Safe distribution of Spring based application - java

Im thinking about creating spring boot application that i would like to comercialize some day.
I planned to build a Jar that i would allow to download, and once client launched it locally and provided some license key, it becomes useable.
I have some doubts about this distribution strategy especially in the meaning of the safety of the code and licensing.
If i provided a Jar, anybody may try reverse engeenering on it - so its easy to be hacked or cracked.
Turning it into executable is more user friendly, also possibly may hide the code better, but still i think its relatively easy to be reverse engineered.
It made me think about obfuscation. If i completely messed up the app before prod build, it would be a way harder to understand or change the code. It may seem okay in the matter of "copying and modifying" the app, but still i think it would be easy to locate licensing limitations in the source files. For example: limit for 5 users can be easilly located in sources by value "5" or the message the user sees, and even if code looks awfull, this lines can be removed, project compiled again, breaking the limitation and wasting my entire effort.
It will be small application, I want to provide clients the instalator, and let them set it up personally. I dont want to be responsible for settting it up in the cloud for the client (without publishing instalator or Jar), as clients may not be interested in cloud based access.
Could You advise me some wise solution for this situaltion?
Thanks in Advance ! :)

The short answer is that there is no way to prevent reverse engineering if someone can run the software on hardware that they control.
The only way to 100% prevent reverse engineering is to ONLY run the software on a platform that you control ... and that can prevent them from getting a copy of the executables.
There are a couple of ways that can make reverse engineering harder:
Use an obfuscator on your JAR files. It will make it harder for someone to read the decompiled code. There are 3rd-party obfuscator products you could use.
Use jpackage (or a 3rd-party tool) to create a native executable for your application.
But beware that modifying an application to disable a license check is much simpler than full reverse engineering. A determined software engineer (or hacker) will be able to do that, given enough time and incentive.
Look at this problem another way:
There are many people and companies making money out of writing and supporting software without resorting to license keys, obfuscation and so on.
Conversely, there are probably millions of aspiring software entrepreneurs who never even turn their clever idea into a worthwhile (saleable) product.
Conversely, there are millions of apps (e.g. in Android app stores) that are simply not worth the effort protecting from IP theft.
Don't get lost in the problem protecting your IP before you have actually created it. And don't overrate its (hypothetical) value.

Related

Java safest way to check client jar server side

I am creating a client-server application in which I have to make sure that the client has the exact same file I give them.
I was thinking about sending a hash or jar size to the server, but that can easily be bypassed with reverse engineering the code.
Is there a way to ensure that they have the same file yet they can't hack it?
Short answer: No.
Longer answer: Most likely no, at least not without e.g. having access to their hardware and locking it down some way, like with modern gaming consoles. Take PC software, especially games, as an example. Pretty much every game ships with copy protection, yet they all can be found for download free of charge in certain areas of the internet, with copy protection removed. Yes, most of them can't be used for online play anymore, but that's mostly because you need an account that you'd only get when buying the game. Then there are modifications to online games that will give you an advantage over other players, even though there are counter measurements by the game companies, like additional software that is running on the player's computer, scanning for suspicious activity. It's a race between the "hackers" and game vendors, but neither side can win. And we're talking about software made my multi-million dollar companies that should have the resources to make their software hacking proof, if it were possible.
For the case of Java applications, it's comparably easy to modify them, even if you're using obfuscation techniques or signing, as Java byte code simply is much easier to analyze, understand and turn back into Java source files than machine code generated by C/C++ compilers.

Encrypting a JAR where source protection is a priority

I have a dilemma. Basically, I've given a group of people I'm friends with a program that utilizes source code that I don't want anyone outside the group knowing of. We all know Java is absolutely horrible at doing any level of obfuscation, as most obfuscation tools only rename objects, scramble code, etc. I've used such tools, but to be honest I'd like to go as far as possible with the security of the program.
Since the application requires a username, password, and other identifiers to log in to the server it uses, I was beginning to wonder if a unique AES key could be generated for the user to secure the JAR.
Basically, upon running a launcher of sorts to log in, the launcher app may request an AES key from the server, and use it to decrypt a secured JAR it's downloaded from the server already. The key would be completely unique to each user, which would mean the server would have to encrypt the JAR differently for each user.
Now, I know how crazy this sounds. But since this is such a low-level thing, I need to know if there is a way you can somehow both decrypt and run a JAR from any type of stream. Or, if that isn't possible, would it be reasonable to decrypt the file, run it, then re-encrypt it?
Of course you can decrypt and run Java bytecode on the fly - bytecode manipulation libraries such as ASM even go as far as creating new classes dynamically.
But, quite honestly, if something actually runs on a computer then its code is definitely going to be available to anyone with the knowledge. Java, especially, is even more convenient since it allows far better access to the bytecode of a class that is loaded by the JVM than any natively compiled language.
You could theoretically take your obfuscation a bit further by using JNA/JNI and a native shared library or two. But, in the hands of a determined attacker no measure will protect your code completely - it would just take more time for them to figure out how your algorithms work. And if you are concerned about piracy, well, we are in the era of virtualization; you can actually clone whole computer systems from top to bottom with a couple of key presses - you figure out the rest...
The only potentially viable solution would be to offer your software as a service, with all the issues entailed by that approach - and you would still not have absolute security.
If you are that concerned about protecting your intellectual property, then get a lawyer and consider publishing your algorithms in some form - obscurity will only go so far. It will not stop someone from doing black-box analysis on your system and quite often just knowing that something is possible is enough.
Please stop trying to find technical solutions to a problem that is so obviously not of a technical nature...
My answer would be to keep the server information outside of the jar entirely. Use a parameter or configuration file to point to where to get that information. Then the jar file has no secrets in it. Only the server where the code runs has that information. You can then do things like make the configuration file readable only by the user that can run the code in the jar.

Decompiler Bytecode and Obfuscators

Can we completely reverse-engineer the source code from java bytecode ? Why this feature is allowed in Java and How successful are java decompilers against obfuscators.?
I know this question is old but I kept looking for a reliable answer until I found nothing.
So in this post I summarize some of my effort to obfuscate a J2EE JAR.
It seems , that by year 2014 (time of writing) there are not many options out there.
If you read this review later then things may have changed or fixed.
When I think why , I start to sense that the whole obfuscation effort gives a false sense of security. Don't get me wrong. It does add a level of security, but not as much as I would hope.
I will try to give a preview of what I found to explain myself. My recommendation are personal , others may disagree with it.
So to begin with: obfuscation in Java is the process of taking bytecode and making it less readable (using a decompiler of course) while maintaining its original functionality.What can we do, Java ,working as an interperter, must keep its bytecode exposed. You run the obfuscator as a measure of security in case the class file falls into the wrong hands. The result of the obfuscation is a reverse-mapping files and a JAR with the obfuscated classes. The reverse mapping file is used of-course to perform stack trace reading (a.k.a re-trace) or to revert the bytecode to its original shape. The runtime performance hit of an obfuscated class should not pass the 10% (but this really depends on what you do in your code).
But there is a big “but” . Obfuscation will scramble your code but it won’t make it hacker-proof. Bare in mind you only buy time and a determined hacker will find a way to reverse engineer your bytecode into its pure algorithm.
IMHO: the best way to hide a sensitive piece of code is to drown it in some huge pile of meaningless code.
Some of the hackers will try to modify your bytecode (by code injection) to help them achieve their goals. Some obfuscators offer additional level of JAR hardening , making it harder to modify.
De-obfuscators and de-compilers: my favourite Java decompiler is JD-GUI . However, when it comes to de-obfuscators I found the market pretty empty. Most of the tools ask you for a hint (what obfuscation tool was used to encrypt the source JAR) , yet none of them really deliver results (some of them even crash when trying to de-cipher the JAR). They are open source projects with low maintenance. I couldn’t even find a paid application to do a decent de-obfuscation. so enlighten me if you know something.
Free solutions
There are open source , free obfuscators which usually simply rename the classes/methods names, making it one letter method (i.e. from printUsage(String params) to a(String p) ).
They might ,as hinted here , even strip debugging information to make it a bit more difficult. (debugging information is kept at the end of every Java method bytecode and contains: line numbers, variables names ,etc.).
Its a nice effort , but an experience Java developer with a debugger can very easily deduce the purpose of each parameter while doing few live runs.
One of the nice open source obfuscators is ProGuard but there are several more tools.
Nevertheless , if you truly security fanatic you will probably want something stronger. Stronger demands more features (and more money) which leads us to the next bullet:
Paid solutions
While free products may only change classes method names , paid product will usually offer more features:
code/flow obfuscation: this will change the method code and inject empty loops/dead code/confusing switch tables and alike. Some of them may even scramble the exception table content. the obfuscation strength usually determine the output size.
Note: regarding code obfuscation: I deliberately avoided the details in my review. Some of the bytecode I saw and analyzed expose their obfuscation methods, and I wish to protect their IP. I do have an opinion about who uses better algorithms. contact me if you wish to know.
classes/method renaming : well this is the obvious , we discussed it in the free obfuscation. Some of the product will rename the class name and then recursively search for reflection usage of that class and fix those too. Paid products may even rename Spring /Wink configuration files for the same purpose (renaming in reflection).
String encryption: for every string “like this” in the code, it will encrypt it to some level and keep the key somewhere (in the class constant table/static blocks/a new method or any other mean).
debug information : stripping parts or scrambling.many of them will remove the line numbers info.
class
hardening: all kinds of methods like injecting some signing scheme into the beginning of the class/method, making sure an outsider won’t be able to easily modify the JAR and run it. Less important for Android or applets as most of them are digitally signed anyhow. some will combine hardening with water-marking to track pirated copies. But we all know anti-pirating methods by software are doomed to be hacked. Game industry suffered from it for decades until network based subscriptions arrived.
Since most products here deal with Java , some of them provides Android integration. It means it will not only obfuscate the Java (dalvik) code , but also manipulates the Android's manifest file and resources. Some offer anti debugging: remove the debug flag in android apps.
Nice GUI app to configure the various options and maybe do a re-trance on a given log file. The UI is usually used to generate a config file. with such file you can later re-play the obfuscation many times, even from command line.
Incremental build support - this is useful for large groups who release product updates/fixes frequently. You can tell the obfuscator to preserve old “obfuscation” result and randomly obfuscate only “new” code flows. this way you can be sure minimal impact on your methods signature. Without this flag , each obfuscation cycle on a JAR would yield a different output as most good tools use some level of randomness in their algorithms.
CLI and distributed builds. When you work alone then running an obfuscator is not a big issue. you need to configure the obfuscator to your relevant options and run it.However, in enterprise , when integrating obfuscator into the the build script things are a bit different. There is another level of complexity: build engine tasks (like ant/maven) and license management. The good news that all obfuscator I tested have command line API. In distributed build environment there are cluster/pool of build machines to support concurrent demand of builds. The cluster is dynamic and virtual, machines are going up or down, depending on various conditions. Some obfuscation products are based on cpuID license file or hostname. This can create quite a challenge for the build teams to integrate. Some prefer a local floating license server. Some may require public license server (but then: not all build farms have access to the public internet). Some offer multi-site license (which in my opinion is the best).
Some offer code optimizations - algebric equivalence and dropping of dead code. Its nice, but I believe that today's JDK do good job in optimizing bytecode. Its true that dead code makes you downloadable bigger, but with today's bandwidth its less than a problem. I also want to believe that in software today 20:80 thumb rule still applies. in any application 20% is probably a dead code anyway.
So who are the players I tried ?
KlassMaster by Zelix.com - one of the oldest in the industry. Yet they deliver a solid product with 3-4 releases per year. This been going for decades (since 1997). Zelix provides good email support and answered all my emails in a timely manner. They have a nice GUI client to either obfuscate a JAR or create a config file for future obfuscation. It simple and slick. nothing special here. They provided simple to read on-line documentation for all their flags. they support both “exclude” and “include” regular expressions for what the engine should obfuscate. The thing I liked about their process most is that it also adds “noise” to the exception table. It makes it a bit more confusing regarding the method exception handling. Their flow obfuscator strength is quite good and can be configured between 3 possible levels (light,medium and aggressive). Another feature I liked is the fine tuning they provide for debug info stripping (online line numbers, or online local variables or both). Klass Master doesn’t provide any
dedicated Android flags or anti-tamper methods. Their licensing model is quite simple: a text file to be placed near the KlassMaster main JAR. They also support incremental obfuscation.
JFuscator from secureTeam.net : While secureTeam also has a .Net tool , I focus on their Java tool capabilities. Their (Swing based) GUI tool seems nice but it crash when trying the simplest obfuscation task. the error was always the same: Error reading '/opt/sun-jdk1.7.0_55/jre\lib\rt.jar'. Reason: ''/opt/sun-jdk1.7.0_55/jre\lib\rt.jar': no such file or directory' . Now of course I have my Java installed in /opt/sun-jdk1.7.0_55/jre. You can image that they simply didn’t expect linux back slash structure. I contacted secureTeam.net support by email with the minor “path” problem. They asked if I am a linux user and after I replied I am , they never answered my email. I also tried their web site on-line chat : no response. So there I stopped testing. Without further results, I couldn’t examine the obfuscated bytecode quality. From their web site it seems they have anti-tamper method , String manipulation, method renaming and few other features.
GuartIt4J (by Arxan.com) : Arxan is fairly solid player in the mobile environment and as such they offer Android obfuscator which of course works well for Java. They have one of the most flexible engines.They provide code obfuscation,string encryption and alike You can define the complexity of code obfuscation. it is simply an integer. the higher - the longer your method turns out. ofcourse, you must be carefull not to exceed the JVM 64KB limit per class… As I said before one of the best strategies to hide a sensitive code is not to encrypt it , but to inject it into huge pile of garbage. This is exactly what GuardIt does. It can also explode in the same way the methods exception table. I managed to create a method with 100 exceptions in its exception table (pre-obfuscator it was 5). what they miss: their re-trace program is not part of the supplied main JAR. Nevertheless, they were kind enough to send me a sample Java program that performs re-trace given the reverse mapping file and the log. They don’t support incremental obfuscation and no flexibility regarding debug information. Debug information stripping is either all or nothing. watching the output JAR you will tons of conditions and jumps that were injected. Bare in mind , exploding the class size has its performance hit. In some methods I measured almost 50% performance hit when applying long obfuscation (no I/O in those methods). so extrapolating the code comes with a price.(from a 400 opcodes - I went up to 2200 opcodes after obfuscation). JD-GUI , my de-compiler failed to open such classes and crashed (IndexOutOfBoundException). They also supply complete class encryption . Meaning the class is encrypted with some symetrical key which demands a special (or custom written) class loader to open it in memory. This is an anti-tamper mechanism as well as hiding code. Just remember that a JVM can’t run that class without the class loader help. Its a nice feature, but the secret key and the bootstrap loader JAR are probably there. If he got the encrypted JAR the hacker will eventually get his hands and decrypt the classes. Yet this another level of obstacle the common hacker will need to pass. What I didn’t like here is the license file policy: is bounded to CPUid or need to install a floating license server.
SecureIt (by Allatori.com) : SecureIt offers all the general code obfuscation, string encryption ,renaming and such. On top of the standard obfuscation methods they also offer some kind of water-marking which is an anti-tamper/pirating method. They support Android and JavaME (who uses ME these days?!). They support incremental obfuscation. The one thing to note about configuring SecureIt: it is all command line. No GUI tool this time. Personally , I don’t mind command line tools as long as they come with good documentation. Luckily they have a very good documentation and a rich API with many flags to tune if you wish. you can re-trace with they tool (also a command line ) . They can’t obfuscate the exception table. I didn’t check their licensing mechanism.
DashO (by Preemptive.com) : DashO obfuscator will be remembered probably as the best UI tool you can get (to create your configuration). Like SecureIt they lake the exception table obfuscation but they have all the rest of the required features (as well as CLI, Spring framework and gradle/ant integration, and even an eclipse plugin) . Well, they do document a try-catch obfuscator (which is same as exception table obfuscator) , but it is only a recommendation to the engine. When I tried it , it had nil effect on the exception table. As I said , the GUI tool is superb and has a re-trace embedded into it. they also offer some kind of application signing and water-marking as an anti-tamper/pirating mechanism. DashO provides superb Android integration and also combine in their product a door for analytics uploads. You can actually track your application. Injecting crash log uploaders and reporting code to your JAR. Nevertheless that’s not the scope of obfuscation - that’s a whole different code injection product. They have a very good support. both online and by phone. Their licensing scheme is based on monthly subscription or one time purchase payment. A bit different than others. They are using a floating license server to support large environments.
I hope this helps a bit..
Can we completely reverse-engineer the source code from java bytecode ?
Not completely, because some aspects of source code, such as whitespace, local variable names, and comments, are not preserved in bytecode. Otherwise, yes -- while you can't get the exact same source code out, you can almost always get something that can at least be compiled back to the same bytecode.
Why this feature is allowed in Java
It's not so much "allowed" as it is "not prevented". And it's not prevented because doing so is impossible -- the code must be runnable to be useful; if the code is runnable, then it is analyzable; if it is analyzable, then with sufficient analysis it can be converted back to source.
How successful are java decompilers against obfuscators?
Not very. Most obfuscators I've seen (esp. ProGuard) are primarily effective in removing meaningful function and class names; obfuscating the logic itself is not typically attempted.
you can get source code from binary these days. Although the source code obtained by Java's bytecode is more readable, obfuscating will make it slightly unreadable. Its not that only Java can be reverse engineered to code. Even C/C++ these days (with Hexrays plugin for IDA Pro) can be decompiled to source. Obfuscaters will make it hard to read but not impossible. There is nothing that can save your program from an intelligent and capable reverse engineer. :).
Good luck.
Can we completely reverse-engineer the source code from java bytecode
?
The java class file is based on a spec so anyone can read into it. A tool like JD-GUI will tear into your source code easily. It is not a 'feature' per se. While 100% reverse-engineering is not possible, most of your code can be reverse engineered.
How successful are java decompilers against obfuscators?
Depends. The point of the obfuscator is to remove any meaningful names and try to introduce confusion in the code without impacting performance. Most developers are great at obfuscating code themselves :) Pro-guard is pretty good at obfuscation.

Jar Store - prevent from copying

We are going to create Jar Store the way like App Store works, but for Java Developers.
Everyone will able to submit and sell custom .jar library which solves some little problem, but solves it very good to save other developer's work time.
The only undecided question is how to prevent .jar copying or publishing bought .jar to the Net.
EDIT: This can probably achieved by using strong copyright policy? Suggest please!
EDIT 2: I imagine Steve Jobs asking:
How we can prevent iPhone Apps from copying?
— You can't it's just a files on the iPhone which can be easily copied by anyone.
Whoa! Did we just go through a 12-year time warp?
This is exactly what JavaBeans was intended to do, back in 1996-7.
It was intended to solve a technical challenge of pluggable, re-usable code, which would of course engender a vibrant and lucrative third-party marketplace of drop-in components. People would make,sell, buy, and consume these re-usable pieces of code.
Then, that fantasy was replicated when server-side Java grew in popularity. The idea behind numerous companies was that they'd act as brokers and commercial exchanges for re-usable pieces of code. The names of these companies escape me now. There were many.
Most of them faded, and some of them evolved their business model away from acting as an commercial exchange, and towards selling software directly. In particular, they moved toward selling the thing they had hoped to run their business on (their "ERP"), as a piece of software that enterprises could use internally - a component repository supporting re-use within an enterprise.
Darn! The names of the big companies that made this transition escape me now.
An interesting question is, why did App Store succeed (wildly!) while the vision for JavaBeans stores, or stores for enterprise Javva components, never caught on.
I have my theories but... not least among the reasons is the phenomenon of "open source" - where you can get pretty darn good re-usable components for free. Before you go tilting at this windmill, I suggest you study some industry history!
For this to work you need to have content. Really good content. With excellent documentation.
I would imagine this is the first obstacle you need to tackle.
With this business idea copyright protection in both technical and legal way must be you core competences since this is the main part for your added value.
If you prevent something from copying, how are people supposed to distribute their software? I'm not writing enterprise solutions to run only on my notebook.
you can't don't even spend any more time on trying.
rephrase your question to
I want to restrict someone copying a
plain text file.
Same problem with a .jar file. You can put all the legal restrictions you want, but it won't stop anyone from making a copy of your file if they are able to use it. Go ask the RIAA how effective they are at stopping the copying of .mp3 files.
I would also offer what do you think you can offer than the Open Source community doesn't already offer in the Java world? The Java ecosystem is very mature and very full featured from a library stand point. I can't imagine that anything you offer, that might be the least bit innovative, some open source project won't spring up and create a free open source version of.

what are java executable format both in unix and windows

I know about class/jar executable format. But jar/class can not ensure source security, because java source code(.java) can retrieve from it. I am looking for such a format where source are secure/un-retrievable.
You can't make code secure from reverse engineering. If one has permission to execute it, then it can be examined where it can be disassembled, reverse compiled, or matched against known assemblies.
If your computer can run it, then you can reverse-engineer it. There is no way to avoid this. The best you can hope for is to stop casual cracking by (for example) passing your source through an obfuscater before compiling.
IBM did this with their type-4 JDBC drivers and it makes it hellishly difficult to understand what's going on (right up until the point you write a program that can de-obfuscate it although you still need to add information back in like function and variable names, no easy task).
Security through obscurity never works against a determined foe. This is the same as with physical security. You can put as much security in your house as you like, and that will prevent casual break-ins, but it will not stop a determined burglar.
I would rather concentrate on doing what I do best, providing top-notch quality software. Most attempts to secure code (beyond simple obfuscation) almost always disadvantages your real customers more than your attackers. Is your code really so precious that you want to risk that?

Categories