD( "leather" ),
// possibly many other materials and their matching fabrics...
OAK( "some other fabric - 0" ),
WALNUT( "some other fabric - 0", "some other fabric - 1" );
private final String[] listOfSuitingFabrics;
Material( String... fabrics ) {
this.listOfSuitingFabrics = fabrics;
}
String[] getListOfSuitingFabrics() {
return Arrays.copyOf( listOfSuitingFabrics );
}
public String toString() {
return name().substring( 0, 1 ) + name().substring( 1 );
}
}
Let's test it:
public class TestMaterial {
for ( Material material : Material.values() ) {
System.out.println( material.toString() + " go well with " + material.getListOfSuitingFabrics() );
}
}
Probably the approach I'd use (because it involves the least amount of code and it's reasonably fast) is to "flatten" the hierarchical logic into a one-dimensional Set of allowed value combinations. Then when setting one of the fields, validate that the proposed new combination is valid. I'd probably just use a Set of concatenated Strings for simplicity. For the example you give above, something like this:
class Furniture {
private String wood;
private String upholstery;
/**
* Set of all acceptable values, with each combination as a String.
* Example value: "plywood:cotton"
*/
private static final Set<String> allowed = new HashSet<>();
/**
* Load allowed values in initializer.
*
* TODO: load allowed values from DB or config file
* instead of hard-wiring.
*/
static {
allowed.add("plywood:cotton");
...
}
public void setWood(String wood) {
if (!allowed.contains(wood + ":" + this.upholstery)) {
throw new IllegalArgumentException("bad combination of materials!");
}
this.wood = wood;
}
public void setUpholstery(String upholstery) {
if (!allowed.contains(this.wood + ":" + upholstery)) {
throw new IllegalArgumentException("bad combination of materials!");
}
this.upholstery = upholstery;
}
public void setMaterials(String wood, String upholstery) {
if (!allowed.contains(wood + ":" + upholstery)) {
throw new IllegalArgumentException("bad combination of materials!");
}
this.wood = wood;
this.upholstery = upholstery;
}
// getters
...
}
The disadvantage of this approach compared to other answers is that there is no compile-time type checking. For example, if you try to set the wood to plywoo instead of plywood you won’t know about your error until runtime. In practice this disadvantage is negligible since presumably the options will be chosen by a user through a UI (or through some other means), so you won’t know what they are until runtime anyway. Plus the big advantage is that the code will never have to be changed so long as you’re willing to maintain a list of allowed combinations externally. As someone with 30 years of development experience, take my word for it that this approach is far more maintainable.
With the above code, you'll need to use setMaterials before using setWood or setUpholstery, since the other field will still be null and therefore not an allowed combination. You can initialize the class's fields with default materials to avoid this if you want.
I'm putting more attention into unit tests these days and I got in a situation for which I'm not sure how to make a good test.
I have a function which creates and returns an object of class X. This X class is part of the framework, so I'm not very familiar with it's implementation and I don't have freedom as in the case of my "regular collaborator classes" (the ones which I have written). Also, when I pass some arguments I cannot check if object X is set to right parameters and I'm not able to pass mock in some cases.
My question is - how to check if this object was properly created, that is, to check which parameters were passed to its constructor? And how to avoid problem when constructor throws an exception when I pass a mock?
Maybe I'm not clear enough, here is a snippet:
public class InputSplitCreator {
Table table;
Scan scan;
RegionLocator regionLocator;
public InputSplitCreator(Table table, Scan scan, RegionLocator regionLocator) {
this.table = table;
this.scan = scan;
this.regionLocator = regionLocator;
}
public InputSplit getInputSplit(String scanStart, String scanStop, Pair<byte[][], byte[][]> startEndKeys, int i) {
String start = Bytes.toString(startEndKeys.getFirst()[i]);
String end = Bytes.toString(startEndKeys.getSecond()[i]);
String startSalt;
if (start.length() == 0)
startSalt = "0";
else
startSalt = start.substring(0, 1);
byte[] startRowKey = Bytes.toBytes(startSalt + "-" + scanStart);
byte[] endRowKey = Bytes.toBytes(startSalt + "-" + scanStop);
TableSplit tableSplit;
try {
HRegionLocation regionLocation = regionLocator.getRegionLocation(startEndKeys.getFirst()[i]);
String hostnamePort = regionLocation.getHostnamePort();
tableSplit = new TableSplit(table.getName(), scan, startRowKey, endRowKey, hostnamePort);
} catch (IOException ex) {
throw new HBaseRetrievalException("Problem while trying to find region location for region " + i, ex);
}
return tableSplit;
}
}
So, this creates an InputSplit. I would like to know whether this split is created with correct parameters. How to do that?
If the class is part of a framework, then you shouldn't test it directly, as the framework has tested it for you. If you still want to test the behaviour of this object, look at the cause-reaction this object would cause. More specifically: mock the object, have it do stuff and check if the affected objects (which you can control) carry out the expected behaviour or are in the correct state.
For more details you should probably update your answer with the framework you're using and the class of said framework you wish to test
This is possibly one of those cases where you shouldn't be testing it directly. This object is supposedly USED for something, yes? If it's not created correctly, some part of your code will break, no?
At some point or another, your application depends on this created object to behave in a certain way, so you can test it implicitly by testing that these procedures that depend on it are working correctly.
This can save you from coupling more abstract use cases from the internal workings and types of the framework.
UPDATE: After getting an unexpected-in-a-good-way answer, I've added some context to the bottom of this question, stating exactly how I'll be using these string-function-calls.
I need to translate a string such as
my.package.ClassName#functionName(1, "a string value", true)
into a reflective call to that function. Getting the package, class, and function name is not a problem. I have started rolling my own solution for parsing the parameter list, and determining the type of each and returning an appropriate object.
(I'm limiting the universe of types to the eight primitives, plus string. null would be considered a string, and commas and double-quotes must be strictly escaped with some simple marker, such as __DBL_QT__, to avoid complications with unescaping and splitting on the comma.)
I am not asking how to do this via string-parsing, as I understand how. It's just a lot of work and I'm hoping there's a solution already out there. Unfortunately it's such generic terminology, I'm getting nowhere with searching.
I understand asking for an external existing library is off topic for SO. I'm just hoping to get some feedback before it's shutdown, or even a suggestion on better search terms. Or perhaps, there is a completely different approach that might be suggested...
Thank you.
Context:
Each function call is found within a function's JavaDoc block, and represents a piece of example code--either its source code or its System.out output--which will be displayed in that spot.
The parameters are for customizing its display, such as
indentation,
eliminating irrelevant parts (like the license-block), and
for JavaDoc-linking the most important functions.
This customization is mostly for the source-code presentation, but may also be applied to its output.
(The first parameter is always an Appendable, which will do the actual outputting.)
The user needs to be be able to call any function, which in many cases will be a private-static function located directly below the JavaDoc-ed function itself.
The application I'm writing will read in the source-code file (the one containing the JavaDoc blocks, in which these string-function-calls exist), and create a duplicate of the *.java file, which will subsequently processed by javadoc.
So for every piece of example code, there will be likely two, and possibly more of these string-function-calls. There may be more, because I may want to show different slices of the same example, in different contexts--perhaps the whole example in the overall class JavaDoc block, and snippets from it in the relevant functions in that class.
I have already written the process that parses the source code (the source code containing the JavaDoc blocks, which is separate from the one that reads the example-code), and re-outputs its source-code blindly with insert example-code here and insert example-code-output here markers.
I'm now at the point where I have this string-function-call in an InsertExampleCode object, in a string-field. Now I need to do as described at the top of this question. Figure out which function they want to invoke, and do so.
Change the # to a dot (.), write a class definition around it so that you have a valid Java source file, include tools.jar in your classpath and invoke com.sun.tools.javac.Main.
Create your own instance of a ClassLoader to load the compiled class, and run it (make it implement a useful interface, such as java.util.concurrent.Callable so that you can get the result of the invocation easily)
That should do the trick.
The class I created for this, called com.github.aliteralmind.codelet.simplesig.SimpleMethodSignature, is a significant piece of Codelet, used to translate the "customizer" portion of each taglet, which is a function that customizes the taglet's output.
(Installation instructions. The only jars that must be in your classpath are codelet and xbnjava.)
Example string signatures, in taglets:
{#.codelet.and.out com.github.aliteralmind.codelet.examples.adder.AdderDemo%eliminateCommentBlocksAndPackageDecl()}
The customizer portion is everything following the percent sign (%). This customizer contains only the function name and empty parameters. This implies that the function must exist in one of a few, strictly-specified, set of classes.
{#.codelet.and.out com.github.aliteralmind.codelet.examples.adder.AdderDemo%lineRange(1, false, "Adder adder", 2, false, "println(adder.getSum())", "^ ")}
This specifies parameters as well, which are, by design, "simple"--either non-null strings, or a primitive type.
{#.codelet.and.out com.github.aliteralmind.codelet.examples.adder.AdderDemo%com.github.aliteralmind.codelet.examples.LineRangeWithLinksCompact#adderDemo_lineSnippetWithLinks()}
Specifies the explicit package and class in which the function exists.
Because of the nature of these taglets and how the string-signatures are implemented, I decided to stick with direct string parsing instead of dynamic compilation.
Two example uses of SimpleMethodSignature:
In this first example, the full signature (the package, class, and function name, including all its parameters) are specified in the string.
import com.github.aliteralmind.codelet.simplesig.SimpleMethodSignature;
import com.github.xbn.lang.reflect.InvokeMethodWithRtx;
import java.lang.reflect.Method;
public class SimpleMethodSigNoDefaults {
public static final void main(String[] ignored) {
String strSig = "com.github.aliteralmind.codelet.examples.simplesig." +
"SimpleMethodSigNoDefaults#getStringForBoolInt(false, 3)";
SimpleMethodSignature simpleSig = null;
try {
simpleSig = SimpleMethodSignature.newFromStringAndDefaults(
String.class, strSig, null, null,
null); //debug (on=System.out, off=null)
} catch(ClassNotFoundException cnfx) {
throw new RuntimeException(cnfx);
}
Method m = null;
try {
m = simpleSig.getMethod();
} catch(NoSuchMethodException nsmx) {
throw new RuntimeException(nsmx);
}
m.setAccessible(true);
Object returnValue = new InvokeMethodWithRtx(m).sstatic().
parameters(simpleSig.getParamValueObjectList().toArray()).invokeGetReturnValue();
System.out.println(returnValue);
}
public static final String getStringForBoolInt(Boolean b, Integer i) {
return "b=" + b + ", i=" + i;
}
}
Output:
b=false, i=3
This second example demonstrates a string signature in which the (package and) class name are not specified. The potential classes, one in which the function must exist, are provided directly.
import com.github.aliteralmind.codelet.simplesig.SimpleMethodSignature;
import com.github.xbn.lang.reflect.InvokeMethodWithRtx;
import java.lang.reflect.Method;
public class SimpleMethodSigWithClassDefaults {
public static final void main(String[] ignored) {
String strSig = "getStringForBoolInt(false, 3)";
SimpleMethodSignature simpleSig = null;
try {
simpleSig = SimpleMethodSignature.newFromStringAndDefaults(
String.class, strSig, null,
new Class[]{Object.class, SimpleMethodSigWithClassDefaults.class, SimpleMethodSignature.class},
null); //debug (on=System.out, off=null)
} catch(ClassNotFoundException cnfx) {
throw new RuntimeException(cnfx);
}
Method m = null;
try {
m = simpleSig.getMethod();
} catch(NoSuchMethodException nsmx) {
throw new RuntimeException(nsmx);
}
m.setAccessible(true);
Object returnValue = new InvokeMethodWithRtx(m).sstatic().
parameters(simpleSig.getParamValueObjectList().toArray()).invokeGetReturnValue();
System.out.println(returnValue);
}
public static final String getStringForBoolInt(Boolean b, Integer i) {
return "b=" + b + ", i=" + i;
}
}
Output:
b=false, i=3
This question already has answers here:
How to get the name of the calling class in Java?
(13 answers)
Closed 6 years ago.
I want to get the caller class of the method, i.e.
class foo{
bar();
}
In the method bar, I need to get the class name foo, and I found this method:
Class clazz = sun.reflect.Reflection.getCallerClass(1);
However, even though getCallerClass is public, when I try to call it Eclipse says:
Access restriction: The method getCallerClass() from the type
Reflection is not accessible due to restriction on required library
C:\Program Files\Java\jre7\lib\rt.jar
Are there any other choices?
You can generate a stack trace and use the informations in the StackTraceElements.
For example an utility class can return you the calling class name :
public class KDebug {
public static String getCallerClassName() {
StackTraceElement[] stElements = Thread.currentThread().getStackTrace();
for (int i=1; i<stElements.length; i++) {
StackTraceElement ste = stElements[i];
if (!ste.getClassName().equals(KDebug.class.getName()) && ste.getClassName().indexOf("java.lang.Thread")!=0) {
return ste.getClassName();
}
}
return null;
}
}
If you call KDebug.getCallerClassName() from bar(), you'll get "foo".
Now supposing you want to know the class of the method calling bar (which is more interesting and maybe what you really wanted). You could use this method :
public static String getCallerCallerClassName() {
StackTraceElement[] stElements = Thread.currentThread().getStackTrace();
String callerClassName = null;
for (int i=1; i<stElements.length; i++) {
StackTraceElement ste = stElements[i];
if (!ste.getClassName().equals(KDebug.class.getName())&& ste.getClassName().indexOf("java.lang.Thread")!=0) {
if (callerClassName==null) {
callerClassName = ste.getClassName();
} else if (!callerClassName.equals(ste.getClassName())) {
return ste.getClassName();
}
}
}
return null;
}
Is that for debugging ? If not, there may be a better solution to your problem.
StackTrace
This Highly depends on what you are looking for... But this should get the class and method that called this method within this object directly.
index 0 = Thread
index 1 = this
index 2 = direct caller, can be self.
index 3 ... n = classes and methods that called each other to get to the index 2 and below.
For Class/Method/File name:
Thread.currentThread().getStackTrace()[2].getClassName();
Thread.currentThread().getStackTrace()[2].getMethodName();
Thread.currentThread().getStackTrace()[2].getFileName();
For Class:
Class.forName(Thread.currentThread().getStackTrace()[2].getClassName())
FYI: Class.forName() throws a ClassNotFoundException which is NOT runtime. Youll need try catch.
Also, if you are looking to ignore the calls within the class itself, you have to add some looping with logic to check for that particular thing.
Something like... (I have not tested this piece of code so beware)
StackTraceElement[] stes = Thread.currentThread().getStackTrace();
for(int i=2;i<stes.length;i++)
if(!stes[i].getClassName().equals(this.getClass().getName()))
return stes[i].getClassName();
StackWalker
StackWalker StackFrame
Note that this is not an extensive guide but an example of the possibility.
Prints the Class of each StackFrame (by grabbing the Class reference)
StackWalker.getInstance(Option.RETAIN_CLASS_REFERENCE)
.forEach(frame -> System.out.println(frame.getDeclaringClass()));
Does the same thing but first collects the stream into a List.
Just for demonstration purposes.
StackWalker.getInstance(Option.RETAIN_CLASS_REFERENCE)
.walk(stream -> stream.collect(Collectors.toList()))
.forEach(frame -> System.out.println(frame.getDeclaringClass()));
To get caller/called class name use below code, it works fine for me.
String callerClassName = new Exception().getStackTrace()[1].getClassName();
String calleeClassName = new Exception().getStackTrace()[0].getClassName();
SecurityManager has a protected method getClassContext
By creating a utility class which extends SecurityManager, you can access this.
public class CallingClass extends SecurityManager {
public static final CallingClass INSTANCE = new CallingClass();
public Class[] getCallingClasses() {
return getClassContext();
}
}
Use CallingClass.INSTANCE.getCallingClasses() to retrieve the calling classes.
There is also a small library (disclaimer: mine) WhoCalled which exposes this information. It uses Reflection.getCallerClass when available, else falls back to SecurityManager.
I know this is an old question but I believed the asker wanted the class, not the class name. I wrote a little method that will get the actual class. It is sort of cheaty and may not always work, but sometimes when you need the actual class, you will have to use this method...
/**
* Get the caller class.
* #param level The level of the caller class.
* For example: If you are calling this class inside a method and you want to get the caller class of that method,
* you would use level 2. If you want the caller of that class, you would use level 3.
*
* Usually level 2 is the one you want.
* #return The caller class.
* #throws ClassNotFoundException We failed to find the caller class.
*/
public static Class getCallerClass(int level) throws ClassNotFoundException {
StackTraceElement[] stElements = Thread.currentThread().getStackTrace();
String rawFQN = stElements[level+1].toString().split("\\(")[0];
return Class.forName(rawFQN.substring(0, rawFQN.lastIndexOf('.')));
}
This is the most efficient way to get just the callers class. Other approaches take an entire stack dump and only give you the class name.
However, this class in under sun.* which is really for internal use. This means that it may not work on other Java platforms or even other Java versions. You have to decide whether this is a problem or not.
The error message the OP is encountering is just an Eclipse feature. If you are willing to tie your code to a specific maker (and even version) of the JVM, you can effectively use method sun.reflect.Reflection.getCallerClass(). You can then compile the code outside of Eclipse or configure it not to consider this diagnostic an error.
The worse Eclipse configuration is to disable all occurrences of the error by:
Project Properties / Java Compiler / Errors/Warnings / Enable project specific settings set to checked / Deprecated and restrited API / Forbidden reference (access rules) set to Warning or Ignore.
The better Eclipse configuration is to disable a specific occurrence of the error by:
Project Properties / Java Build Path / Libraries / JRE System Library expand / Access rules: select / Edit... / Add... / Resolution: set to Discouraged or Accessible / Rule Pattern set to sun/reflect/Reflection.
Find below a simple example illustrating how to get class and method names.
public static void main(String args[])
{
callMe();
}
void callMe()
{
try
{
throw new Exception("Who called me?");
}
catch( Exception e )
{
System.out.println( "I was called by " +
e.getStackTrace()[1].getClassName() +
"." +
e.getStackTrace()[1].getMethodName() +
"()!" );
}
}
e has getClassName(), getFileName(), getLineNumber() and getMethodName()...
Since I currently have the same problem here is what I do:
I prefer com.sun.Reflection instead of stackTrace since a stack trace is only producing the name not the class (including the classloader) itself.
The method is deprecated but still around in Java 8 SDK.
// Method descriptor #124 (I)Ljava/lang/Class; (deprecated)
// Signature: (I)Ljava/lang/Class<*>;
#java.lang.Deprecated
public static native java.lang.Class getCallerClass(int arg0);
The method without int argument is not deprecated
// Method descriptor #122 ()Ljava/lang/Class;
// Signature: ()Ljava/lang/Class<*>;
#sun.reflect.CallerSensitive
public static native java.lang.Class getCallerClass();
Since I have to be platform independent bla bla including Security Restrictions, I just create a flexible method:
Check if com.sun.Reflection is available (security exceptions disable this mechanism)
If 1 is yes then get the method with int or no int argument.
If 2 is yes call it.
If 3. was never reached, I use the stack trace to return the name. I use a special result object that contains either the class or the string and this object tells exactly what it is and why.
[Summary]
I use stacktrace for backup and to bypass eclipse compiler warnings I use reflections. Works very good. Keeps the code clean, works like a charm and also states the problems involved correctly.
I use this for quite a long time and today I searched a related question so
i am using the following method to get the caller for a specific class from the stacktrace:
package test.log;
public class CallerClassTest {
public static void main(final String[] args) {
final Caller caller = new Caller(new Callee());
caller.execute();
}
private static class Caller {
private final Callee c;
public Caller(final Callee c) {
this.c = c;
}
void execute() {
c.call();
}
}
static class Callee {
void call() {
System.out.println(getCallerClassName(this.getClass()));
}
}
/**
* Searches the current threads stacktrace for the class that called the given class. Returns {#code null} if the
* calling class could not be found.
*
* #param clazz
* the class that has been called
*
* #return the caller that called the class or {#code null}
*/
public static String getCallerClassName(final Class<?> clazz) {
final StackTraceElement[] stackTrace = Thread.currentThread().getStackTrace();
final String className = clazz.getName();
boolean classFound = false;
for (int i = 1; i < stackTrace.length; i++) {
final StackTraceElement element = stackTrace[i];
final String callerClassName = element.getClassName();
// check if class name is the requested class
if (callerClassName.equals(className)) classFound = true;
else if (classFound) return callerClassName;
}
return null;
}
}
How can I get the names of the methods invoked in each method declaration of a program using AST (Abstract Syntax Tree) parser? So far, I have managed to get all the names of the methods' declaration and all the names of the methods being invoked, but I want to know which method call which methods. For example, I want to see that method m1 calls methods mA and mB, while method m2 calls methods mC and mD, etc.
[EDIT 11/9/2011 IDB, transcribing newbie's extended comment back in the body of the original question. I hope I have transcribed it correctly. I hope the author comes back and revises as necessary]:
My problem seems to be that (Eclipse's) MethodDeclaration api doesn't have a GetInvokedMethodName function to call. Here is my code:
public class MethodVisitor extends ASTVisitor {
List<MethodDeclaration> methods = new ArrayList<MethodDeclaration>();
#Override public boolean visit(MethodDeclaration node) {
methods.add(node);
return super.visit(node); }
public List<MethodDeclaration> getMethods()
{ return methods; }
List<MethodInvocation> methods1 = new ArrayList<MethodInvocation>();
#Override public boolean visit(MethodInvocation node)
{ methods1.add(node);
return super.visit(node); }
public List<MethodInvocation> getMethods1()
{ return methods1; }
}
...
for (MethodDeclaration method : visitor .getMethods())
{ System.out.println("Method name: " + method.getName()
+ " Return type: " + method.getReturnType2()
+ " Is constructor: " + method.isConstructor()
+ " Method invoked: " + ASTNode.METHOD_INVOCATION );
); }
for (MethodInvocation method1 : visitor .getMethods1())
{ System.out.println("Method name invoked: " + method1.getName() ); }
I had the same problem. This was my solution to it:
final HashMap<MethodDeclaration, ArrayList<MethodInvocation>> invocationsForMethods =
new HashMap<MethodDeclaration, ArrayList<MethodInvocation>>();
CompilationUnit cu = (CompilationUnit) ap.createAST(null);
cu.accept(new ASTVisitor() {
private MethodDeclaration activeMethod;
#Override
public boolean visit(MethodDeclaration node) {
activeMethod = node;
return super.visit(node);
}
#Override
public boolean visit(MethodInvocation node) {
if (invocationsForMethods.get(activeMethod) == null) {
invocationsForMethods.put(activeMethod, new ArrayList<MethodInvocation>());
}
invocationsForMethods.get(activeMethod).add(node);
return super.visit(node);
}
});
Now, one can ask the invocationsForMethods.keySet() to get all the method declarations for the used AST and invocationsForMethods.get(key) returns all method invocations for the declaration given as a key.
If you want to know which specific method mB (of all the ones named "mB" throughout your vast array of classes) is invoked by m1, you need more than just the AST. You need a full symbol table, that binds each symbol use to the possible definitions that match it.
The process of computing such a symbol table is difficult for many languages and very hard for Java (but not nearly as bad as it is for C++). Somebody has to encode the rules of how an identifier is looked up in the face of (local) scopes, inheritance, overloads, implied casts, etc, and the Java reference manual devotes a significant portion of its content trying to explain that. You don't want to have to do this yourself.
What you really need is a full Java front end, that has both ASTs and the corresponding symbol tables, for each method you want to inspect. You can get this, I think, from interfaces to the (Sun?) Java compiler (I don't personally know how to do this), from the Jikes compiler, from the Eclipse Java AST (?) module, and from tools such as our Java Front End. Another approach is to process class files, which contain the method calls in JVM form, with the advavntage that the JVM instructions all have built with the benefit of a symbol table.
If you want to compute m1 calls mA calls mQ calls .... mZ, you need a tool that is willing to read in the entire source code base at once. The compilers won't do that for you, but you can use Eclipse or our front end to do that.