I am generating 2D arcs using the following code.
final Arc2D.Double arcPath = new Arc2D.Double();
arcPath.setArcByCenter(centerPoint.getX(), centerPoint.getY(), radius, fDXFArc.getStartAngle(), fDXFArc.getTotalAngle(), Arc2D.OPEN);
The arcs are perfectly rendered on my Canvas but I do not know if they are Clockwise or Counter Clockwise. Can someone share the algorithm to detect the arc's orientation ?
I see two hints for always counterclockwise (80% sure):
First java.awt.geom.Arc2D itself tells in it's class description:
* The angles are specified relative to the non-square
* framing rectangle such that 45 degrees always falls on the line from
* the center of the ellipse to the upper right corner of the framing
* rectangle.
This can only be true if 0 degrees are at 12 pm and degrees measured clockwise or 3 pm and degrees measured counterclockwise.
Second public void setAngles() in the same package measure degrees counterclockwise:
* The arc will always be non-empty and extend counterclockwise
* from the first point around to the second point.
following that it would make sense to follow the same pattern in all functions of that class.
If you need to be sure: Ask the author of that class:
* #author Jim Graham
I actually manage to determine my Arcs direction. I just splitted every arc that is larger than 180degrees to 2 smaller arcs and I use the following code
Point startPoint = arc.getBorderPoint(EBorderPoint.StartPoint);
Point endPoint = arc.getBorderPoint(EBorderPoint.EndPoint);
Point centerPoint = arc.getBorderPoint(EBorderPoint.CenterPoint);
final double result = (endPoint.getX() - startPoint.getX()) * (centerPoint.getY() - startPoint.getY()) - (endPoint.getY() - startPoint.getY()) * (centerPoint.getX() - startPoint.getX());
boolean isClockWise = result > 0 ? false : true;
if (result == 0)
{
// Since I splitted the large arcs to 2 smaller arcs
// the code will never go to this if statement
}
Related
In my 3D world implementation I use Direction-Vectors (unit vector) to decide the orientation of my 3D-objects.
Each 3D-object has its own Direction-Vector which by default has the orientation V3(1, 0, 0) with Origin at V3(0,0,0).
This is how I apply the directional Rotation-Matrix "D" (the matrix "A" is used to rotate 3D-objects around their Direction-Vector as an axis, this seems to work fine):
Model3D model = actor.model;
// Loops through all the edges in the model
for (int i = 0; i < model.edges.length; i++) {
M3 D = directionMatrix(actor);
M3 R = rotationMatrix(actor);
// Draws a line based on each edge in the model.
// Each line consists of two points a and b.
// The matrix R rotates the points around a given axis.
// The D matrix rotates the points towards a given axis - not around it.
S.drawLine(g,
D.mul(R.mul(model.points[model.edges[i].a])).scale(actor.scale),
D.mul(R.mul(model.points[model.edges[i].b])).scale(actor.scale)
);
}
This is how I calculate my current directional Rotation-Matrix "D":
public M3 directionalRotationMatrix(c_Actor3D actor) {
double x = Math.atan2(actor.direction.z, actor.direction.y);
double y = Math.atan2(actor.direction.x, actor.direction.z);
double z = Math.atan2(actor.direction.y, actor.direction.x);
double sin_x = Math.sin(x), sin_y = Math.sin(y), sin_z = Math.sin(z);
double cos_x = Math.cos(x), cos_y = Math.cos(y), cos_z = Math.cos(z);
return new M3(
cos_x * cos_y, (cos_x * sin_y * sin_z) - (sin_x * cos_z),
(cos_x * sin_y * cos_z) + (sin_x * sin_z), sin_x * cos_y, (sin_x * sin_y * sin_z) + (cos_x * cos_z),
(sin_x * sin_y * cos_z) - (cos_x * sin_z), -sin_y, cos_y * sin_z, cos_y * cos_z);
}
My problem is to create the correct directional Rotation-Matrix that rotates the 3D-objects in the direction of their respective Direction-Vectors.
I'm not sure at all what I do wrong... My idea is to first rotate the cube towards a direction, then rotate the cube around the axis of the direction. After all that comes position transformation etc.
Thank you for your help guys!
Sounds like you are trying to move a 3D object in the direction of it's forward facing vector. To do this you will need the position of the object (x,y,z) and 3 vectors (forward, up, and right). You can rotate the 3 vectors using pitch yaw and roll based vector math(see below link). For the forward movement you then add the position of the object plus the speed multiplied by the forward vector, ie: position += speed * forward
Use the following complete example code posted here to figure out how to implemented your own version. http://cs.lmu.edu/~ray/notes/flightsimulator/
I'm trying to draw a recursive tree, but I'm already stuck at the beginning. I've been trying to figure this out, for a while now, and I just can't seem to get it right.
I am using the StdDraw library. Here's what I want to do:
I've already drawn the trunk (black line). But I need to draw the red line too.
In the main function I've set the canvas size to 500x500px and I've set the x and y limit from 0-500.
StdDraw.setCanvasSize(500, 500);
StdDraw.setScale(0, 500);
The tree parameters that I receive are the tree length (d) and the angle (sine). There are also some others (needed for recursion, but not relevant for this simple problem)
I've drawn the trunk using the following code:
StdDraw.line(250, 150, 250, 150+d);
If you're not familiar with StdDraw it's: StdDraw.line(x0, y0, x1, y1)
Now for the red line I've been struggling with some basic trigonometry, but I don't know where I'm wrong. Here's the code:
//The length of the red line is 3/4 the length of the trunk(given in instructions)
double hypotenuse = (3/4)*d;
//We get the opposite by multiplying the sine * hypotenuse, correct?
double opposite = Math.sin(alpha) * hypotenuse;
//Pythagorean Theorem to get the adjacent
double adjacent = Math.sqrt(Math.pow(hypotenuse, 2)-Math.pow(opposite, 2));
//We draw the line from the last x position minus adjacent to move to the left
//and from last y position upwards by 150+d(previous position)+opposite
StdDraw.line(250,150+d,250-adjacent,150+d+opposite);
I create a new Tree object in main with d=110, alpha=40 to test it.
If I remove the trunk and only try to draw the red line (using StdDraw.line(250,150+d,250-adjacent,150+d+opposite)). I only get a black dot, like this:
All your sides are getting set to zero, because here:
double hypotenuse = (3/4)*d;
(3/4) equals 0. Change to:
double hypotenuse = (3/4.0)*d;
or:
double hypotenuse = 0.75 * d;
I'm trying to write a java mobile application (J2ME) and I got stuck with a problem: in my project there are moving circles called shots, and non moving circles called orbs. When a shot hits an orb, it should bounce off by classical physical laws. However I couldn't find any algorithm of this sort.
The movement of a shot is described by velocity on axis x and y (pixels/update). all the information about the circles is known: their location, radius and the speed (on axis x and y) of the shot.
Note: the orb does not start moving after the collision, it stays at its place. The collision is an elastic collision between the two while the orb remains static
here is the collision solution method in class Shot:
public void collision(Orb o)
{
//the orb's center point
Point oc=new Point(o.getTopLeft().x+o.getWidth()/2,o.getTopLeft().y+o.getWidth()/2);
//the shot's center point
Point sc=new Point(topLeft.x+width/2,topLeft.y+width/2);
//variables vx and vy are the shot's velocity on axis x and y
if(oc.x==sc.x)
{
vy=-vy;
return ;
}
if(oc.y==sc.y)
{
vx=-vx;
return ;
}
// o.getWidth() returns the orb's width, width is the shot's width
double angle=0; //here should be some sort of calculation of the shot's angle
setAngle(angle);
}
public void setAngle(double angle)
{
double v=Math.sqrt(vx*vx+vy*vy);
vx=Math.cos(Math.toRadians(angle))*v;
vy=-Math.sin(Math.toRadians(angle))*v;
}
thanks in advance for all helpers
At the point of collision, momentum, angular momentum and energy are preserved. Set m1, m2 the masses of the disks, p1=(p1x,p1y), p2=(p2x,p2y) the positions of the centers of the disks at collition time, u1, u2 the velocities before and v1,v2 the velocities after collision. Then the conservation laws demand that
0 = m1*(u1-v1)+m2*(u2-v2)
0 = m1*cross(p1,u1-v1)+m2*cross(p2,u2-v2)
0 = m1*dot(u1-v1,u1+v1)+m2*dot(u2-v2,u2+v2)
Eliminate u2-v2 using the first equation
0 = m1*cross(p1-p2,u1-v1)
0 = m1*dot(u1-v1,u1+v1-u2-v2)
The first tells us that (u1-v1) and thus (u2-v2) is a multiple of (p1-p2), the impulse exchange is in the normal or radial direction, no tangential interaction. Conservation of impulse and energy now leads to a interaction constant a so that
u1-v1 = m2*a*(p1-p2)
u2-v2 = m1*a*(p2-p1)
0 = dot(m2*a*(p1-p2), 2*u1-m2*a*(p1-p2)-2*u2+m1*a*(p2-p1))
resulting in a condition for the non-zero interaction term a
2 * dot(p1-p2, u1-u2) = (m1+m2) * dot(p1-p2,p1-p2) * a
which can now be solved using the fraction
b = dot(p1-p2, u1-u2) / dot(p1-p2, p1-p2)
as
a = 2/(m1+m2) * b
v1 = u1 - 2 * m2/(m1+m2) * b * (p1-p2)
v2 = u2 - 2 * m1/(m1+m2) * b * (p2-p1)
To get the second disk stationary, set u2=0 and its mass m2 to be very large or infinite, then the second formula says v2=u2=0 and the first
v1 = u1 - 2 * dot(p1-p2, u1) / dot(p1-p2, p1-p2) * (p1-p2)
that is, v1 is the reflection of u1 on the plane that has (p1-p2) as its normal. Note that the point of collision is characterized by norm(p1-p2)=r1+r2 or
dot(p1-p2, p1-p2) = (r1+r2)^2
so that the denominator is already known from collision detection.
Per your code, oc{x,y} contains the center of the fixed disk or orb, sc{x,y} the center and {vx,vy} the velocity of the moving disk.
Compute dc={sc.x-oc.x, sc.y-oc.y} and dist2=dc.x*dc.x+dc.y*dc.y
1.a Check that sqrt(dist2) is sufficiently close to sc.radius+oc.radius. Common lore says that comparing the squares is more efficient. Fine-tune the location of the intersection point if dist2 is too small.
Compute dot = dc.x*vx+dcy*vy and dot = dot/dist2
Update vx = vx - 2*dot*dc.x, vy = vy - 2*dot*dc.y
The special cases are contained inside these formulas, e.g., for dc.y==0, that is, oc.y==sc.y one gets dot=vx/dc.x, so that vx=-vx, vy=vy results.
Considering that one circle is static I would say that including energy and momentum is redundant. The system's momentum will be preserved as long as the moving ball contains the same speed before and after the collision. Thus the only thing you need to change is the angle at which the ball is moving.
I know there's a lot of opinions against using trigonometric functions if you can solve the issue using vector math. However, once you know the contact point between the two circles, the trigonometric way of dealing with the issue is this simple:
dx = -dx; //Reverse direction
dy = -dy;
double speed = Math.sqrt(dx*dx + dy*dy);
double currentAngle = Math.atan2(dy, dx);
//The angle between the ball's center and the orbs center
double reflectionAngle = Math.atan2(oc.y - sc.y, oc.x - sc.x);
//The outcome of this "static" collision is just a angular reflection with preserved speed
double newAngle = 2*reflectionAngle - currentAngle;
dx = speed * Math.cos(newAngle); //Setting new velocity
dy = speed * Math.sin(newAngle);
Using the orb's coordinates in the calculation is an approximation that gains accuracy the closer your shot is to the actual impact point in time when this method is executed. Thus you might want to do one of the following:
Replace the orb's coordinates by the actual point of impact (a tad more accurate)
Replace the shot's coordinates by the position it has exactly when the impact will/did occur. This is the best scenario in respect to the outcome angle, however may lead to slight positional displacements compared to a fully realistic scenario.
I need to draw a fill square, that square must be painted with lines from center.
we can't use java shapes
We have a center point and the pen must draw a line from center to the square edge in each angle.
The problem here is the Maths, what can i use to calculate the distance needed to paint. Because if i use always same distance it will draw a circle.
Thanks
When drawing the square you can think of the length you need to draw at any angle as being the length of the hypoteneuse of a right-angled triangle. You can solve this with trigonometric ratios easily enough. The tricky part is that the base of the triangle moves around.
Taking the example of a line at 45 degrees shown in the left half of the diagram below:
You need to work out the length of the red line (hyp). You can use
trigonometry to work out the length of hyp based on its angle to
adj and the length of the
adj. The length of the adj side is half the height of the
square.
The formula to use is:
cos(angle) = adj/hyp
rearranged:
hyp = adj/cos(angle)
The code would look something like this:
public static double calculateLengthToPaint(double angle, double heightOfSquare){
return (heightOfSquare/2.0) / Math.cos(Math.toRadians(angle));
}
Unfortunately that's not all though. This works perfectly for the first 45 degrees, but when angle > 45 degrees then the adjacent side of the triangle changes place (as can be seen in the right half of the diagram below). It keeps flipping over every 45 degrees.
To handle this flipping you need to use the angle that's passed into the method (the angle around the square from the 12 o'clock position) to work out the angle of the triangle we are imagining. I've modified the method above to add logic to work out the corrected angle.
public static double calculateLengthToPaint(double angle, double heightOfSquare){
double flippy = angle % 90;
if (flippy > 45.0){
flippy -= 90;
flippy = Math.abs(flippy);
}
return (heightOfSquare/2.0) / Math.cos(Math.toRadians(flippy));
}
Notes: This code takes it's angle in degrees and only works for positive angles. Also, if you want to have the lines meet the square at even increments around the perimiter then you need to come up with a solution that uses the pythagorean theorem to work out the length of the hypoteneuse and then use trigonometry to work out the angle to draw it at.
Hope that helps.
Just use java.awt.Graphics.fillRect(int, int, int, int).
I would say something like this
for(int i = sideLength * -1; i < sideLength; i++) {
for(int j = sideLength * -1; j < sideLength; j++) {
graphics.drawLine(centerX + i, centerY + j);
}
}
That way, it will paint a line to every point in your square that you're trying to make. I'm not sure if this is what you wanted, but it will work.
Im trying to get into some basic JavaFX game development and I'm getting confused with some circle maths.
I have a circle at (x:250, y:250) with a radius of 50.
My objective is to make a smaller circle to be placed on the circumference of the above circle based on the position of the mouse.
Where Im getting confused is with the coordinate space and the Trig behind it all.
My issues come from the fact that the X/Y space on the screen is not centered at 0,0. But the top left of the screen is 0,0 and the bottom right is 500,500.
My calculations are:
var xpos:Number = mouseEvent.getX();
var ypos:Number = mouseEvent.getY();
var center_pos_x:Number = 250;
var center_pos_y:Number = 250;
var length = ypos - center_pos_y;
var height = xpos - center_pos_x;
var angle_deg = Math.toDegrees(Math.atan(height / length));
var angle_rad = Math.toRadians(angle_deg);
var radius = 50;
moving_circ_xpos = (radius * Math.cos(angle_rad)) + center_pos_x;
moving_circ_ypos = (radius * Math.sin(angle_rad)) + center_pos_y;
I made the app print out the angle (angle_deg) that I have calculated when I move the mouse and my output is below:
When the mouse is (in degrees moving anti-clockwise):
directly above the circle and horizontally inline with the center, the angle is -0
to the left and vertically centered, the angle is -90
directly below the circle and horizontally inline with the center, the angle is 0
to the right and vertically centered, the angle is 90
So, what can I do to make it 0, 90, 180, 270??
I know it must be something small, but I just cant think of what it is...
Thanks for any help
(and no, this is not an assignment)
atan(height/length) is not enough to get the angle. You need to compensate for each quadrant, as well as the possibility of "division-by-zero". Most programming language libraries supply a method called atan2 which take two arguments; y and x. This method does this calculation for you.
More information on Wikipedia: atan2
You can get away without calculating the angle. Instead, use the center of your circle (250,250) and the position of the mouse (xpos,ypos) to define a line. The line intersects your circle when its length is equal to the radius of your circle:
// Calculate distance from center to mouse.
xlen = xpos - x_center_pos;
ylen = ypos - y_center_pos;
line_len = sqrt(xlen*xlen + ylen*ylen); // Pythagoras: x^2 + y^2 = distance^2
// Find the intersection with the circle.
moving_circ_xpos = x_center_pos + (xlen * radius / line_len);
moving_circ_ypos = y_center_pos + (ylen * radius / line_len);
Just verify that the mouse isn't at the center of your circle, or the line_len will be zero and the mouse will be sucked into a black hole.
There's a great book called "Graphics Gems" that can help with this kind of problem. It is a cookbook of algorithms and source code (in C I think), and allows you to quickly solve a problem using tested functionality. I would totally recommend getting your hands on it - it saved me big time when I quickly needed to add code to do fairly complex operations with normals to surfaces, and collision detections.