Related
I am trying to count the numbers of pairs in an array such that each pair gives the sum of an integer!
I used the following code :
public static int SumPairs(Integer []input, int k){
Map<Integer, Integer> pairs = new HashMap<Integer, Integer>();
int tmp=0;
//System.out.println(pairs.toString());
for(int i=0;i<input.length;i++){
if(pairs.containsKey(input[i])){
System.out.println(pairs.containsKey(input[i]));
System.out.println(input[i] +", "+ pairs.get(input[i]));
input[i]=0;
tmp++;
}
else
pairs.put(k-input[i], input[i]);
}return tmp;
}
the problem is ; for example when my array is 1 2 2 2 3 4 4 4
and sum = 5
it compute as following
(4,1)
(4,1)
(4,1)
(3,2)
I want to prevent the method from using a number more than once !!
so the output will be
(4,1)
(3,2)
I hope this can help
def numberOfPairs(a, k):
# Let's do a o(n) approach by maintaining all the compliments of the K in a
# visited set
compliments = set()
result = set()
for v in a:
# See if the element is in the compliments set, if so thats the pair
if v in compliments:
result.add((v, k-v))
# If the element is not found in visited save the compliment of it in the visited set
else:
compliments.add(k-v)
return len(result)
I use a map storing values and their frequencies:
public static int SumPairs(Integer[] input, int k){
Map<Integer, Integer> frequencies = new HashMap<>();
int pairsCount = 0;
for(int i=0; i<input.length; i++){
int value = input[i];
int complement = k - input[i];
if(frequencies.containsKey(complement)){
int freq = frequencies.get(complement) - 1;
pairsCount++;
//System.out.println(value + ", " + complement);
if(freq == 0){
frequencies.remove(complement);
}else{
frequencies.put(complement, freq);
}
}else{
if(frequencies.containsKey(value)){
frequencies.put(value, frequencies.get(value) + 1);
}else{
frequencies.put(value, 1);
}
}
}
return pairsCount;
}
This works for all the test cases I could think of. Please add in the comment section any test case that this code fails so that I can fix it. If it works, please accept the solution.
public class DistinctPairs {
private static int count(int target, int... arr) {
int count = 0;
Set<String> seen = new HashSet<>();
Set<Integer> set = new HashSet<>();
for (int i = 0; i < arr.length; i++) {
int k = target - arr[i];
int[] pair = new int[]{k, arr[i]};
Arrays.sort(pair);
String s = Arrays.toString(pair);
if (set.contains(k) && !seen.contains(s)) {
count++;
seen.add(s);
// uncomment this print statement to print the distinct pairs
// System.out.println(s);
} else {
set.add(arr[i]);
}
}
return count;
}
// test suite and driver method
public static void main(String[] args) {
System.out.println(count(10, 1, 2, 3, 6, 7, 8, 9, 1) == 3);
System.out.println(count(47, 6, 1, 3, 46, 1, 3, 9) == 1);
System.out.println(count(9, 3, 2, 1, 45, 27, 6, 78, 9, 0) == 2);
System.out.println(count(9, 3, 3, 2, 1, 45, 27, 6, 78, 9, 0) == 2);
System.out.println(count(6, 1, 5, 7, -1) == 2);
System.out.println(count(6, 1, 5, 7, -1, 5) == 2);
System.out.println(count(2, 1, 1, 1, 1) == 1);
System.out.println(count(5, 1, 2, 2, 2, 3, 4, 4, 4) == 2);
System.out.println(count(8, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4) == 1);
System.out.println(count(7, 1, 5, 66, 2, 3, 4, 7, 0, 2, 5) == 3);
System.out.println(count(5) == 0);
System.out.println(count(5, 1) == 0);
System.out.println(count(7, 3, 4) == 1);
}
}
Another approach can be to follow the classic solution of Two Sum Problem and add the pairs in a set as you find them, all this in the same pass. This set will be of a custom wrapper class with arr[i] and (target - arr[i]) as it's members and you'll need to override hashcode() and equals() methods in such a way that (a,b) is the same as (b,a). At the end simply return the size of the set. This approach will have the same time and space complexity in Big-O terms as the first approach.
int count(int target, int... nums) {
Set<Pair> uniPairs = new HashSet<>();
Set<Integer> seen = new HashSet<>();
for (int i = 0; i < nums.length; i++) {
int diff = target - nums[i];
if (seen.contains(diff)) {
Pair pair = new Pair(nums[i], diff);
uniPairs.add(pair);
}
seen.add(nums[i]);
}
return uniPairs.size();
}
class Pair {
int a;
int b;
public Pair (int a, int b) {
this.a = a;
this.b = b;
}
#Override
public boolean equals(Object obj) {
Pair pair2 = (Pair) obj;
return ((a == pair2.a) && (b == pair2.b)) || ((b == pair2.a) && (a == pair2.b));
}
#Override
public int hashCode() {
return Objects.hash(a, b) + Objects.hash(b, a);
}
}
public static int sumPairs(Integer[] input, int sum){
List<Integer> complementaries = new ArrayList<>(input.length);
int pairs = 0;
for(Integer number : input){
if(complementaries.contains(number)){
complementaries.remove(number);
pairs++;
}
else{
complementaries.add(sum-number);
}
}
return pairs;
}
Now it should work perfectly.
The complementaries array is used just for keeping track of the numbers needed for making the sum. If it contains the number it means that we iterated over its complementary before, so we can just add one pair and remove the number from the list of complementaries. Oherwise we add the complementary of the current number to the list without incresing the pairs counter.
The code takes an array and returns all possible pairs that have sum as specified. As the question asks to print number of pairs and not the pairs, the length of array divided by 2 would give the desired answer.
int notInArray(float a[],float m,int n)
{
int i,j,k;
for(i=0;i<n;i++)
{
if(a[i] == m)
return 0;
}
return 1;
}
int main() {
int i,j,k;
int n;
scanf("%d",&n); //Input the number of elements in array.
float arr[n];
for(i=0;i<n;i++)
scanf("%f",&arr[i]); //input the array elements
float copyArr = arr[0];
float m;
if (n == 0)
return 0;
scanf("%f",&m); //input the sum
float resArr[n];
int b;
int a=b=0;
for(i=0;i<n;i++)
{
for(j=i+1;j<n;j++)
{
if(arr[i]+arr[j]==m && notInArray(resArr,arr[i],n))
{
resArr[a++] = arr[i];
resArr[a++] = arr[j];
//printf("%.0f %.0f\n",arr[i],arr[j]);
}
}
}
printf("All possible pairs: \n");
for(i = 0;i<a;i+=2)
printf("%.0f %.0f\n",resArr[i],resArr[i+1]);
int len = (int)( sizeof(resArr) / sizeof(resArr[0]) )
printf("Number of such pairs: %d",len);
return 0;
}
public void distinctPairs(int[] arr, int k){
int length = arr.length;
int count = 0;
Map<Integer,Integer> pairs = new HashMap<Integer,Integer>();
for(int i=0;i<length;i++){
for(int j=i+1;j<length;j++){
if(arr[i]+arr[j] == k ){
if(!(pairs.containsKey(arr[j])&&pairs.containsValue(arr[i])))
pairs.put(arr[i], arr[j]);
}
}
}
count = pairs.size();
System.out.println("Pairs are "+pairs+" count = "+count);
}
This works for me. Steps I followed.
Check if sum of a pair is equal to required(k).
Check if the pair doesn't already exist in the map.
We can use the hashmap to store all values of the array. Then iterate over the array and check if the map contains (K - a[i] ). If the map contains then increment count and remove both keys from the map.
private int getDistinctPair(int k,int[] input){
HashMap<Integer,Integer> map = new HashMap<>();
int pairs = 0;
for (int i = 0; i < input.length-1; i++) {
map.put(input[i], input[i]);
}
for (int i = 0; i <input.length-1 ; i++) {
int diff = k - input[i];
if(map.containsKey(diff)){
pairs++;
map.remove(diff);
map.remove(input[i]);
}
}
return pairs;
}
You can slove by using below code:
def countPairs(arr, k):
possible_maps = []
for num in arr:
pair_matches = list(filter(lambda n: n + num == k, arr))
if len(pair_matches) > 0:
possible_maps += list(map(lambda nm: (num, nm), pair_matches))
return len(set(map(lambda pair: ','.join(str(n) for n in sorted(pair)), possible_maps)))
Hope this may help you.
My C# way to do this in a single loop with just another list to store temporary diff values.
private static int SumPairs(int[] arr, int sum)
{
Dictionary<int, int> frequency = new Dictionary<int, int>();
List<int> temp = new List<int>();
int count = 0;
foreach (int i in arr)
{
int diff = sum - i;
if (!frequency.ContainsKey(i))
{
if (temp.Contains(i))
{
frequency.Add(i, diff);
count++;
}
else
{
temp.Add(diff);
}
}
};
return count;
}
my C# implementation using Tuple
static List<Tuple<int,int>> GetUniquePairs(int[] arr, int sum)
{
Dictionary<Tuple<int, int>, int> kvp = new Dictionary<Tuple<int, int>, int>();
List<Tuple<int,int>> result = new List<Tuple<int,int>>();
int length = arr.Length;
for(int i = 0;i < length; i++)
{
int j = i + 1;
while (j < length)
{
if(arr[i]+arr[j] == sum)
{
Tuple<int, int> key = new Tuple<int, int>(arr[i], arr[j]);
if (!kvp.ContainsKey(key))
kvp.Add(key, 1);
}
j++;
}
}
var keys = kvp.Keys;
foreach(var k in keys)
{
result.Add(k);
}
return result;
}
The Simplest Solution of your problem of finding distinct pair:
public static int SumPairs(int[] input, int k) {
Map<Integer, Integer> pairs = new HashMap<Integer, Integer>();
int tmp = 0;
for (int data : input) {
if (pairs.containsKey(k - data) && pairs.get(k - data) == 0) {
tmp++;
pairs.put((k - data), pairs.get(k - data) + 1);
} else if (!pairs.containsKey(data)) {
pairs.put(data, 0);
}
}
return tmp;
}
It has been tested for 1 2 2 2 3 4 4 4 and sum = 5. Also for 4 4 4 4 4 4 4 4 4 4 4 4 4 4 and sum = 8.
If any confusion feel free to ask me. Cheers.
import java.util.HashSet;
public class DistinctPairs {
static int numberOfPairs(int[] arr,int k)
{
HashSet<String> s=new HashSet<String>();
int n=arr.length;
int sum=0;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
sum=arr[i]+arr[j];
if(i==j)
{
continue;
}
else
{
if(sum==k)
{
String l=String.valueOf("("+arr[i]+","+arr[j]+")");
StringBuilder sb=new StringBuilder(l);
String rl=sb.reverse().toString();
if(s.add(l)==false)
{
}
}
}
}
}
System.out.println(s.toString());
return s.size()/2;
}
public static void main(String args[])
{
int b[]={1,5,66,2,3,4,7,0,2,5};
int size=numberOfPairs(b,5);
System.out.println(size);
}
}
I got the largest number and smallest number from the string. But how do I find second largest number and third largest number in this java code from this problem? which code should i use? Please explain
public class Problem1
{
public static void main(String[] args) {
int a[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
// int b[] = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };
Problem1 app = new Problem1();
app.scrambleArray(a);
app.print(a);
// Usage enable assertions: -ea to VM arguments
int result = app.findInt(a, 10);
assert (result == 10) :
String.format("Expected <10> but was <%d>", result);
result = app.findInt(a, 11);
assert (result == -1) :
String.format("Expected <-1> but was <%d>", result);
System.out.printf("Largest Number is : %d%n", app.getMax(a));
app.print(app.reverseArray(a));
}
public void scrambleArray(int[] a) {
for (int i = 0; i < a.length; i++) {
int pos = new Random().nextInt(a.length);
int tmp = a[i];
a[i] = a[pos];
a[pos] = tmp;
}
}
public void print(int[] a) {
System.out.println(Arrays.toString(a));
}
public int getMax(int[] a) {
int max = a[0];
for (int i = 1; i < a.length; i++) {
max = Math.max(a[i], max);
}
return max;
}
public int findInt(int[] a, int value) {
int result = -1;
for (int i : a) {
if (value == i) {
result = value;
break;
}
}
return result;
}
public int[] reverseArray(int[] a) {
int[] results = new int[a.length];
for (int i = 0, idx = a.length - 1; i < a.length; i++, idx--) {
results[i] = a[idx];
}
return results;
}
}
Use Arrays.sort() method to sort your integer array
int a[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
Arrays.sort(a);
System.out.println("largest value: " + a[a.length - 1]);
System.out.println("second largest: " + a[a.length - 2]);
The prior answer is generally a good solution. The exception is if the number of elements in the array is very big and performance matters. In that case, it may be faster to keep the N largest elements in a sorted set, and avoid sorting the whole list:
public int[] getNLargest(int[] in, int n){
TreeSet<Integer> large = new TreeSet<Integer>();
for(int i : in){
if(large.size() < n){
large.add(i);
} else if(i > large.first().intValue()){
large.remove(large.first());
large.add(i);
}
}
int[] result = new int[large.size()];
int index = 0;
for(Integer i : large){
result[index] = i.intValue();
index++;
}
return result;
}
import java.util.*;
public class SecondLargestInArray
{
public static void main(String[] args)
{
int arr[] = {14,46,47,86,92,52,48,36,66,85,92};
int largest = arr[0];
int secondLargest = arr[0];
System.out.println("The given array is:" );
for (int i = 0; i < arr.length; i++)
{
System.out.print(arr[i]+"\t");
}
for (int i = 0; i < arr.length; i++)
{
if (arr[i] > largest)
{
secondLargest = largest;
largest = arr[i];
}
else if((arr[i]<largest && arr[i]>secondLargest) || largest==secondLargest)
{
secondLargest=arr[i];
}
}
System.out.println("\nLargest number is:" + largest);
System.out.println("\nSecond largest number is:" + secondLargest);
}
}
I was asked to write my own implementation to remove duplicated values in an array. Here is what I have created. But after tests with 1,000,000 elements it took very long time to finish. Is there something that I can do to improve my algorithm or any bugs to remove ?
I need to write my own implementation - not to use Set, HashSet etc. Or any other tools such as iterators. Simply an array to remove duplicates.
public static int[] removeDuplicates(int[] arr) {
int end = arr.length;
for (int i = 0; i < end; i++) {
for (int j = i + 1; j < end; j++) {
if (arr[i] == arr[j]) {
int shiftLeft = j;
for (int k = j+1; k < end; k++, shiftLeft++) {
arr[shiftLeft] = arr[k];
}
end--;
j--;
}
}
}
int[] whitelist = new int[end];
for(int i = 0; i < end; i++){
whitelist[i] = arr[i];
}
return whitelist;
}
you can take the help of Set collection
int end = arr.length;
Set<Integer> set = new HashSet<Integer>();
for(int i = 0; i < end; i++){
set.add(arr[i]);
}
now if you will iterate through this set, it will contain only unique values. Iterating code is like this :
Iterator it = set.iterator();
while(it.hasNext()) {
System.out.println(it.next());
}
If you are allowed to use Java 8 streams:
Arrays.stream(arr).distinct().toArray();
Note: I am assuming the array is sorted.
Code:
int[] input = new int[]{1, 1, 3, 7, 7, 8, 9, 9, 9, 10};
int current = input[0];
boolean found = false;
for (int i = 0; i < input.length; i++) {
if (current == input[i] && !found) {
found = true;
} else if (current != input[i]) {
System.out.print(" " + current);
current = input[i];
found = false;
}
}
System.out.print(" " + current);
output:
1 3 7 8 9 10
Slight modification to the original code itself, by removing the innermost for loop.
public static int[] removeDuplicates(int[] arr){
int end = arr.length;
for (int i = 0; i < end; i++) {
for (int j = i + 1; j < end; j++) {
if (arr[i] == arr[j]) {
/*int shiftLeft = j;
for (int k = j+1; k < end; k++, shiftLeft++) {
arr[shiftLeft] = arr[k];
}*/
arr[j] = arr[end-1];
end--;
j--;
}
}
}
int[] whitelist = new int[end];
/*for(int i = 0; i < end; i++){
whitelist[i] = arr[i];
}*/
System.arraycopy(arr, 0, whitelist, 0, end);
return whitelist;
}
There exists many solution of this problem.
The sort approach
You sort your array and resolve only unique items
The set approach
You declare a HashSet where you put all item then you have only unique ones.
You create a boolean array that represent the items all ready returned, (this depend on your data in the array).
If you deal with large amount of data i would pick the 1. solution. As you do not allocate additional memory and sorting is quite fast. For small set of data the complexity would be n^2 but for large i will be n log n.
Since you can assume the range is between 0-1000 there is a very simple and efficient solution
//Throws an exception if values are not in the range of 0-1000
public static int[] removeDuplicates(int[] arr) {
boolean[] set = new boolean[1001]; //values must default to false
int totalItems = 0;
for (int i = 0; i < arr.length; ++i) {
if (!set[arr[i]]) {
set[arr[i]] = true;
totalItems++;
}
}
int[] ret = new int[totalItems];
int c = 0;
for (int i = 0; i < set.length; ++i) {
if (set[i]) {
ret[c++] = i;
}
}
return ret;
}
This runs in linear time O(n). Caveat: the returned array is sorted so if that is illegal then this answer is invalid.
class Demo
{
public static void main(String[] args)
{
int a[]={3,2,1,4,2,1};
System.out.print("Before Sorting:");
for (int i=0;i<a.length; i++ )
{
System.out.print(a[i]+"\t");
}
System.out.print ("\nAfter Sorting:");
//sorting the elements
for(int i=0;i<a.length;i++)
{
for(int j=i;j<a.length;j++)
{
if(a[i]>a[j])
{
int temp=a[i];
a[i]=a[j];
a[j]=temp;
}
}
}
//After sorting
for(int i=0;i<a.length;i++)
{
System.out.print(a[i]+"\t");
}
System.out.print("\nAfter removing duplicates:");
int b=0;
a[b]=a[0];
for(int i=0;i<a.length;i++)
{
if (a[b]!=a[i])
{
b++;
a[b]=a[i];
}
}
for (int i=0;i<=b;i++ )
{
System.out.print(a[i]+"\t");
}
}
}
OUTPUT:Before Sortng:3 2 1 4 2 1 After Sorting:1 1 2 2 3 4
Removing Duplicates:1 2 3 4
Since this question is still getting a lot of attention, I decided to answer it by copying this answer from Code Review.SE:
You're following the same philosophy as the bubble sort, which is
very, very, very slow. Have you tried this?:
Sort your unordered array with quicksort. Quicksort is much faster
than bubble sort (I know, you are not sorting, but the algorithm you
follow is almost the same as bubble sort to traverse the array).
Then start removing duplicates (repeated values will be next to each
other). In a for loop you could have two indices: source and
destination. (On each loop you copy source to destination unless they
are the same, and increment both by 1). Every time you find a
duplicate you increment source (and don't perform the copy).
#morgano
import java.util.Arrays;
public class Practice {
public static void main(String[] args) {
int a[] = { 1, 3, 3, 4, 2, 1, 5, 6, 7, 7, 8, 10 };
Arrays.sort(a);
int j = 0;
for (int i = 0; i < a.length - 1; i++) {
if (a[i] != a[i + 1]) {
a[j] = a[i];
j++;
}
}
a[j] = a[a.length - 1];
for (int i = 0; i <= j; i++) {
System.out.println(a[i]);
}
}
}
**This is the most simplest way**
What if you create two boolean arrays: 1 for negative values and 1 for positive values and init it all on false.
Then you cycle thorugh the input array and lookup in the arrays if you've encoutered the value already.
If not, you add it to the output array and mark it as already used.
package com.pari.practice;
import java.util.HashSet;
import java.util.Iterator;
import com.pari.sort.Sort;
public class RemoveDuplicates {
/**
* brute force- o(N square)
*
* #param input
* #return
*/
public static int[] removeDups(int[] input){
boolean[] isSame = new boolean[input.length];
int sameNums = 0;
for( int i = 0; i < input.length; i++ ){
for( int j = i+1; j < input.length; j++){
if( input[j] == input[i] ){ //compare same
isSame[j] = true;
sameNums++;
}
}
}
//compact the array into the result.
int[] result = new int[input.length-sameNums];
int count = 0;
for( int i = 0; i < input.length; i++ ){
if( isSame[i] == true) {
continue;
}
else{
result[count] = input[i];
count++;
}
}
return result;
}
/**
* set - o(N)
* does not guarantee order of elements returned - set property
*
* #param input
* #return
*/
public static int[] removeDups1(int[] input){
HashSet myset = new HashSet();
for( int i = 0; i < input.length; i++ ){
myset.add(input[i]);
}
//compact the array into the result.
int[] result = new int[myset.size()];
Iterator setitr = myset.iterator();
int count = 0;
while( setitr.hasNext() ){
result[count] = (int) setitr.next();
count++;
}
return result;
}
/**
* quicksort - o(Nlogn)
*
* #param input
* #return
*/
public static int[] removeDups2(int[] input){
Sort st = new Sort();
st.quickSort(input, 0, input.length-1); //input is sorted
//compact the array into the result.
int[] intermediateResult = new int[input.length];
int count = 0;
int prev = Integer.MIN_VALUE;
for( int i = 0; i < input.length; i++ ){
if( input[i] != prev ){
intermediateResult[count] = input[i];
count++;
}
prev = input[i];
}
int[] result = new int[count];
System.arraycopy(intermediateResult, 0, result, 0, count);
return result;
}
public static void printArray(int[] input){
for( int i = 0; i < input.length; i++ ){
System.out.print(input[i] + " ");
}
}
public static void main(String[] args){
int[] input = {5,6,8,0,1,2,5,9,11,0};
RemoveDuplicates.printArray(RemoveDuplicates.removeDups(input));
System.out.println();
RemoveDuplicates.printArray(RemoveDuplicates.removeDups1(input));
System.out.println();
RemoveDuplicates.printArray(RemoveDuplicates.removeDups2(input));
}
}
Output:
5 6 8 0 1 2 9 11
0 1 2 5 6 8 9 11
0 1 2 5 6 8 9 11
I have just written the above code for trying out. thanks.
public static int[] removeDuplicates(int[] arr){
HashSet<Integer> set = new HashSet<>();
final int len = arr.length;
//changed end to len
for(int i = 0; i < len; i++){
set.add(arr[i]);
}
int[] whitelist = new int[set.size()];
int i = 0;
for (Iterator<Integer> it = set.iterator(); it.hasNext();) {
whitelist[i++] = it.next();
}
return whitelist;
}
Runs in O(N) time instead of your O(N^3) time
Not a big fun of updating user input, however considering your constraints...
public int[] removeDup(int[] nums) {
Arrays.sort(nums);
int x = 0;
for (int i = 0; i < nums.length; i++) {
if (i == 0 || nums[i] != nums[i - 1]) {
nums[x++] = nums[i];
}
}
return Arrays.copyOf(nums, x);
}
Array sort can be easily replaced with any nlog(n) algorithm.
This is simple way to sort the elements in the array
public class DublicatesRemove {
public static void main(String args[]) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
System.out.println("enter size of the array");
int l = Integer.parseInt(br.readLine());
int[] a = new int[l];
// insert elements in the array logic
for (int i = 0; i < l; i++)
{
System.out.println("enter a element");
int el = Integer.parseInt(br.readLine());
a[i] = el;
}
// sorting elements in the array logic
for (int i = 0; i < l; i++)
{
for (int j = 0; j < l - 1; j++)
{
if (a[j] > a[j + 1])
{
int temp = a[j];
a[j] = a[j + 1];
a[j + 1] = temp;
}
}
}
// remove duplicate elements logic
int b = 0;
a[b] = a[0];
for (int i = 1; i < l; i++)
{
if (a[b] != a[i])
{
b++;
a[b]=a[i];
}
}
for(int i=0;i<=b;i++)
{
System.out.println(a[i]);
}
}
}
Okay, so you cannot use Set or other collections. One solution I don't see here so far is one based on the use of a Bloom filter, which essentially is an array of bits, so perhaps that passes your requirements.
The Bloom filter is a lovely and very handy technique, fast and space-efficient, that can be used to do a quick check of the existence of an element in a set without storing the set itself or the elements. It has a (typically small) false positive rate, but no false negative rate. In other words, for your question, if a Bloom filter tells you that an element hasn't been seen so far, you can be sure it hasn't. But if it says that an element has been seen, you actually need to check. This still saves a lot of time if there aren't too many duplicates in your list (for those, there is no looping to do, except in the small probability case of a false positive --you typically chose this rate based on how much space you are willing to give to the Bloom filter (rule of thumb: less than 10 bits per unique element for a false positive rate of 1%).
There are many implementations of Bloom filters, see e.g. here or here, so I won't repeat that in this answer. Let us just assume the api described in that last reference, in particular, the description of put(E e):
true if the Bloom filter's bits changed as a result of this operation. If the bits changed, this is definitely the first time object has been added to the filter. If the bits haven't changed, this might be the first time object has been added to the filter. (...)
An implementation using such a Bloom filter would then be:
public static int[] removeDuplicates(int[] arr) {
ArrayList<Integer> out = new ArrayList<>();
int n = arr.length;
BloomFilter<Integer> bf = new BloomFilter<>(...); // decide how many bits and how many hash functions to use (compromise between space and false positive rate)
for (int e : arr) {
boolean might_contain = !bf.put(e);
boolean found = false;
if (might_contain) {
// check if false positive
for (int u : out) {
if (u == e) {
found = true;
break;
}
}
}
if (!found) {
out.add(e);
}
}
return out.stream().mapToInt(i -> i).toArray();
}
Obviously, if you can alter the incoming array in place, then there is no need for an ArrayList: at the end, when you know the actual number of unique elements, just arraycopy() those.
For a sorted Array, just check the next index:
//sorted data!
public static int[] distinct(int[] arr) {
int[] temp = new int[arr.length];
int count = 0;
for (int i = 0; i < arr.length; i++) {
int current = arr[i];
if(count > 0 )
if(temp[count - 1] == current)
continue;
temp[count] = current;
count++;
}
int[] whitelist = new int[count];
System.arraycopy(temp, 0, whitelist, 0, count);
return whitelist;
}
You need to sort your array then then loop and remove duplicates. As you cannot use other tools you need to write be code yourself.
You can easily find examples of quicksort in Java on the internet (on which this example is based).
public static void main(String[] args) throws Exception {
final int[] original = new int[]{1, 1, 2, 8, 9, 8, 4, 7, 4, 9, 1};
System.out.println(Arrays.toString(original));
quicksort(original);
System.out.println(Arrays.toString(original));
final int[] unqiue = new int[original.length];
int prev = original[0];
unqiue[0] = prev;
int count = 1;
for (int i = 1; i < original.length; ++i) {
if (original[i] != prev) {
unqiue[count++] = original[i];
}
prev = original[i];
}
System.out.println(Arrays.toString(unqiue));
final int[] compressed = new int[count];
System.arraycopy(unqiue, 0, compressed, 0, count);
System.out.println(Arrays.toString(compressed));
}
private static void quicksort(final int[] values) {
if (values.length == 0) {
return;
}
quicksort(values, 0, values.length - 1);
}
private static void quicksort(final int[] values, final int low, final int high) {
int i = low, j = high;
int pivot = values[low + (high - low) / 2];
while (i <= j) {
while (values[i] < pivot) {
i++;
}
while (values[j] > pivot) {
j--;
}
if (i <= j) {
swap(values, i, j);
i++;
j--;
}
}
if (low < j) {
quicksort(values, low, j);
}
if (i < high) {
quicksort(values, i, high);
}
}
private static void swap(final int[] values, final int i, final int j) {
final int temp = values[i];
values[i] = values[j];
values[j] = temp;
}
So the process runs in 3 steps.
Sort the array - O(nlgn)
Remove duplicates - O(n)
Compact the array - O(n)
So this improves significantly on your O(n^3) approach.
Output:
[1, 1, 2, 8, 9, 8, 4, 7, 4, 9, 1]
[1, 1, 1, 2, 4, 4, 7, 8, 8, 9, 9]
[1, 2, 4, 7, 8, 9, 0, 0, 0, 0, 0]
[1, 2, 4, 7, 8, 9]
EDIT
OP states values inside array doesn't matter really. But I can assume that range is between 0-1000. This is a classic case where an O(n) sort can be used.
We create an array of size range +1, in this case 1001. We then loop over the data and increment the values on each index corresponding to the datapoint.
We can then compact the resulting array, dropping values the have not been incremented. This makes the values unique as we ignore the count.
public static void main(String[] args) throws Exception {
final int[] original = new int[]{1, 1, 2, 8, 9, 8, 4, 7, 4, 9, 1, 1000, 1000};
System.out.println(Arrays.toString(original));
final int[] buckets = new int[1001];
for (final int i : original) {
buckets[i]++;
}
final int[] unique = new int[original.length];
int count = 0;
for (int i = 0; i < buckets.length; ++i) {
if (buckets[i] > 0) {
unique[count++] = i;
}
}
final int[] compressed = new int[count];
System.arraycopy(unique, 0, compressed, 0, count);
System.out.println(Arrays.toString(compressed));
}
Output:
[1, 1, 2, 8, 9, 8, 4, 7, 4, 9, 1, 1000, 1000]
[1, 2, 4, 7, 8, 9, 1000]
public static void main(String args[]) {
int[] intarray = {1,2,3,4,5,1,2,3,4,5,1,2,3,4,5};
Set<Integer> set = new HashSet<Integer>();
for(int i : intarray) {
set.add(i);
}
Iterator<Integer> setitr = set.iterator();
for(int pos=0; pos < intarray.length; pos ++) {
if(pos < set.size()) {
intarray[pos] =setitr.next();
} else {
intarray[pos]= 0;
}
}
for(int i: intarray)
System.out.println(i);
}
I know this is kinda dead but I just wrote this for my own use. It's more or less the same as adding to a hashset and then pulling all the elements out of it. It should run in O(nlogn) worst case.
public static int[] removeDuplicates(int[] numbers) {
Entry[] entries = new Entry[numbers.length];
int size = 0;
for (int i = 0 ; i < numbers.length ; i++) {
int nextVal = numbers[i];
int index = nextVal % entries.length;
Entry e = entries[index];
if (e == null) {
entries[index] = new Entry(nextVal);
size++;
} else {
if(e.insert(nextVal)) {
size++;
}
}
}
int[] result = new int[size];
int index = 0;
for (int i = 0 ; i < entries.length ; i++) {
Entry current = entries[i];
while (current != null) {
result[i++] = current.value;
current = current.next;
}
}
return result;
}
public static class Entry {
int value;
Entry next;
Entry(int value) {
this.value = value;
}
public boolean insert(int newVal) {
Entry current = this;
Entry prev = null;
while (current != null) {
if (current.value == newVal) {
return false;
} else if(current.next != null) {
prev = current;
current = next;
}
}
prev.next = new Entry(value);
return true;
}
}
int tempvar=0; //Variable for the final array without any duplicates
int whilecount=0; //variable for while loop
while(whilecount<(nsprtable*2)-1) //nsprtable can be any number
{
//to check whether the next value is idential in case of sorted array
if(temparray[whilecount]!=temparray[whilecount+1])
{
finalarray[tempvar]=temparray[whilecount];
tempvar++;
whilecount=whilecount+1;
}
else if (temparray[whilecount]==temparray[whilecount+1])
{
finalarray[tempvar]=temparray[whilecount];
tempvar++;
whilecount=whilecount+2;
}
}
Hope this helps or solves the purpose.
package javaa;
public class UniqueElementinAnArray
{
public static void main(String[] args)
{
int[] a = {10,10,10,10,10,100};
int[] output = new int[a.length];
int count = 0;
int num = 0;
//Iterate over an array
for(int i=0; i<a.length; i++)
{
num=a[i];
boolean flag = check(output,num);
if(flag==false)
{
output[count]=num;
++count;
}
}
//print the all the elements from an array except zero's (0)
for (int i : output)
{
if(i!=0 )
System.out.print(i+" ");
}
}
/***
* If a next number from an array is already exists in unique array then return true else false
* #param arr Unique number array. Initially this array is an empty.
* #param num Number to be search in unique array. Whether it is duplicate or unique.
* #return true: If a number is already exists in an array else false
*/
public static boolean check(int[] arr, int num)
{
boolean flag = false;
for(int i=0;i<arr.length; i++)
{
if(arr[i]==num)
{
flag = true;
break;
}
}
return flag;
}
}
public static int[] removeDuplicates(int[] arr) {
int end = arr.length;
HashSet<Integer> set = new HashSet<Integer>(end);
for(int i = 0 ; i < end ; i++){
set.add(arr[i]);
}
return set.toArray();
}
You can use an auxiliary array (temp) which in indexes are numbers of main array. So the time complexity will be liner and O(n). As we want to do it without using any library, we define another array (unique) to push non-duplicate elements:
var num = [2,4,9,4,1,2,24,12,4];
let temp = [];
let unique = [];
let j = 0;
for (let i = 0; i < num.length; i++){
if (temp[num[i]] !== 1){
temp[num[i]] = 1;
unique[j++] = num[i];
}
}
console.log(unique);
If you are looking to remove duplicates using the same array and also keeping the time complexity of O(n). Then this should do the trick. Also, would only work if the array is sorted.
function removeDuplicates_sorted(arr){
let j = 0;
for(let x = 0; x < arr.length - 1; x++){
if(arr[x] != arr[x + 1]){
arr[j++] = arr[x];
}
}
arr[j++] = arr[arr.length - 1];
arr.length = j;
return arr;
}
Here is for an unsorted array, its O(n) but uses more space complexity then the sorted.
function removeDuplicates_unsorted(arr){
let map = {};
let j = 0;
for(var numbers of arr){
if(!map[numbers]){
map[numbers] = 1;
arr[j++] = numbers;
}
}
arr.length = j;
return arr;
}
Note to other readers who desire to use the Set method of solving this problem: If original ordering must be preserved, do not use HashSet as in the top result. HashSet does not guarantee the preservation of the original order, so LinkedHashSet should be used instead-this keeps track of the order in which the elements were inserted into the set and returns them in that order.
This is an interview question.
public class Test4 {
public static void main(String[] args) {
int a[] = {1, 2, 2, 3, 3, 3, 6,6,6,6,6,66,7,65};
int newlength = lengthofarraywithoutduplicates(a);
for(int i = 0 ; i < newlength ;i++) {
System.out.println(a[i]);
}//for
}//main
private static int lengthofarraywithoutduplicates(int[] a) {
int count = 1 ;
for (int i = 1; i < a.length; i++) {
int ch = a[i];
if(ch != a[i-1]) {
a[count++] = ch;
}//if
}//for
return count;
}//fix
}//end1
But, it's always better to use Stream :
int[] a = {1, 2, 2, 3, 3, 3, 6,6,6,6,6,66,7,65};
int[] array = Arrays.stream(a).distinct().toArray();
System.out.println(Arrays.toString(array));//[1, 2, 3, 6, 66, 7, 65]
How about this one, only for the sorted Array of numbers, to print the Array without duplicates, without using Set or other Collections, just an Array:
public static int[] removeDuplicates(int[] array) {
int[] nums = new int[array.length];
int addedNumber = 0;
int j = 0;
for(int i=0; i < array.length; i++) {
if (addedNumber != array[i]) {
nums[j] = array[i];
j++;
addedNumber = nums[j-1];
}
}
return Arrays.copyOf(nums, j);
}
An array of 1040 duplicated numbers processed in 33020 nanoseconds(0.033020 millisec).
public static void main(String[] args) {
Integer[] intArray = { 1, 1, 1, 2, 4, 2, 3, 5, 3, 6, 7, 3, 4, 5 };
Integer[] finalArray = removeDuplicates(intArray);
System.err.println(Arrays.asList(finalArray));
}
private static Integer[] removeDuplicates(Integer[] intArray) {
int count = 0;
Integer[] interimArray = new Integer[intArray.length];
for (int i = 0; i < intArray.length; i++) {
boolean exists = false;
for (int j = 0; j < interimArray.length; j++) {
if (interimArray[j]!=null && interimArray[j] == intArray[i]) {
exists = true;
}
}
if (!exists) {
interimArray[count] = intArray[i];
count++;
}
}
final Integer[] finalArray = new Integer[count];
System.arraycopy(interimArray, 0, finalArray, 0, count);
return finalArray;
}
I feel Android Killer's idea is great, but I just wondered if we can leverage HashMap. So I did a little experiment. And I found HashMap seems faster than HashSet.
Here is code:
int[] input = new int[1000000];
for (int i = 0; i < input.length; i++) {
Random random = new Random();
input[i] = random.nextInt(200000);
}
long startTime1 = new Date().getTime();
System.out.println("Set start time:" + startTime1);
Set<Integer> resultSet = new HashSet<Integer>();
for (int i = 0; i < input.length; i++) {
resultSet.add(input[i]);
}
long endTime1 = new Date().getTime();
System.out.println("Set end time:"+ endTime1);
System.out.println("result of set:" + (endTime1 - startTime1));
System.out.println("number of Set:" + resultSet.size() + "\n");
long startTime2 = new Date().getTime();
System.out.println("Map start time:" + startTime1);
Map<Integer, Integer> resultMap = new HashMap<Integer, Integer>();
for (int i = 0; i < input.length; i++) {
if (!resultMap.containsKey(input[i]))
resultMap.put(input[i], input[i]);
}
long endTime2 = new Date().getTime();
System.out.println("Map end Time:" + endTime2);
System.out.println("result of Map:" + (endTime2 - startTime2));
System.out.println("number of Map:" + resultMap.size());
Here is result:
Set start time:1441960583837
Set end time:1441960583917
result of set:80
number of Set:198652
Map start time:1441960583837
Map end Time:1441960583983
result of Map:66
number of Map:198652
This is not using Set, Map, List or any extra collection, only two arrays:
package arrays.duplicates;
import java.lang.reflect.Array;
import java.util.Arrays;
public class ArrayDuplicatesRemover<T> {
public static <T> T[] removeDuplicates(T[] input, Class<T> clazz) {
T[] output = (T[]) Array.newInstance(clazz, 0);
for (T t : input) {
if (!inArray(t, output)) {
output = Arrays.copyOf(output, output.length + 1);
output[output.length - 1] = t;
}
}
return output;
}
private static <T> boolean inArray(T search, T[] array) {
for (T element : array) {
if (element.equals(search)) {
return true;
}
}
return false;
}
}
And the main to test it
package arrays.duplicates;
import java.util.Arrays;
public class TestArrayDuplicates {
public static void main(String[] args) {
Integer[] array = {1, 1, 2, 2, 3, 3, 3, 3, 4};
testArrayDuplicatesRemover(array);
}
private static void testArrayDuplicatesRemover(Integer[] array) {
final Integer[] expectedResult = {1, 2, 3, 4};
Integer[] arrayWithoutDuplicates = ArrayDuplicatesRemover.removeDuplicates(array, Integer.class);
System.out.println("Array without duplicates is supposed to be: " + Arrays.toString(expectedResult));
System.out.println("Array without duplicates currently is: " + Arrays.toString(arrayWithoutDuplicates));
System.out.println("Is test passed ok?: " + (Arrays.equals(arrayWithoutDuplicates, expectedResult) ? "YES" : "NO"));
}
}
And the output:
Array without duplicates is supposed to be: [1, 2, 3, 4]
Array without duplicates currently is: [1, 2, 3, 4]
Is test passed ok?: YES
I was asked to write my own implementation to remove duplicated values in an array. Here is what I have created. But after tests with 1,000,000 elements it took very long time to finish. Is there something that I can do to improve my algorithm or any bugs to remove ?
I need to write my own implementation - not to use Set, HashSet etc. Or any other tools such as iterators. Simply an array to remove duplicates.
public static int[] removeDuplicates(int[] arr) {
int end = arr.length;
for (int i = 0; i < end; i++) {
for (int j = i + 1; j < end; j++) {
if (arr[i] == arr[j]) {
int shiftLeft = j;
for (int k = j+1; k < end; k++, shiftLeft++) {
arr[shiftLeft] = arr[k];
}
end--;
j--;
}
}
}
int[] whitelist = new int[end];
for(int i = 0; i < end; i++){
whitelist[i] = arr[i];
}
return whitelist;
}
you can take the help of Set collection
int end = arr.length;
Set<Integer> set = new HashSet<Integer>();
for(int i = 0; i < end; i++){
set.add(arr[i]);
}
now if you will iterate through this set, it will contain only unique values. Iterating code is like this :
Iterator it = set.iterator();
while(it.hasNext()) {
System.out.println(it.next());
}
If you are allowed to use Java 8 streams:
Arrays.stream(arr).distinct().toArray();
Note: I am assuming the array is sorted.
Code:
int[] input = new int[]{1, 1, 3, 7, 7, 8, 9, 9, 9, 10};
int current = input[0];
boolean found = false;
for (int i = 0; i < input.length; i++) {
if (current == input[i] && !found) {
found = true;
} else if (current != input[i]) {
System.out.print(" " + current);
current = input[i];
found = false;
}
}
System.out.print(" " + current);
output:
1 3 7 8 9 10
Slight modification to the original code itself, by removing the innermost for loop.
public static int[] removeDuplicates(int[] arr){
int end = arr.length;
for (int i = 0; i < end; i++) {
for (int j = i + 1; j < end; j++) {
if (arr[i] == arr[j]) {
/*int shiftLeft = j;
for (int k = j+1; k < end; k++, shiftLeft++) {
arr[shiftLeft] = arr[k];
}*/
arr[j] = arr[end-1];
end--;
j--;
}
}
}
int[] whitelist = new int[end];
/*for(int i = 0; i < end; i++){
whitelist[i] = arr[i];
}*/
System.arraycopy(arr, 0, whitelist, 0, end);
return whitelist;
}
There exists many solution of this problem.
The sort approach
You sort your array and resolve only unique items
The set approach
You declare a HashSet where you put all item then you have only unique ones.
You create a boolean array that represent the items all ready returned, (this depend on your data in the array).
If you deal with large amount of data i would pick the 1. solution. As you do not allocate additional memory and sorting is quite fast. For small set of data the complexity would be n^2 but for large i will be n log n.
Since you can assume the range is between 0-1000 there is a very simple and efficient solution
//Throws an exception if values are not in the range of 0-1000
public static int[] removeDuplicates(int[] arr) {
boolean[] set = new boolean[1001]; //values must default to false
int totalItems = 0;
for (int i = 0; i < arr.length; ++i) {
if (!set[arr[i]]) {
set[arr[i]] = true;
totalItems++;
}
}
int[] ret = new int[totalItems];
int c = 0;
for (int i = 0; i < set.length; ++i) {
if (set[i]) {
ret[c++] = i;
}
}
return ret;
}
This runs in linear time O(n). Caveat: the returned array is sorted so if that is illegal then this answer is invalid.
class Demo
{
public static void main(String[] args)
{
int a[]={3,2,1,4,2,1};
System.out.print("Before Sorting:");
for (int i=0;i<a.length; i++ )
{
System.out.print(a[i]+"\t");
}
System.out.print ("\nAfter Sorting:");
//sorting the elements
for(int i=0;i<a.length;i++)
{
for(int j=i;j<a.length;j++)
{
if(a[i]>a[j])
{
int temp=a[i];
a[i]=a[j];
a[j]=temp;
}
}
}
//After sorting
for(int i=0;i<a.length;i++)
{
System.out.print(a[i]+"\t");
}
System.out.print("\nAfter removing duplicates:");
int b=0;
a[b]=a[0];
for(int i=0;i<a.length;i++)
{
if (a[b]!=a[i])
{
b++;
a[b]=a[i];
}
}
for (int i=0;i<=b;i++ )
{
System.out.print(a[i]+"\t");
}
}
}
OUTPUT:Before Sortng:3 2 1 4 2 1 After Sorting:1 1 2 2 3 4
Removing Duplicates:1 2 3 4
Since this question is still getting a lot of attention, I decided to answer it by copying this answer from Code Review.SE:
You're following the same philosophy as the bubble sort, which is
very, very, very slow. Have you tried this?:
Sort your unordered array with quicksort. Quicksort is much faster
than bubble sort (I know, you are not sorting, but the algorithm you
follow is almost the same as bubble sort to traverse the array).
Then start removing duplicates (repeated values will be next to each
other). In a for loop you could have two indices: source and
destination. (On each loop you copy source to destination unless they
are the same, and increment both by 1). Every time you find a
duplicate you increment source (and don't perform the copy).
#morgano
import java.util.Arrays;
public class Practice {
public static void main(String[] args) {
int a[] = { 1, 3, 3, 4, 2, 1, 5, 6, 7, 7, 8, 10 };
Arrays.sort(a);
int j = 0;
for (int i = 0; i < a.length - 1; i++) {
if (a[i] != a[i + 1]) {
a[j] = a[i];
j++;
}
}
a[j] = a[a.length - 1];
for (int i = 0; i <= j; i++) {
System.out.println(a[i]);
}
}
}
**This is the most simplest way**
What if you create two boolean arrays: 1 for negative values and 1 for positive values and init it all on false.
Then you cycle thorugh the input array and lookup in the arrays if you've encoutered the value already.
If not, you add it to the output array and mark it as already used.
package com.pari.practice;
import java.util.HashSet;
import java.util.Iterator;
import com.pari.sort.Sort;
public class RemoveDuplicates {
/**
* brute force- o(N square)
*
* #param input
* #return
*/
public static int[] removeDups(int[] input){
boolean[] isSame = new boolean[input.length];
int sameNums = 0;
for( int i = 0; i < input.length; i++ ){
for( int j = i+1; j < input.length; j++){
if( input[j] == input[i] ){ //compare same
isSame[j] = true;
sameNums++;
}
}
}
//compact the array into the result.
int[] result = new int[input.length-sameNums];
int count = 0;
for( int i = 0; i < input.length; i++ ){
if( isSame[i] == true) {
continue;
}
else{
result[count] = input[i];
count++;
}
}
return result;
}
/**
* set - o(N)
* does not guarantee order of elements returned - set property
*
* #param input
* #return
*/
public static int[] removeDups1(int[] input){
HashSet myset = new HashSet();
for( int i = 0; i < input.length; i++ ){
myset.add(input[i]);
}
//compact the array into the result.
int[] result = new int[myset.size()];
Iterator setitr = myset.iterator();
int count = 0;
while( setitr.hasNext() ){
result[count] = (int) setitr.next();
count++;
}
return result;
}
/**
* quicksort - o(Nlogn)
*
* #param input
* #return
*/
public static int[] removeDups2(int[] input){
Sort st = new Sort();
st.quickSort(input, 0, input.length-1); //input is sorted
//compact the array into the result.
int[] intermediateResult = new int[input.length];
int count = 0;
int prev = Integer.MIN_VALUE;
for( int i = 0; i < input.length; i++ ){
if( input[i] != prev ){
intermediateResult[count] = input[i];
count++;
}
prev = input[i];
}
int[] result = new int[count];
System.arraycopy(intermediateResult, 0, result, 0, count);
return result;
}
public static void printArray(int[] input){
for( int i = 0; i < input.length; i++ ){
System.out.print(input[i] + " ");
}
}
public static void main(String[] args){
int[] input = {5,6,8,0,1,2,5,9,11,0};
RemoveDuplicates.printArray(RemoveDuplicates.removeDups(input));
System.out.println();
RemoveDuplicates.printArray(RemoveDuplicates.removeDups1(input));
System.out.println();
RemoveDuplicates.printArray(RemoveDuplicates.removeDups2(input));
}
}
Output:
5 6 8 0 1 2 9 11
0 1 2 5 6 8 9 11
0 1 2 5 6 8 9 11
I have just written the above code for trying out. thanks.
public static int[] removeDuplicates(int[] arr){
HashSet<Integer> set = new HashSet<>();
final int len = arr.length;
//changed end to len
for(int i = 0; i < len; i++){
set.add(arr[i]);
}
int[] whitelist = new int[set.size()];
int i = 0;
for (Iterator<Integer> it = set.iterator(); it.hasNext();) {
whitelist[i++] = it.next();
}
return whitelist;
}
Runs in O(N) time instead of your O(N^3) time
Not a big fun of updating user input, however considering your constraints...
public int[] removeDup(int[] nums) {
Arrays.sort(nums);
int x = 0;
for (int i = 0; i < nums.length; i++) {
if (i == 0 || nums[i] != nums[i - 1]) {
nums[x++] = nums[i];
}
}
return Arrays.copyOf(nums, x);
}
Array sort can be easily replaced with any nlog(n) algorithm.
This is simple way to sort the elements in the array
public class DublicatesRemove {
public static void main(String args[]) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
System.out.println("enter size of the array");
int l = Integer.parseInt(br.readLine());
int[] a = new int[l];
// insert elements in the array logic
for (int i = 0; i < l; i++)
{
System.out.println("enter a element");
int el = Integer.parseInt(br.readLine());
a[i] = el;
}
// sorting elements in the array logic
for (int i = 0; i < l; i++)
{
for (int j = 0; j < l - 1; j++)
{
if (a[j] > a[j + 1])
{
int temp = a[j];
a[j] = a[j + 1];
a[j + 1] = temp;
}
}
}
// remove duplicate elements logic
int b = 0;
a[b] = a[0];
for (int i = 1; i < l; i++)
{
if (a[b] != a[i])
{
b++;
a[b]=a[i];
}
}
for(int i=0;i<=b;i++)
{
System.out.println(a[i]);
}
}
}
Okay, so you cannot use Set or other collections. One solution I don't see here so far is one based on the use of a Bloom filter, which essentially is an array of bits, so perhaps that passes your requirements.
The Bloom filter is a lovely and very handy technique, fast and space-efficient, that can be used to do a quick check of the existence of an element in a set without storing the set itself or the elements. It has a (typically small) false positive rate, but no false negative rate. In other words, for your question, if a Bloom filter tells you that an element hasn't been seen so far, you can be sure it hasn't. But if it says that an element has been seen, you actually need to check. This still saves a lot of time if there aren't too many duplicates in your list (for those, there is no looping to do, except in the small probability case of a false positive --you typically chose this rate based on how much space you are willing to give to the Bloom filter (rule of thumb: less than 10 bits per unique element for a false positive rate of 1%).
There are many implementations of Bloom filters, see e.g. here or here, so I won't repeat that in this answer. Let us just assume the api described in that last reference, in particular, the description of put(E e):
true if the Bloom filter's bits changed as a result of this operation. If the bits changed, this is definitely the first time object has been added to the filter. If the bits haven't changed, this might be the first time object has been added to the filter. (...)
An implementation using such a Bloom filter would then be:
public static int[] removeDuplicates(int[] arr) {
ArrayList<Integer> out = new ArrayList<>();
int n = arr.length;
BloomFilter<Integer> bf = new BloomFilter<>(...); // decide how many bits and how many hash functions to use (compromise between space and false positive rate)
for (int e : arr) {
boolean might_contain = !bf.put(e);
boolean found = false;
if (might_contain) {
// check if false positive
for (int u : out) {
if (u == e) {
found = true;
break;
}
}
}
if (!found) {
out.add(e);
}
}
return out.stream().mapToInt(i -> i).toArray();
}
Obviously, if you can alter the incoming array in place, then there is no need for an ArrayList: at the end, when you know the actual number of unique elements, just arraycopy() those.
For a sorted Array, just check the next index:
//sorted data!
public static int[] distinct(int[] arr) {
int[] temp = new int[arr.length];
int count = 0;
for (int i = 0; i < arr.length; i++) {
int current = arr[i];
if(count > 0 )
if(temp[count - 1] == current)
continue;
temp[count] = current;
count++;
}
int[] whitelist = new int[count];
System.arraycopy(temp, 0, whitelist, 0, count);
return whitelist;
}
You need to sort your array then then loop and remove duplicates. As you cannot use other tools you need to write be code yourself.
You can easily find examples of quicksort in Java on the internet (on which this example is based).
public static void main(String[] args) throws Exception {
final int[] original = new int[]{1, 1, 2, 8, 9, 8, 4, 7, 4, 9, 1};
System.out.println(Arrays.toString(original));
quicksort(original);
System.out.println(Arrays.toString(original));
final int[] unqiue = new int[original.length];
int prev = original[0];
unqiue[0] = prev;
int count = 1;
for (int i = 1; i < original.length; ++i) {
if (original[i] != prev) {
unqiue[count++] = original[i];
}
prev = original[i];
}
System.out.println(Arrays.toString(unqiue));
final int[] compressed = new int[count];
System.arraycopy(unqiue, 0, compressed, 0, count);
System.out.println(Arrays.toString(compressed));
}
private static void quicksort(final int[] values) {
if (values.length == 0) {
return;
}
quicksort(values, 0, values.length - 1);
}
private static void quicksort(final int[] values, final int low, final int high) {
int i = low, j = high;
int pivot = values[low + (high - low) / 2];
while (i <= j) {
while (values[i] < pivot) {
i++;
}
while (values[j] > pivot) {
j--;
}
if (i <= j) {
swap(values, i, j);
i++;
j--;
}
}
if (low < j) {
quicksort(values, low, j);
}
if (i < high) {
quicksort(values, i, high);
}
}
private static void swap(final int[] values, final int i, final int j) {
final int temp = values[i];
values[i] = values[j];
values[j] = temp;
}
So the process runs in 3 steps.
Sort the array - O(nlgn)
Remove duplicates - O(n)
Compact the array - O(n)
So this improves significantly on your O(n^3) approach.
Output:
[1, 1, 2, 8, 9, 8, 4, 7, 4, 9, 1]
[1, 1, 1, 2, 4, 4, 7, 8, 8, 9, 9]
[1, 2, 4, 7, 8, 9, 0, 0, 0, 0, 0]
[1, 2, 4, 7, 8, 9]
EDIT
OP states values inside array doesn't matter really. But I can assume that range is between 0-1000. This is a classic case where an O(n) sort can be used.
We create an array of size range +1, in this case 1001. We then loop over the data and increment the values on each index corresponding to the datapoint.
We can then compact the resulting array, dropping values the have not been incremented. This makes the values unique as we ignore the count.
public static void main(String[] args) throws Exception {
final int[] original = new int[]{1, 1, 2, 8, 9, 8, 4, 7, 4, 9, 1, 1000, 1000};
System.out.println(Arrays.toString(original));
final int[] buckets = new int[1001];
for (final int i : original) {
buckets[i]++;
}
final int[] unique = new int[original.length];
int count = 0;
for (int i = 0; i < buckets.length; ++i) {
if (buckets[i] > 0) {
unique[count++] = i;
}
}
final int[] compressed = new int[count];
System.arraycopy(unique, 0, compressed, 0, count);
System.out.println(Arrays.toString(compressed));
}
Output:
[1, 1, 2, 8, 9, 8, 4, 7, 4, 9, 1, 1000, 1000]
[1, 2, 4, 7, 8, 9, 1000]
public static void main(String args[]) {
int[] intarray = {1,2,3,4,5,1,2,3,4,5,1,2,3,4,5};
Set<Integer> set = new HashSet<Integer>();
for(int i : intarray) {
set.add(i);
}
Iterator<Integer> setitr = set.iterator();
for(int pos=0; pos < intarray.length; pos ++) {
if(pos < set.size()) {
intarray[pos] =setitr.next();
} else {
intarray[pos]= 0;
}
}
for(int i: intarray)
System.out.println(i);
}
I know this is kinda dead but I just wrote this for my own use. It's more or less the same as adding to a hashset and then pulling all the elements out of it. It should run in O(nlogn) worst case.
public static int[] removeDuplicates(int[] numbers) {
Entry[] entries = new Entry[numbers.length];
int size = 0;
for (int i = 0 ; i < numbers.length ; i++) {
int nextVal = numbers[i];
int index = nextVal % entries.length;
Entry e = entries[index];
if (e == null) {
entries[index] = new Entry(nextVal);
size++;
} else {
if(e.insert(nextVal)) {
size++;
}
}
}
int[] result = new int[size];
int index = 0;
for (int i = 0 ; i < entries.length ; i++) {
Entry current = entries[i];
while (current != null) {
result[i++] = current.value;
current = current.next;
}
}
return result;
}
public static class Entry {
int value;
Entry next;
Entry(int value) {
this.value = value;
}
public boolean insert(int newVal) {
Entry current = this;
Entry prev = null;
while (current != null) {
if (current.value == newVal) {
return false;
} else if(current.next != null) {
prev = current;
current = next;
}
}
prev.next = new Entry(value);
return true;
}
}
int tempvar=0; //Variable for the final array without any duplicates
int whilecount=0; //variable for while loop
while(whilecount<(nsprtable*2)-1) //nsprtable can be any number
{
//to check whether the next value is idential in case of sorted array
if(temparray[whilecount]!=temparray[whilecount+1])
{
finalarray[tempvar]=temparray[whilecount];
tempvar++;
whilecount=whilecount+1;
}
else if (temparray[whilecount]==temparray[whilecount+1])
{
finalarray[tempvar]=temparray[whilecount];
tempvar++;
whilecount=whilecount+2;
}
}
Hope this helps or solves the purpose.
package javaa;
public class UniqueElementinAnArray
{
public static void main(String[] args)
{
int[] a = {10,10,10,10,10,100};
int[] output = new int[a.length];
int count = 0;
int num = 0;
//Iterate over an array
for(int i=0; i<a.length; i++)
{
num=a[i];
boolean flag = check(output,num);
if(flag==false)
{
output[count]=num;
++count;
}
}
//print the all the elements from an array except zero's (0)
for (int i : output)
{
if(i!=0 )
System.out.print(i+" ");
}
}
/***
* If a next number from an array is already exists in unique array then return true else false
* #param arr Unique number array. Initially this array is an empty.
* #param num Number to be search in unique array. Whether it is duplicate or unique.
* #return true: If a number is already exists in an array else false
*/
public static boolean check(int[] arr, int num)
{
boolean flag = false;
for(int i=0;i<arr.length; i++)
{
if(arr[i]==num)
{
flag = true;
break;
}
}
return flag;
}
}
public static int[] removeDuplicates(int[] arr) {
int end = arr.length;
HashSet<Integer> set = new HashSet<Integer>(end);
for(int i = 0 ; i < end ; i++){
set.add(arr[i]);
}
return set.toArray();
}
You can use an auxiliary array (temp) which in indexes are numbers of main array. So the time complexity will be liner and O(n). As we want to do it without using any library, we define another array (unique) to push non-duplicate elements:
var num = [2,4,9,4,1,2,24,12,4];
let temp = [];
let unique = [];
let j = 0;
for (let i = 0; i < num.length; i++){
if (temp[num[i]] !== 1){
temp[num[i]] = 1;
unique[j++] = num[i];
}
}
console.log(unique);
If you are looking to remove duplicates using the same array and also keeping the time complexity of O(n). Then this should do the trick. Also, would only work if the array is sorted.
function removeDuplicates_sorted(arr){
let j = 0;
for(let x = 0; x < arr.length - 1; x++){
if(arr[x] != arr[x + 1]){
arr[j++] = arr[x];
}
}
arr[j++] = arr[arr.length - 1];
arr.length = j;
return arr;
}
Here is for an unsorted array, its O(n) but uses more space complexity then the sorted.
function removeDuplicates_unsorted(arr){
let map = {};
let j = 0;
for(var numbers of arr){
if(!map[numbers]){
map[numbers] = 1;
arr[j++] = numbers;
}
}
arr.length = j;
return arr;
}
Note to other readers who desire to use the Set method of solving this problem: If original ordering must be preserved, do not use HashSet as in the top result. HashSet does not guarantee the preservation of the original order, so LinkedHashSet should be used instead-this keeps track of the order in which the elements were inserted into the set and returns them in that order.
This is an interview question.
public class Test4 {
public static void main(String[] args) {
int a[] = {1, 2, 2, 3, 3, 3, 6,6,6,6,6,66,7,65};
int newlength = lengthofarraywithoutduplicates(a);
for(int i = 0 ; i < newlength ;i++) {
System.out.println(a[i]);
}//for
}//main
private static int lengthofarraywithoutduplicates(int[] a) {
int count = 1 ;
for (int i = 1; i < a.length; i++) {
int ch = a[i];
if(ch != a[i-1]) {
a[count++] = ch;
}//if
}//for
return count;
}//fix
}//end1
But, it's always better to use Stream :
int[] a = {1, 2, 2, 3, 3, 3, 6,6,6,6,6,66,7,65};
int[] array = Arrays.stream(a).distinct().toArray();
System.out.println(Arrays.toString(array));//[1, 2, 3, 6, 66, 7, 65]
How about this one, only for the sorted Array of numbers, to print the Array without duplicates, without using Set or other Collections, just an Array:
public static int[] removeDuplicates(int[] array) {
int[] nums = new int[array.length];
int addedNumber = 0;
int j = 0;
for(int i=0; i < array.length; i++) {
if (addedNumber != array[i]) {
nums[j] = array[i];
j++;
addedNumber = nums[j-1];
}
}
return Arrays.copyOf(nums, j);
}
An array of 1040 duplicated numbers processed in 33020 nanoseconds(0.033020 millisec).
public static void main(String[] args) {
Integer[] intArray = { 1, 1, 1, 2, 4, 2, 3, 5, 3, 6, 7, 3, 4, 5 };
Integer[] finalArray = removeDuplicates(intArray);
System.err.println(Arrays.asList(finalArray));
}
private static Integer[] removeDuplicates(Integer[] intArray) {
int count = 0;
Integer[] interimArray = new Integer[intArray.length];
for (int i = 0; i < intArray.length; i++) {
boolean exists = false;
for (int j = 0; j < interimArray.length; j++) {
if (interimArray[j]!=null && interimArray[j] == intArray[i]) {
exists = true;
}
}
if (!exists) {
interimArray[count] = intArray[i];
count++;
}
}
final Integer[] finalArray = new Integer[count];
System.arraycopy(interimArray, 0, finalArray, 0, count);
return finalArray;
}
I feel Android Killer's idea is great, but I just wondered if we can leverage HashMap. So I did a little experiment. And I found HashMap seems faster than HashSet.
Here is code:
int[] input = new int[1000000];
for (int i = 0; i < input.length; i++) {
Random random = new Random();
input[i] = random.nextInt(200000);
}
long startTime1 = new Date().getTime();
System.out.println("Set start time:" + startTime1);
Set<Integer> resultSet = new HashSet<Integer>();
for (int i = 0; i < input.length; i++) {
resultSet.add(input[i]);
}
long endTime1 = new Date().getTime();
System.out.println("Set end time:"+ endTime1);
System.out.println("result of set:" + (endTime1 - startTime1));
System.out.println("number of Set:" + resultSet.size() + "\n");
long startTime2 = new Date().getTime();
System.out.println("Map start time:" + startTime1);
Map<Integer, Integer> resultMap = new HashMap<Integer, Integer>();
for (int i = 0; i < input.length; i++) {
if (!resultMap.containsKey(input[i]))
resultMap.put(input[i], input[i]);
}
long endTime2 = new Date().getTime();
System.out.println("Map end Time:" + endTime2);
System.out.println("result of Map:" + (endTime2 - startTime2));
System.out.println("number of Map:" + resultMap.size());
Here is result:
Set start time:1441960583837
Set end time:1441960583917
result of set:80
number of Set:198652
Map start time:1441960583837
Map end Time:1441960583983
result of Map:66
number of Map:198652
This is not using Set, Map, List or any extra collection, only two arrays:
package arrays.duplicates;
import java.lang.reflect.Array;
import java.util.Arrays;
public class ArrayDuplicatesRemover<T> {
public static <T> T[] removeDuplicates(T[] input, Class<T> clazz) {
T[] output = (T[]) Array.newInstance(clazz, 0);
for (T t : input) {
if (!inArray(t, output)) {
output = Arrays.copyOf(output, output.length + 1);
output[output.length - 1] = t;
}
}
return output;
}
private static <T> boolean inArray(T search, T[] array) {
for (T element : array) {
if (element.equals(search)) {
return true;
}
}
return false;
}
}
And the main to test it
package arrays.duplicates;
import java.util.Arrays;
public class TestArrayDuplicates {
public static void main(String[] args) {
Integer[] array = {1, 1, 2, 2, 3, 3, 3, 3, 4};
testArrayDuplicatesRemover(array);
}
private static void testArrayDuplicatesRemover(Integer[] array) {
final Integer[] expectedResult = {1, 2, 3, 4};
Integer[] arrayWithoutDuplicates = ArrayDuplicatesRemover.removeDuplicates(array, Integer.class);
System.out.println("Array without duplicates is supposed to be: " + Arrays.toString(expectedResult));
System.out.println("Array without duplicates currently is: " + Arrays.toString(arrayWithoutDuplicates));
System.out.println("Is test passed ok?: " + (Arrays.equals(arrayWithoutDuplicates, expectedResult) ? "YES" : "NO"));
}
}
And the output:
Array without duplicates is supposed to be: [1, 2, 3, 4]
Array without duplicates currently is: [1, 2, 3, 4]
Is test passed ok?: YES
Are there any functions (as part of a math library) which will calculate mean, median, mode and range from a set of numbers.
Yes, there does seem to be 3rd libraries (none in Java Math). Two that have come up are:
http://opsresearch.com/app/
http://www.iro.umontreal.ca/~simardr/ssj/indexe.html
but, it is actually not that difficult to write your own methods to calculate mean, median, mode and range.
MEAN
public static double mean(double[] m) {
double sum = 0;
for (int i = 0; i < m.length; i++) {
sum += m[i];
}
return sum / m.length;
}
MEDIAN
// the array double[] m MUST BE SORTED
public static double median(double[] m) {
int middle = m.length/2;
if (m.length%2 == 1) {
return m[middle];
} else {
return (m[middle-1] + m[middle]) / 2.0;
}
}
MODE
public static int mode(int a[]) {
int maxValue, maxCount;
for (int i = 0; i < a.length; ++i) {
int count = 0;
for (int j = 0; j < a.length; ++j) {
if (a[j] == a[i]) ++count;
}
if (count > maxCount) {
maxCount = count;
maxValue = a[i];
}
}
return maxValue;
}
UPDATE
As has been pointed out by Neelesh Salpe, the above does not cater for multi-modal collections. We can fix this quite easily:
public static List<Integer> mode(final int[] numbers) {
final List<Integer> modes = new ArrayList<Integer>();
final Map<Integer, Integer> countMap = new HashMap<Integer, Integer>();
int max = -1;
for (final int n : numbers) {
int count = 0;
if (countMap.containsKey(n)) {
count = countMap.get(n) + 1;
} else {
count = 1;
}
countMap.put(n, count);
if (count > max) {
max = count;
}
}
for (final Map.Entry<Integer, Integer> tuple : countMap.entrySet()) {
if (tuple.getValue() == max) {
modes.add(tuple.getKey());
}
}
return modes;
}
ADDITION
If you are using Java 8 or higher, you can also determine the modes like this:
public static List<Integer> getModes(final List<Integer> numbers) {
final Map<Integer, Long> countFrequencies = numbers.stream()
.collect(Collectors.groupingBy(Function.identity(), Collectors.counting()));
final long maxFrequency = countFrequencies.values().stream()
.mapToLong(count -> count)
.max().orElse(-1);
return countFrequencies.entrySet().stream()
.filter(tuple -> tuple.getValue() == maxFrequency)
.map(Map.Entry::getKey)
.collect(Collectors.toList());
}
Check out commons math from apache. There is quite a lot there.
public static Set<Double> getMode(double[] data) {
if (data.length == 0) {
return new TreeSet<>();
}
TreeMap<Double, Integer> map = new TreeMap<>(); //Map Keys are array values and Map Values are how many times each key appears in the array
for (int index = 0; index != data.length; ++index) {
double value = data[index];
if (!map.containsKey(value)) {
map.put(value, 1); //first time, put one
}
else {
map.put(value, map.get(value) + 1); //seen it again increment count
}
}
Set<Double> modes = new TreeSet<>(); //result set of modes, min to max sorted
int maxCount = 1;
Iterator<Integer> modeApperance = map.values().iterator();
while (modeApperance.hasNext()) {
maxCount = Math.max(maxCount, modeApperance.next()); //go through all the value counts
}
for (double key : map.keySet()) {
if (map.get(key) == maxCount) { //if this key's value is max
modes.add(key); //get it
}
}
return modes;
}
//std dev function for good measure
public static double getStandardDeviation(double[] data) {
final double mean = getMean(data);
double sum = 0;
for (int index = 0; index != data.length; ++index) {
sum += Math.pow(Math.abs(mean - data[index]), 2);
}
return Math.sqrt(sum / data.length);
}
public static double getMean(double[] data) {
if (data.length == 0) {
return 0;
}
double sum = 0.0;
for (int index = 0; index != data.length; ++index) {
sum += data[index];
}
return sum / data.length;
}
//by creating a copy array and sorting it, this function can take any data.
public static double getMedian(double[] data) {
double[] copy = Arrays.copyOf(data, data.length);
Arrays.sort(copy);
return (copy.length % 2 != 0) ? copy[copy.length / 2] : (copy[copy.length / 2] + copy[(copy.length / 2) - 1]) / 2;
}
If you only care about unimodal distributions, consider sth. like this.
public static Optional<Integer> mode(Stream<Integer> stream) {
Map<Integer, Long> frequencies = stream
.collect(Collectors.groupingBy(Function.identity(), Collectors.counting()));
return frequencies.entrySet().stream()
.max(Comparator.comparingLong(Map.Entry::getValue))
.map(Map.Entry::getKey);
}
public class Mode {
public static void main(String[] args) {
int[] unsortedArr = new int[] { 3, 1, 5, 2, 4, 1, 3, 4, 3, 2, 1, 3, 4, 1 ,-1,-1,-1,-1,-1};
Map<Integer, Integer> countMap = new HashMap<Integer, Integer>();
for (int i = 0; i < unsortedArr.length; i++) {
Integer value = countMap.get(unsortedArr[i]);
if (value == null) {
countMap.put(unsortedArr[i], 0);
} else {
int intval = value.intValue();
intval++;
countMap.put(unsortedArr[i], intval);
}
}
System.out.println(countMap.toString());
int max = getMaxFreq(countMap.values());
List<Integer> modes = new ArrayList<Integer>();
for (Entry<Integer, Integer> entry : countMap.entrySet()) {
int value = entry.getValue();
if (value == max)
modes.add(entry.getKey());
}
System.out.println(modes);
}
public static int getMaxFreq(Collection<Integer> valueSet) {
int max = 0;
boolean setFirstTime = false;
for (Iterator iterator = valueSet.iterator(); iterator.hasNext();) {
Integer integer = (Integer) iterator.next();
if (!setFirstTime) {
max = integer;
setFirstTime = true;
}
if (max < integer) {
max = integer;
}
}
return max;
}
}
Test data
Modes {1,3} for { 3, 1, 5, 2, 4, 1, 3, 4, 3, 2, 1, 3, 4, 1 };
Modes {-1} for { 3, 1, 5, 2, 4, 1, 3, 4, 3, 2, 1, 3, 4, 1 ,-1,-1,-1,-1,-1};
As already pointed out by Nico Huysamen, finding multiple mode in Java 1.8 can be done alternatively as below.
import java.util.ArrayList;
import java.util.List;
import java.util.HashMap;
import java.util.Map;
public static void mode(List<Integer> numArr) {
Map<Integer, Integer> freq = new HashMap<Integer, Integer>();;
Map<Integer, List<Integer>> mode = new HashMap<Integer, List<Integer>>();
int modeFreq = 1; //record the highest frequence
for(int x=0; x<numArr.size(); x++) { //1st for loop to record mode
Integer curr = numArr.get(x); //O(1)
freq.merge(curr, 1, (a, b) -> a + b); //increment the frequency for existing element, O(1)
int currFreq = freq.get(curr); //get frequency for current element, O(1)
//lazy instantiate a list if no existing list, then
//record mapping of frequency to element (frequency, element), overall O(1)
mode.computeIfAbsent(currFreq, k -> new ArrayList<>()).add(curr);
if(modeFreq < currFreq) modeFreq = currFreq; //update highest frequency
}
mode.get(modeFreq).forEach(x -> System.out.println("Mode = " + x)); //pretty print the result //another for loop to return result
}
Happy coding!
Here's the complete clean and optimised code in JAVA 8
import java.io.*;
import java.util.*;
public class Solution {
public static void main(String[] args) {
/*Take input from user*/
Scanner sc = new Scanner(System.in);
int n =0;
n = sc.nextInt();
int arr[] = new int[n];
//////////////mean code starts here//////////////////
int sum = 0;
for(int i=0;i<n; i++)
{
arr[i] = sc.nextInt();
sum += arr[i];
}
System.out.println((double)sum/n);
//////////////mean code ends here//////////////////
//////////////median code starts here//////////////////
Arrays.sort(arr);
int val = arr.length/2;
System.out.println((arr[val]+arr[val-1])/2.0);
//////////////median code ends here//////////////////
//////////////mode code starts here//////////////////
int maxValue=0;
int maxCount=0;
for(int i=0; i<n; ++i)
{
int count=0;
for(int j=0; j<n; ++j)
{
if(arr[j] == arr[i])
{
++count;
}
if(count > maxCount)
{
maxCount = count;
maxValue = arr[i];
}
}
}
System.out.println(maxValue);
//////////////mode code ends here//////////////////
}
}