I am doing a leetcode problem where I have to find the duplicate of an array of size [1-N] inclusive and came upon this solution:
public int findDuplicate(int[] nums) {
BitSet bit = new BitSet();
for(int num : nums) {
if(!bit.get(num)) {
bit.set(num);
} else {
return num;
}
}
return -1;
}
The use of bitset here im assuming is similar to using boolean[] to keep track if we saw the current number previously. So my question is what the space complexity is for this? The runtime seems to be O(n) where n is the size of the input array. Would the same be true for the space complexity?
Link to problem : https://leetcode.com/problems/find-the-duplicate-number/
Your Bitset creates an underlying long[] to store the values. Reading the code of Bitset#set, I would say it's safe to say that the array will never be larger than max(nums) / 64 * 2 = max(nums) / 32. Since long has a fixed size, this comes down to O(max(nums)). If nums contains large values, you can do better with a hash map.
I'm trying this out with simple code, and it seems to corroborate my reading of the code.
BitSet bitSet = new BitSet();
bitSet.set(100);
System.out.println(bitSet.toLongArray().length); // 2 (max(nums) / 32 = 3.125)
bitSet.set(64000);
System.out.println(bitSet.toLongArray().length); // 1001 (max(nums) / 32 = 2000)
bitSet.set(100_000);
System.out.println(bitSet.toLongArray().length); // 1563 (max(nums) / 32 = 3125)
Note that the 2 factor I added is conservative, in general it will be a smaller factor, that's why my formula consistently over-estimates the actual length of the long array, but never by more than a factor of 2. This is the code in Bitset that made me add it:
private void ensureCapacity(int wordsRequired) {
if (words.length < wordsRequired) {
// Allocate larger of doubled size or required size
int request = Math.max(2 * words.length, wordsRequired);
words = Arrays.copyOf(words, request);
sizeIsSticky = false;
}
}
In summary, I would say the bit set is only a good idea if you have reason to believe you have smaller values than you have values (count). For example, if you have only two values but they are over a billion in value, you will needlessly allocate an array of several million elements.
Additionally, even in cases where values remain small, this solutions performs poorly for sorted arrays because Bitset#set will always reallocate and copy the array, so your complexity is not linear at all, it's quadratic in max(nums), which can be terrible if max(nums) is very large. To be linear, you would need to first find the maximum, allocate the necessary length in the Bitset, and then only go through the array.
At this point, using a map is simpler and fits all situations. If speed really matters, my bet is that the Bitset will beat a map under specific conditions (lots of values, but small, and by pre-sizing the bit set as described).
Related
Assume I have a Java BitSet. I now need to make combinations of the BitSet such that only Bits which are Set can be flipped. i.e. only need combinations of Bits which are set.
For Eg. BitSet - 1010, Combinations - 1010, 1000, 0010, 0000
BitSet - 1100, Combination - 1100, 1000, 0100, 0000
I can think of a few solutions E.g. I can take combinations of all 4 bits and then XOR the combinations with the original Bitset. But this would be very resource-intensive for large sparse BitSets. So I was looking for a more elegant solution.
It appears that you want to get the power set of the bit set. There is already an answer here about how to get the power set of a Set<T>. Here, I will show a modified version of the algorithm shown in that post, using BitSets:
private static Set<BitSet> powerset(BitSet set) {
Set<BitSet> sets = new HashSet<>();
if (set.isEmpty()) {
sets.add(new BitSet(0));
return sets;
}
Integer head = set.nextSetBit(0);
BitSet rest = set.get(0, set.size());
rest.clear(head);
for (BitSet s : powerset(rest)) {
BitSet newSet = s.get(0, s.size());
newSet.set(head);
sets.add(newSet);
sets.add(s);
}
return sets;
}
You can perform the operation in a single linear pass instead of recursion, if you realize the integer numbers are a computer’s intrinsic variant of “on off” patterns and iterating over the appropriate integer range will ultimately produce all possible permutations. The only challenge in your case, is to transfer the densely packed bits of an integer number to the target bits of a BitSet.
Here is such a solution:
static List<BitSet> powerset(BitSet set) {
int nBits = set.cardinality();
if(nBits > 30) throw new OutOfMemoryError(
"Not enough memory for "+BigInteger.ONE.shiftLeft(nBits)+" BitSets");
int max = 1 << nBits;
int[] targetBits = set.stream().toArray();
List<BitSet> sets = new ArrayList<>(max);
for(int onOff = 0; onOff < max; onOff++) {
BitSet next = new BitSet(set.size());
for(int bitsToSet = onOff, ix = 0; bitsToSet != 0; ix++, bitsToSet>>>=1) {
if((bitsToSet & 1) == 0) {
int skip = Integer.numberOfTrailingZeros(bitsToSet);
ix += skip;
bitsToSet >>>= skip;
}
next.set(targetBits[ix]);
}
sets.add(next);
}
return sets;
}
It uses an int value for the iteration, which is already enough to represent all permutations that can ever be stored in one of Java’s builtin collections. If your source BitSet has 2³¹ one bits, the 2³² possible combinations do not only require a hundred GB heap, but also a collection supporting 2³² elements, i.e. a size not representable as int.
So the code above terminates early if the number exceeds the capabilities, without even trying. You could rewrite it to use a long or even BigInteger instead, to keep it busy in such cases, until it will fail with an OutOfMemoryError anyway.
For the working cases, the int solution is the most efficient variant.
Note that the code returns a List rather than a HashSet to avoid the costs of hashing. The values are already known to be unique and hashing would only pay off if you want to perform lookups, i.e. call contains with another BitSet. But to test whether an existing BitSet is a permutation of your input BitSet, you wouldn’t even need to generate all permutations, a simple bit operation, e.g. andNot would tell you that already. So for storing and iterating the permutations, an ArrayList is more efficient.
This is a common interview question.
You have a stream of numbers coming in (let's say more than a million). The numbers are between [0-999]).
Implement a class which supports three methods in O(1)
* insert(int i);
* getMean();
* getMedian();
This is my code.
public class FindAverage {
private int[] store;
private long size;
private long total;
private int highestIndex;
private int lowestIndex;
public FindAverage() {
store = new int[1000];
size = 0;
total = 0;
highestIndex = Integer.MIN_VALUE;
lowestIndex = Integer.MAX_VALUE;
}
public void insert(int item) throws OutOfRangeException {
if(item < 0 || item > 999){
throw new OutOfRangeException();
}
store[item] ++;
size ++;
total += item;
highestIndex = Integer.max(highestIndex, item);
lowestIndex = Integer.min(lowestIndex, item);
}
public float getMean(){
return (float)total/size;
}
public float getMedian(){
}
}
I can't seem to think of a way to get the median in O(1) time.
Any help appreciated.
You have already done all the heavy lifting, by building the store counters. Together with the size value, it's easy enough.
You simply start iterating the store, summing up the counts until you reach half of size. That is your median value, if size is odd. For even size, you'll grab the two surrounding values and get their average.
Performance is O(1000/2) on average, which means O(1), since it doesn't depend on n, i.e. performance is unchanged even if n reaches into the billions.
Remember, O(1) doesn't mean instant, or even fast. As Wikipedia says it:
An algorithm is said to be constant time (also written as O(1) time) if the value of T(n) is bounded by a value that does not depend on the size of the input.
In your case, that bound is 1000.
The possible values that you can read are quite limited - just 1000. So you can think of implementing something like a counting sort - each time a number is input you increase the counter for that value.
To implement the median in constant time, you will need two numbers - the median index(i.e. the value of the median) and the number of values you've read and that are on the left(or right) of the median. I will just stop here hoping you will be able to figure out how to continue on your own.
EDIT(as pointed out in the comments): you already have the array with the sorted elements(stored) and you know the number of elements to the left of the median(size/2). You only need to glue the logic together. I would like to point out that if you use linear additional memory you won't need to iterate over the whole array on each insert.
For the general case, where range of elements is unlimited, such data structure does not exist based on any comparisons based algorithm, as it will allow O(n) sorting.
Proof: Assume such DS exist, let it be D.
Let A be input array for sorting. (Assume A.size() is even for simplicity, that can be relaxed pretty easily by adding a garbage element and discarding it later).
sort(A):
ds = new D()
for each x in A:
ds.add(x)
m1 = min(A) - 1
m2 = max(A) + 1
for (i=0; i < A.size(); i++):
ds.add(m1)
# at this point, ds.median() is smallest element in A
for (i = 0; i < A.size(); i++):
yield ds.median()
# Each two insertions advances median by 1
ds.add(m2)
ds.add(m2)
Claim 1: This algorithm runs in O(n).
Proof: Since we have constant operations of add() and median(), each of them is O(1) per iteration, and the number of iterations is linear - the complexity is linear.
Claim 2: The output is sorted(A).
Proof (guidelines): After inserting n times m1, the median is the smallest element in A. Each two insertions after it advances the median by one item, and since the advance is sorted, the total output is sorted.
Since the above algorithm sorts in O(n), and not possible under comparisons model, such DS does not exist.
QED.
Recently in AP Computer Science A, our class recently learned about arrays. Our teacher posed to us a riddle.
Say you have 20 numbers, 10 through 100 inclusive, right? (these numbers are gathered from another file using Scanners)
As each number is read, we must print the number if and only if it is not a duplicate of a number already read. Now, here's the catch. We must use the smallest array possible to solve the problem.
That's the real problem I'm having. All of my solutions require a pretty big array that has 20 slots in it.
I am required to use an array. What would be the smallest array that we could use to solve the problem efficiently?
If anyone could explain the method with pseudocode (or in words) that would be awesome.
In the worst case we have to use an array of length 19.
Why 19? Each unique number has to be remembered in order to sort out duplicates from the following numbers. Since you know that there are 20 numbers incoming, but not more, you don't have to store the last number. Either the 20th number already appeared (then don't do anything), or the 20th number is unique (then print it and exit – no need to save it).
By the way: I wouldn't call an array of length 20 big :)
If your numbers are integers: You have a range from 10 to 100. So you need 91 Bits to store which values have already been read. A Java Long has 64 Bits. So you will need an array of two Longs. Let every Bit (except for the superfluous ones) stand for a number from 10 to 100. Initialize both longs with 0. When a number is read, check if the corresponding bit mapped to the read value is set to 1. If yes, the read number is a duplicate, if no set the bit to 1.
This is the idea behind the BitSet class.
Agree with Socowi. If number of numbers is known and it is equal to N , it is always possible to use N-1 array to store duplicates. Once the last element from the input is received and it is already known that this is the last element, it is not really needed to store this last value in the duplicates array.
Another idea. If your numbers are small and really located in [10:100] diapason, you can use 1 Long number for storing at least 2 small Integers and extract them from Long number using binary AND to extract small integers values back. In this case it is possible to use N/2 array. But it will make searching in this array more complicated and does not save much memory, only number of items in the array will be decreased.
You technically don't need an array, since the input size is fixed, you can just declare 20 variables. But let's say it wasn't fixed.
As other answer says, worst case is indeed 19 slots in the array. But, assuming we are talking about integers here, there is a better case scenario where some numbers form a contiguous interval. In that case, you only have to remember the highest and lowest number, since anything in between is also a duplicate. You can use an array of intervals.
With the range of 10 to 100, the numbers can be spaced apart and you still need an array of 19 intervals, in the worst case. But let's say, that the best case occurs, and all numbers form a contiguous interval, then you only need 1 array slot.
The problem you'd still have to solve is to create an abstraction over an array, that expands itself by 1 when an element is added, so it will use the minimal size necessary. (Similar to ArrayList, but it doubles in size when capacity is reached).
Since an array cannot change size at run time You need a companion variable to count the numbers that are not duplicates and fill the array partially with only those numbers.
Here is a simple code that use companion variable currentsize and fill the array partially.
Alternative you can use arrayList which change size during run time
final int LENGTH = 20;
double[] numbers = new double[LENGTH];
int currentSize = 0;
Scanner in = new Scanner(System.in);
while (in.hasNextDouble()){
if (currentSize < numbers.length){
numbers[currentSize] = in.nextDouble();
currentSize++;
}
}
Edit
Now the currentSize contains those actual numbers that are not duplicates and you did not fill all 20 elements in case you had some duplicates. Of course you need some code to determine whither a numbers is duplicate or not.
My last answer misunderstood what you were needing, but I turned this thing up that does it an int array of 5 elements using bit shifting. Since we know the max number is 100 we can store (Quite messily) four numbers into each index.
Random rand = new Random();
int[] numbers = new int[5];
int curNum;
for (int i = 0; i < 20; i++) {
curNum = rand.nextInt(100);
System.out.println(curNum);
boolean print = true;
for (int x = 0; x < i; x++) {
byte numberToCheck = ((byte) (numbers[(x - (x % 4)) / 4] >>> ((x%4) * 8)));
if (numberToCheck == curNum) {
print = false;
}
}
if (print) {
System.out.println("No Match: " + curNum);
}
int index = ((i - (i % 4)) / 4);
numbers[index] = numbers[index] | (curNum << (((i % 4)) * 8));
}
I use rand to get my ints but you could easily change this to a scanner.
This is a problem I'm trying to solve on my own to be a bit better at recursion(not homework). I believe I found a solution, but I'm not sure about the time complexity (I'm aware that DP would give me better results).
Find all the ways you can go up an n step staircase if you can take k steps at a time such that k <= n
For example, if my step sizes are [1,2,3] and the size of the stair case is 10, I could take 10 steps of size 1 [1,1,1,1,1,1,1,1,1,1]=10 or I could take 3 steps of size 3 and 1 step of size 1 [3,3,3,1]=10
Here is my solution:
static List<List<Integer>> problem1Ans = new ArrayList<List<Integer>>();
public static void problem1(int numSteps){
int [] steps = {1,2,3};
problem1_rec(new ArrayList<Integer>(), numSteps, steps);
}
public static void problem1_rec(List<Integer> sequence, int numSteps, int [] steps){
if(problem1_sum_seq(sequence) > numSteps){
return;
}
if(problem1_sum_seq(sequence) == numSteps){
problem1Ans.add(new ArrayList<Integer>(sequence));
return;
}
for(int stepSize : steps){
sequence.add(stepSize);
problem1_rec(sequence, numSteps, steps);
sequence.remove(sequence.size()-1);
}
}
public static int problem1_sum_seq(List<Integer> sequence){
int sum = 0;
for(int i : sequence){
sum += i;
}
return sum;
}
public static void main(String [] args){
problem1(10);
System.out.println(problem1Ans.size());
}
My guess is that this runtime is k^n where k is the numbers of step sizes, and n is the number of steps (3 and 10 in this case).
I came to this answer because each step size has a loop that calls k number of step sizes. However, the depth of this is not the same for all step sizes. For instance, the sequence [1,1,1,1,1,1,1,1,1,1] has more recursive calls than [3,3,3,1] so this makes me doubt my answer.
What is the runtime? Is k^n correct?
TL;DR: Your algorithm is O(2n), which is a tighter bound than O(kn), but because of some easily corrected inefficiencies the implementation runs in O(k2 × 2n).
In effect, your solution enumerates all of the step-sequences with sum n by successively enumerating all of the viable prefixes of those step-sequences. So the number of operations is proportional to the number of step sequences whose sum is less than or equal to n. [See Notes 1 and 2].
Now, let's consider how many possible prefix sequences there are for a given value of n. The precise computation will depend on the steps allowed in the vector of step sizes, but we can easily come up with a maximum, because any step sequence is a subset of the set of integers from 1 to n, and we know that there are precisely 2n such subsets.
Of course, not all subsets qualify. For example, if the set of step-sizes is [1, 2], then you are enumerating Fibonacci sequences, and there are O(φn) such sequences. As k increases, you will get closer and closer to O(2n). [Note 3]
Because of the inefficiencies in your coded, as noted, your algorithm is actually O(k2 αn) where α is some number between φ and 2, approaching 2 as k approaches infinity. (φ is 1.618..., or (1+sqrt(5))/2)).
There are a number of improvements that could be made to your implementation, particularly if your intent was to count rather than enumerate the step sizes. But that was not your question, as I understand it.
Notes
That's not quite exact, because you actually enumerate a few extra sequences which you then reject; the cost of these rejections is a multiplier by the size of the vector of possible step sizes. However, you could easily eliminate the rejections by terminating the for loop as soon as a rejection is noticed.
The cost of an enumeration is O(k) rather than O(1) because you compute the sum of the sequence arguments for each enumeration (often twice). That produces an additional factor of k. You could easily eliminate this cost by passing the current sum into the recursive call (which would also eliminate the multiple evaluations). It is trickier to avoid the O(k) cost of copying the sequence into the output list, but that can be done using a better (structure-sharing) data-structure.
The question in your title (as opposed to the problem solved by the code in the body of your question) does actually require enumerating all possible subsets of {1…n}, in which case the number of possible sequences would be exactly 2n.
If you want to solve this recursively, you should use a different pattern that allows caching of previous values, like the one used when calculating Fibonacci numbers. The code for Fibonacci function is basically about the same as what do you seek, it adds previous and pred-previous numbers by index and returns the output as current number. You can use the same technique in your recursive function , but add not f(k-1) and f(k-2), but gather sum of f(k-steps[i]). Something like this (I don't have a Java syntax checker, so bear with syntax errors please):
static List<Integer> cache = new ArrayList<Integer>;
static List<Integer> storedSteps=null; // if used with same value of steps, don't clear cache
public static Integer problem1(Integer numSteps, List<Integer> steps) {
if (!ArrayList::equal(steps, storedSteps)) { // check equality data wise, not link wise
storedSteps=steps; // or copy with whatever method there is
cache.clear(); // remove all data - now invalid
// TODO make cache+storedSteps a single structure
}
return problem1_rec(numSteps,steps);
}
private static Integer problem1_rec(Integer numSteps, List<Integer> steps) {
if (0>numSteps) { return 0; }
if (0==numSteps) { return 1; }
if (cache.length()>=numSteps+1) { return cache[numSteps] } // cache hit
Integer acc=0;
for (Integer i : steps) { acc+=problem1_rec(numSteps-i,steps); }
cache[numSteps]=acc; // cache miss. Make sure ArrayList supports inserting by index, otherwise use correct type
return acc;
}
I have been given 3 algorithms to reverse engineer and explain how they work, so far I have worked out that I have been given a quick sorting algorithm and a bubble sorting algorithm; however i'm not sure what algorithm this is. I understand how the quick sort and bubble sort work, but I just can't get my head around this algorithm. I'm unsure what the variables are and was hoping someone out there would be able to tell me whats going on here:
public static ArrayList<Integer> SortB(ArrayList<Integer> a)
{
ArrayList<Integer> array = CopyArray(a);
Integer[] zero = new Integer[a.size()];
Integer[] one = new Integer[a.size()];
int i,b;
Integer x,p;
//Change from 8 to 32 for whole integers - will run 4 times slower
for(b=0;b<8;++b)
{
int zc = 0;
int oc = 0;
for(i=0;i<array.size();++i)
{
x = array.get(i);
p = 1 << b;
if ((x & p) == 0)
{
zero[zc++] = array.get(i);
}
else
{
one[oc++] = array.get(i);
}
}
for(i=0;i<oc;++i) array.set(i,one[i]);
for(i=0;i<zc;++i) array.set(i+oc,zero[i]);
}
return(array);
}
This is a Radix Sort, limited to the least significant eight bits. It does not complete the sort unless you change the loop to go 32 times instead of 8.
Each iteration processes a single bit b. It prepares a mask called p by shifting 1 left b times. This produces a power of two - 1, 2, 4, 8, ..., or 1, 10, 100, 1000, 10000, ... in binary.
For each bit, the number of elements in the original array with bit b set to 1 and to 0 are separated into two buckets called one and zero. Once the separation is over, the elements are placed back into the original array, and the algorithm proceeds to the next iteration.
This implementation uses two times more storage than the size of the original array, and goes through the array a total of 16 times (64 times in the full version - once for reading and once for writing of data for each bit). The asymptotic complexity of the algorithm is linear.
Looks like a bit-by-bit radix sort to me, but it seems to be sorting backwards.