Java : Binary tree Root to Leaf path with Minimum sum - java

I'm trying to find Minimum path sum from root to leaf also need to compute the minimum path. My solution works if the solution is in left sub tree, however if the result is in right subtree root node is added twice in the result path, can someone please take a look at my solution and help me fixing this bug, also suggest better runtime solution if there is any
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
import static java.lang.System.out;
public class MinPathSumFromRootToLeaf {
public static void main(String[] args) {
TreeNode root = new TreeNode(-1);
TreeNode left1 = new TreeNode(2);
TreeNode right1 = new TreeNode(1);//3
TreeNode left2 = new TreeNode(4);
root.left = left1;
root.right = right1;
left1.left = left2;
TreeNode left3 = new TreeNode(0);//5
TreeNode right3 = new TreeNode(1);//6
right1.left = left3;
right1.right = right3;
left3.left = new TreeNode(0);//7
right3.left = new TreeNode(8);
right3.right = new TreeNode(1);//9
printLevelOrder(root);
shortestPathFromRootToLeaf(root);
}
private static void shortestPathFromRootToLeaf(TreeNode root) {
List<Integer> result = new ArrayList<>();
int minsum[] = new int[1];
minsum[0] = Integer.MAX_VALUE;
backtrack(root, result, new ArrayList<>(), 0, minsum);
out.println(result + " minsum " + minsum[0]);
}
private static void backtrack(TreeNode node, List<Integer> result, List<Integer> currentpath, int currentSum, int[] minsum) {
if (node == null || currentSum > minsum[0]) {
return;
}
if (node.left == null && node.right == null) {
if (currentSum + node.val < minsum[0]) {
minsum[0] = currentSum + node.val;
currentpath.add(node.val);
result.clear();
result.addAll(new ArrayList<>(currentpath));
return;
}
}
if (node.left != null) {
currentpath.add(node.val);
backtrack(node.left, result, currentpath, currentSum + node.val, minsum);
currentpath.remove(currentpath.size() - 1);
}
if (node.right != null) {
currentpath.add(node.val);
backtrack(node.right, result, currentpath, currentSum + node.val, minsum);
currentpath.remove(currentpath.size() - 1);
}
}
static class TreeNode {
public int val;
public TreeNode left;
public TreeNode right;
public TreeNode() {}
public TreeNode(int val) { this.val = val; }
public TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
static class QItem {
TreeNode node;
int depth;
public QItem(TreeNode node, int depth) {
this.node = node;
this.depth = depth;
}
}
static void printLevelOrder(TreeNode root) {
LinkedList<QItem> queue = new LinkedList<>();
ArrayList<TreeNode> level = new ArrayList<>();
int depth = height(root);
queue.add(new QItem(root, depth));
for (; ; ) {
QItem curr = queue.poll();
if (curr.depth < depth) {
depth = curr.depth;
for (int i = (int) Math.pow(2, depth) - 1; i > 0; i--) {
out.print(" ");
}
for (TreeNode n : level) {
out.print(n == null ? " " : n.val);
for (int i = (int) Math.pow(2, depth + 1); i > 1; i--) {
out.print(" ");
}
}
out.println();
level.clear();
if (curr.depth <= 0) {
break;
}
}
level.add(curr.node);
if (curr.node == null) {
queue.add(new QItem(null, depth - 1));
queue.add(new QItem(null, depth - 1));
} else {
queue.add(new QItem(curr.node.left, depth - 1));
queue.add(new QItem(curr.node.right, depth - 1));
}
}
}
static int height(TreeNode root) {
return root == null ? 0 : 1 + Math.max(
height(root.left), height(root.right)
);
}
static void printTree(TreeNode root) {
Queue<TreeNode> q = new LinkedList<>();
q.offer(root);
while (!q.isEmpty()) {
int size = q.size();
for (int i = 0; i < size; i++) {
TreeNode temp = q.poll();
out.print(" " + temp.val + " ");
if (temp.left != null) q.offer(temp.left);
if (temp.right != null) q.offer(temp.right);
}
out.println();
}
}
}
I am using backtracking to visit all nodes, I think time complexity of my solution would be O(N) (since all the nodes should be visited, please correct me if am wrong)

Every call of currentpath.add should be mirrored by a call of currentpath.remove. Your code does this fine, except in the bock below:
if (node.left == null && node.right == null) {
if (currentSum + node.val < minsum[0]) {
minsum[0] = currentSum + node.val;
currentpath.add(node.val);
result.clear();
result.addAll(new ArrayList<>(currentpath));
return;
}
}
So add that call of remove just before return.

Related

how to create binary search tree 2d model from these codes?

hi im new to codings and i have to print my binary search tree in a 2d model but this codes only print the orders of number in order(left-root-right) such as when i insert 10, 9, 11, 8, it will print inorder (left root right) = 8,9,10,11. what method or codes should i add to create a 2d tree here. sorry idk how to properly put the codes here just look at it like it is only a one code only.
class binarySearchTree {
class Node {
int key;
Node left, right;
int data;
public Node(int data){
key = data;
left = right = null;
}
}
// BST root node
Node root;
// Constructor for BST =>initial empty tree
binarySearchTree(){
root = null;
}
//delete a node from BST
void deleteKey(int key) {
root = delete_Recursive(root, key);
}
//recursive delete function
Node delete_Recursive(Node root, int key) {
//tree is empty
if (root == null) return root;
//traverse the tree
if (key < root.key) //traverse left subtree
root.left = delete_Recursive(root.left, key);
else if (key > root.key) //traverse right subtree
root.right = delete_Recursive(root.right, key);
else {
// node contains only one child
if (root.left == null)
return root.right;
else if (root.right == null)
return root.left;
// node has two children;
//get inorder successor (min value in the right subtree)
root.key = minValue(root.right);
// Delete the inorder successor
root.right = delete_Recursive(root.right, root.key);
}
return root;
}
int minValue(Node root) {
//initially minval = root
int minval = root.key;
//find minval
while (root.left != null) {
minval = root.left.key;
root = root.left;
}
return minval;
}
// insert a node in BST
void insert(int key) {
root = insert_Recursive(root, key);
}
//recursive insert function
Node insert_Recursive(Node root, int key) {
//tree is empty
if (root == null) {
root = new Node(key);
return root;
}
//traverse the tree
if (key < root.key) //insert in the left subtree
root.left = insert_Recursive(root.left, key);
else if (key > root.key) //insert in the right subtree
root.right = insert_Recursive(root.right, key);
// return pointer
return root;
}
void inorder() {
inorder_Recursive(root);
}
// recursively traverse the BST
void inorder_Recursive(Node root) {
if (root != null) {
inorder_Recursive(root.left);
System.out.print(root.key + " x ");
inorder_Recursive(root.right);
}
}
//PostOrder Traversal - Left:Right:rootNode (LRn)
void postOrder(Node node) {
if (node == null)
return;
// first traverse left subtree recursively
postOrder(node.left);
// then traverse right subtree recursively
postOrder(node.right);
// now process root node
System.out.print(node.key + " ");
}
// InOrder Traversal - Left:rootNode:Right (LnR)
void inOrder(Node node) {
if (node == null)
return;
//first traverse left subtree recursively
inOrder(node.left);
//then go for root node
System.out.print(node.key + " ");
//next traverse right subtree recursively
inOrder(node.right);
}
//PreOrder Traversal - rootNode:Left:Right (nLR)
void preOrder(Node node) {
if (node == null)
return;
//first print root node first
System.out.print(node.key + " ");
// then traverse left subtree recursively
preOrder(node.left);
// next traverse right subtree recursively
preOrder(node.right);
}
// Wrappers for recursive functions
void postOrder_traversal() {
postOrder(root); }
void inOrder_traversal() {
inOrder(root); }
void preOrder_traversal() {
preOrder(root); }
}
here i found this codes in stackoverflow, i want te output like this, i can use this but i dont know how can i make this as user input for the data and make it insert the integer into a tree not this manually inserted of the integer. thankyou very much to whoever put effort to understand my question and my situation as newbie.
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class BTreePrinterTest {
private static Node<Integer> test2() {
Node<Integer> root = new Node<Integer>(2);
Node<Integer> n11 = new Node<Integer>(3);
Node<Integer> n12 = new Node<Integer>(5);
Node<Integer> n21 = new Node<Integer>(2);
Node<Integer> n22 = new Node<Integer>(6);
Node<Integer> n23 = new Node<Integer>(9);
Node<Integer> n31 = new Node<Integer>(5);
root.left = n11;
root.right = n12;
n11.left = n21;
n11.right = n22;
n12.left = n23;
n12.right = n31;
return root;
}
public static void main(String[] args) {
BTreePrinter.printNode(test2());
}
}
class Node<T extends Comparable<?>> {
Node<T> left, right;
T data;
public Node(T data) {
this.data = data;
}
}
class BTreePrinter {
public static <T extends Comparable<?>> void printNode(Node<T> root) {
int maxLevel = BTreePrinter.maxLevel(root);
printNodeInternal(Collections.singletonList(root), 1, maxLevel);
}
private static <T extends Comparable<?>> void printNodeInternal(List<Node<T>> nodes, int level, int maxLevel) {
if (nodes.isEmpty() || BTreePrinter.isAllElementsNull(nodes))
return;
int floor = maxLevel - level;
int endgeLines = (int) Math.pow(2, (Math.max(floor - 1, 0)));
int firstSpaces = (int) Math.pow(2, (floor)) - 1;
int betweenSpaces = (int) Math.pow(2, (floor + 1)) - 1;
BTreePrinter.printWhitespaces(firstSpaces);
List<Node<T>> newNodes = new ArrayList<Node<T>>();
for (Node<T> node : nodes) {
if (node != null) {
System.out.print(node.data);
newNodes.add(node.left);
newNodes.add(node.right);
} else {
newNodes.add(null);
newNodes.add(null);
System.out.print(" ");
}
BTreePrinter.printWhitespaces(betweenSpaces);
}
System.out.println("");
for (int i = 1; i <= endgeLines; i++) {
for (int j = 0; j < nodes.size(); j++) {
BTreePrinter.printWhitespaces(firstSpaces - i);
if (nodes.get(j) == null) {
BTreePrinter.printWhitespaces(endgeLines + endgeLines + i + 1);
continue;
}
if (nodes.get(j).left != null)
System.out.print("/");
else
BTreePrinter.printWhitespaces(1);
BTreePrinter.printWhitespaces(i + i - 1);
if (nodes.get(j).right != null)
System.out.print("\\");
else
BTreePrinter.printWhitespaces(1);
BTreePrinter.printWhitespaces(endgeLines + endgeLines - i);
}
System.out.println("");
}
printNodeInternal(newNodes, level + 1, maxLevel);
}
private static void printWhitespaces(int count) {
for (int i = 0; i < count; i++)
System.out.print(" ");
}
private static <T extends Comparable<?>> int maxLevel(Node<T> node) {
if (node == null)
return 0;
return Math.max(BTreePrinter.maxLevel(node.left), BTreePrinter.maxLevel(node.right)) + 1;
}
private static <T> boolean isAllElementsNull(List<T> list) {
for (Object object : list) {
if (object != null)
return false;
}
return true;
}
}
btw im learning this by my own, i tried merging the two codes but it gives me error i cant fix it.
I should have not made the whole exercise for you, so please try to understand the code. Tell me if something is not clear for you.
public static void main(String[] args) throws IOException {
System.out.println("Write your input");
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String lines = br.readLine();
binarySearchTree b = new binarySearchTree();
b.input(lines);
b.print();
}
These functions go to binarySearchTree.
protected void printRecursive(Node node, int depth) {
System.out.println("");
for(int i = 0; i<depth; i++) {
System.out.print(" ");
}
System.out.print(node.key);
if(node.left != null) {
printRecursive(node.left, depth + 1);
}
if(node.right != null) {
printRecursive(node.right, depth + 1);
}
}
public void input(String s) throws IOException {
String[] strs = s.trim().split("\\s+");
for (int i = 0; i < strs.length; i++) {
insert(Integer.parseInt(strs[i]));
}
}
Also i used this answer in my code.

Linked list, count even and uneven positions, unsing recursion

I want to create two methods, "private int sumEven (Node node){}" for suming up even positions in a linked list and "sumOdd (Node node) {}" for suming up odd positions. I want to use recursion.
This is how far i've come, but i dont know what should I do next.
Does any one have a tipp or a hint for me, what should i do next?
public class RecursiveListTest {
static Node head;
static boolean found = false;
static int counter = 0;
public static void main(String[] args) {
RecursiveListTest list = new RecursiveListTest();
list.addNumber(3);
list.addNumber(5);
list.addNumber(2);
list.addNumber(7);
list.addNumber(5);
list.addNumber(1);
list.addNumber(4);
list.printList();
int sumEven = list.sumEven(head);
int sumOdd = list.sumOdd(head);
System.out.println();
System.out.println("Sum of even Positions: " + sumEven);
System.out.println();
System.out.println("Sum of odd Positions: " + sumOdd);
System.out.println();
}
// Node
private class Node {
Node next;
int value;
Node(int value, Node next) {
this.value = value;
this.next = next;
}
}
private int sumEven(Node n) {
int sumEven = 0;
int sumOdd = 0;
counter = counter + 1;
if (counter % 2 == 0) {
sumEven = sumEven + n.value;
if (n.next.next != null) {
sumEven = sumEven + sumEven(n.next.next);
}
}
else if (counter % 2 == 1) {
if (n.next != null) {
sumEven = sumEven + sumEven(n.next);
}
}
return sumEven;
}
private int sumOdd(Node n) {
return 0;
}
private void addNumber(int number) {
Node curr = head;
Node prev = null;
if (head == null) {
head = new Node(number, null);
} else {
while (curr != null) {
prev = curr;
curr = curr.next;
}
Node newNode = new Node(number, null);
prev.next = newNode;
}
}
private void printList() {
Node curr = head;
Node prev = null;
while (curr != null) {
System.out.print(curr.value + " ");
prev = curr;
curr = curr.next;
}
}
}
You should consider using variables private static int evenSum, oddSum and your methods could be:
private int sumEven() {
evenSum = 0;
sumEvenHelper(head);
return evenSum;
}
private int sumOdd() {
oddSum = 0;
sumEvenHelper(head);
return oddSum;
}
private void sumEvenHelper(Node n) {
if(n != null) {
evenSum += n.value;
sumOddHelper(n.next);
}
}
private void sumOddHelper(Node n) {
if(n != null) {
oddSum += n.value;
sumEvenHelper(n.next);
}
}
My code assumes head is list element 0. Otherwise you will call sumOddHelper(head) inside the sumEven and sumOdd methods.

convert integer array into a binary tree

I can already convert an array into a binary tree using following algorithm in java:
public class TreeNode {
public TreeNode left, right;
public int val;
public TreeNode(int val) {
this.val = val;
}
}
public TreeNode arrayToTree(Integer[] input){
TreeNode root = createTreeNode(input,1);
return root;
}
private TreeNode createTreeNode(Integer[] input, int index){
if(index<=input.length){
Integer value = input[index-1];
if(value!=null){
TreeNode t = new TreeNode(value);
t.left = createTreeNode(input, index*2);
t.right = createTreeNode(input, index*2+1);
return t;
}
}
return null;
}
when the input is {1,null,2,null,null,3}, I get following tree:
1
\
2
/
3
however I think the input {1,null,2,3} is clear enough to define a tree like above.
Any good idea to avoid the redundant nulls defined in the input array?
Here is a java-monster and it solves the task with the possibility of debugging
import java.util.*;
public class TreeCreator {
public static void main(String[] args) {
Integer[] tree = new Integer[]{1, null, 2, 3};
TreeCreator tr = new TreeCreator();
TreeNode treeNode = tr.fromArray(tree);
List<Integer> list = tr.postorderTraversal(treeNode);
list.forEach(System.out::println); // postOrder is 3 2 1
}
public TreeNode fromArray(Integer[] tree) {
if (tree.length == 0) return null;
TreeNode root = new TreeNode(tree[0]);
Queue<TreeNode> q = new LinkedList<>();
q.add(root);
for (int i = 1; i < tree.length; i++) {
TreeNode node = q.peek();
if (node.left == null) {
node.left = new TreeNode(tree[i]);
if (tree[i] != null) q.add(node.left);
} else if (node.right == null) {
node.right = new TreeNode(tree[i]);
if (tree[i] != null) q.add(node.right);
q.remove();
}
}
return root;
}
private static class TreeNode {
Integer val;
TreeNode left;
TreeNode right;
TreeNode(Integer x) {
val = x;
}
}
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> l = new ArrayList<>();
if (root == null) return l;
funcPostOrder(root, l);
return l;
}
private void funcPostOrder(TreeNode c, List<Integer> l) {
if (c.left != null && c.left.val != null) {
funcPostOrder(c.left, l);
}
if (c.right != null) {
funcPostOrder(c.right, l);
}
l.add(c.val);
}
}
more interesing example is
Integer[] tree = new Integer[]{5,4,8,11,null,13,4,7,2,null,null,null,1};
If you read the tree in preorder, you will find 1, -, 2, 3, -. Just construct the tree using the same order and not looking up the string at index*2 and index*2+1, but left to right. (You can discard the final nulls if you like).
For a more "complex" example:
1
/ \
2 3
\ / \
4 5 6
7 8
1, 2, -, 4, 3, 5, -, 7, 6, -, 8
This should solve the problem.
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode() {
}
TreeNode(int val) {
this.val = val;
}
TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
static TreeNode arrayToTree(Integer array[]) {
return arrayToTree(array, 0);
}
static TreeNode arrayToTree(Integer array[], int index) {
if (index >= array.length)
return null;
if (array[index] == null)
return null;
return new TreeNode(array[index], arrayToTree(array, index * 2 + 1), arrayToTree(array, index * 2 + 2));
}
Here is a java-monster and it solves the task with the possibility of debugging
Use Integer to prevent NPE.
public class TreeNode {
Integer val;
TreeNode left;
TreeNode right;
TreeNode() {
}
TreeNode(Integer val) {
this.val = val;
}
TreeNode(Integer val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
public List<Integer> postorderTraversal() {
List<Integer> l = new ArrayList<>();
if (this == null) return l;
printPostOrder(this, l);
return l;
}
private void printPostOrder(TreeNode c, List<Integer> l) {
if (c.left != null && c.left.val != null) {
printPostOrder(c.left, l);
}
if (c.right != null) {
printPostOrder(c.right, l);
}
l.add(c.val);
}
public static TreeNode fromArray(Integer[] tree) {
if (tree.length == 0) return null;
TreeNode root = new TreeNode(tree[0]);
Queue<TreeNode> q = new LinkedList<>();
q.add(root);
for (int i = 1; i < tree.length; i++) {
TreeNode node = q.peek();
if (node.left == null) {
node.left = new TreeNode(tree[i]);
if (tree[i] != null) q.add(node.left);
} else if (node.right == null) {
node.right = new TreeNode(tree[i]);
if (tree[i] != null) q.add(node.right);
q.remove();
}
}
return root;
}
}
public static void main(String[] args) {
Integer[] integers = new Integer[]{1, null, 2, 3};
TreeNode treeNode = TreeNode.fromArray(integers);
List<Integer> list = treeNode.postorderTraversal();
list.forEach(System.out::println);
}

AVL tree rotation in Java

I want to implement the Java AVL tree and to rotate the tree left and right. I am not getting this.
Can anybody by looking at the code below tell me how can I possibly rotate the tree left and right and then use fix up with those two functions to balance the AVL tree?
I hope someone here can guide me through this.
import java.util.Random;
import java.util.SortedSet;
import java.util.TreeSet;
public class AVLTree<T> extends
BinarySearchTree<AVLTree.Node<T>, T> implements SSet<T> {
Random rand;
public static class Node<T> extends BSTNode<Node<T>,T> {
int h; // the height of the node
}
public AVLTree() {
sampleNode = new Node<T>();
rand = new Random();
c = new DefaultComparator<T>();
}
public int height(Node<T> u) {
return (u == null) ? 0 : u.h;
}
public boolean add(T x) {
Node<T> u = new Node<T>();
u.x = x;
if (super.add(u)) {
for (Node<T> w = u; w != nil; w = w.parent) {
// walk back up to the root adjusting heights
w.h = Math.max(height(w.left), height(w.right)) + 1;
}
fixup(u);
return true;
}
return false;
}
public void splice(Node<T> u) {
Node<T> w = u.parent;
super.splice(u);
for (Node<T> z = u; z != nil; z = z.parent)
z.h = Math.max(height(z.left), height(z.right)) + 1;
fixup(w);
}
public void checkHeights(Node<T> u) {
if (u == nil) return;
checkHeights(u.left);
checkHeights(u.right);
if (height(u) != 1 + Math.max(height(u.left), height(u.right)))
throw new RuntimeException("Check heights shows incorrect heights");
int dif = height(u.left) - height(u.right);
if (dif < -1 || dif > 1)
throw new RuntimeException("Check heights found height difference of " + dif);
}
/**
* TODO: finish writing this method
* #param u
*/
public void fixup(Node<T> u) {
while (u != nil) {
int dif = height(u.left) - height(u.right);
if (dif > 1) {
// TODO: add code here to fix AVL condition
// on the path from u to the root, if necessary
} else if (dif < -1) {
// TODO: add code here to fix AVL condition
// on the path from u to the root, if necessary
}
u = u.parent;
}
}
public Node rotateLeft() {
return rotateLeft(u.parent);
}
public void rotateLeft(Node<T> u) {
// TODO: Recompute height values at u and u.parent
}
public void rotateRight(Node<T> u) {
// TODO: Recompute height values at u and u.parent
}
public static <T> T find(SortedSet<T> ss, T x) {
SortedSet<T> ts = ss.tailSet(x);
if (!ts.isEmpty()) {
return ts.first();
}
return null;
}
/**
* This just does some very basic correctness testing
* #param args
*/
public static void main(String[] args) {
AVLTree<Integer> t = new AVLTree<Integer>();
Random r = new Random(0);
System.out.print("Running AVL tests...");
int n = 1000;
for (int i = 0; i < n; i++) {
t.add(r.nextInt(2*n));
t.checkHeights(t.r);
}
for (int i = 0; i < n; i++) {
t.remove(r.nextInt(2*n));
t.checkHeights(t.r);
}
System.out.println("done");
t.clear();
System.out.print("Running correctness tests...");
n = 100000;
SortedSet<Integer> ss = new TreeSet<Integer>();
Random rand = new Random();
for (int i = 0; i < n; i++) {
Integer x = rand.nextInt(2*n);
boolean b1 = t.add(x);
boolean b2 = ss.add(x);
if (b1 != b2) {
throw new RuntimeException("Adding " + x + " gives " + b2
+ " in SortedSet and " + b1 + " in AVL Tree");
}
}
for (int i = 0; i < n; i++) {
Integer x = rand.nextInt(2*n);
Integer x1 = t.find(x);
Integer x2 = find(ss, x);
if (x1 != x2) {
throw new RuntimeException("Searching " + x + " gives " + x2
+ " in SortedSet and " + x1 + " in AVL Tree");
}
ss.headSet(x);
}
for (int i = 0; i < n; i++) {
Integer x = rand.nextInt(2*n);
boolean b1 = t.remove(x);
boolean b2 = ss.remove(x);
if (b1 != b2) {
throw new RuntimeException("Error (2): Removing " + x + " gives " + b2
+ " in SortedSet and " + b1 + " in AVL Tree");
}
}
for (int i = 0; i < n; i++) {
Integer x = rand.nextInt(2*n);
Integer x1 = t.find(x);
Integer x2 = find(ss, x);
if (x1 != x2) {
throw new RuntimeException("Error (3): Searching " + x + " gives " + x2
+ " in SortedSet and " + x1 + " in AVL Tree");
}
ss.headSet(x);
}
System.out.println("done");
}
}
Full AVL tree implementation:
public class AVLTree<T> {
private AVLNode<T> root;
private static class AVLNode<T> {
private T t;
private int height;
private AVLNode<T> left;
private AVLNode<T> right;
private AVLNode(T t) {
this.t = t;
height = 1;
}
}
public void insert(T value) {
root = insert(root, value);
}
private AVLNode<T> insert(AVLNode<T> n, T v) {
if (n == null) {
n = new AVLNode<T>(v);
return n;
} else {
int k = ((Comparable) n.t).compareTo(v);
if (k > 0) {
n.left = insert(n.left, v);
} else {
n.right = insert(n.right, v);
}
n.height = Math.max(height(n.left), height(n.right)) + 1;
int heightDiff = heightDiff(n);
if (heightDiff < -1) {
if (heightDiff(n.right) > 0) {
n.right = rightRotate(n.right);
return leftRotate(n);
} else {
return leftRotate(n);
}
} else if (heightDiff > 1) {
if (heightDiff(n.left) < 0) {
n.left = leftRotate(n.left);
return rightRotate(n);
} else {
return rightRotate(n);
}
} else;
}
return n;
}
private AVLNode<T> leftRotate(AVLNode<T> n) {
AVLNode<T> r = n.right;
n.right = r.left;
r.left = n;
n.height = Math.max(height(n.left), height(n.right)) + 1;
r.height = Math.max(height(r.left), height(r.right)) + 1;
return r;
}
private AVLNode<T> rightRotate(AVLNode<T> n) {
AVLNode<T> r = n.left;
n.left = r.right;
r.right = n;
n.height = Math.max(height(n.left), height(n.right)) + 1;
r.height = Math.max(height(r.left), height(r.right)) + 1;
return r;
}
private int heightDiff(AVLNode<T> a) {
if (a == null) {
return 0;
}
return height(a.left) - height(a.right);
}
private int height(AVLNode<T> a) {
if (a == null) {
return 0;
}
return a.height;
}
}
Here's a full implementation of AVL tree in Java
class Node {
int key;
Node left;
Node right;
int height;
Node(int value) {
key = value;
left = null;
right = null;
height = 1;
}
}
class AVLTree {
Node root;
int height(Node root) {
if (root == null)
return 0;
return root.height;
}
int findHeight() {
return height(root);
}
int findHeightFrom(int value) {
Node node = search(root, value);
if (node == null)
return -1;
return node.height;
}
Node search(Node root, int value) {
if (root == null)
return null;
else {
if (value == root.key)
return root;
else if (value < root.key)
return search(root.left, value);
else
return search(root.right, value);
}
}
boolean find(int value) {
Node node = search(root,value);
if (node == null)
return false;
return true;
}
int max(int one, int two) {
return (one > two) ? one : two;
}
Node rightRotate(Node root) {
Node rootLeftChild = root.left;
root.left = rootLeftChild.right;
rootLeftChild.right = root;
root.height = max(height(root.left), height(root.right)) + 1;
rootLeftChild.height = max(height(rootLeftChild.left), height(rootLeftChild.right)) + 1;
return rootLeftChild;
}
Node leftRotate(Node root) {
Node rootRightChild = root.right;
root.right = rootRightChild.left;
rootRightChild.left = root;
root.height = max(height(root.left), height(root.right)) + 1;
rootRightChild.height = max(height(rootRightChild.left), height(rootRightChild.right)) + 1;
return rootRightChild;
}
Node insertNode(Node root, int value) {
if (root == null)
root = new Node(value);
else {
if (value < root.key)
root.left = insertNode(root.left, value);
else
root.right = insertNode(root.right, value);
}
root.height = max(height(root.left), height(root.right)) + 1;
int balanceFactor = height(root.left) - height(root.right);
if (balanceFactor > 1) {
// either left-left case or left-right case
if (value < root.left.key) {
// left-left case
root = rightRotate(root);
} else {
// left-right case
root.left = leftRotate(root.left);
root = rightRotate(root);
}
} else if (balanceFactor < -1) {
// either right-right case or right-left case
if (value > root.right.key) {
// right-right case
root = leftRotate(root);
} else {
// right-left case
root.right = rightRotate(root.right);
root = leftRotate(root);
}
}
return root;
}
void insert(int value) {
root = insertNode(root, value);
}
void inorder(Node root) {
if (root != null) {
inorder(root.left);
System.out.print(root.key + " ");
inorder(root.right);
}
}
void inorderTraversal() {
inorder(root);
System.out.println();
}
void preorder(Node root) {
if (root != null) {
System.out.print(root.key + " ");
preorder(root.left);
preorder(root.right);
}
}
void preorderTraversal() {
preorder(root);
System.out.println();
}
}
public class AVLTreeExample {
public static void main(String[] args) {
AVLTree avl = new AVLTree();
avl.insert(10);
avl.insert(20);
avl.insert(30);
avl.insert(40);
avl.insert(50);
avl.insert(25);
System.out.print("Inorder Traversal : "); avl.inorderTraversal();
System.out.print("Preorder Traversal : "); avl.preorderTraversal();
System.out.println("Searching for 10 : " + avl.find(10));
System.out.println("Searching for 11 : " + avl.find(11));
System.out.println("Searching for 20 : " + avl.find(20));
System.out.println("Height of the tree : " + avl.findHeight());
System.out.println("Finding height from 10 : " + avl.findHeightFrom(10));
System.out.println("Finding height from 20 : " + avl.findHeightFrom(20));
System.out.println("Finding height from 25 : " + avl.findHeightFrom(25));
}
}
in order to rotate it right
you need to first check if the parent is not root
then if the parent is the right of the grand parent
if so, set the right of the grand parent to the child
else, set the left of the gran parent to the child
otherwise,
root is child

Binary Heap Implemented via a Binary Tree Structure

For an assignment, we were instructed to create a priority queue implemented via a binary heap, without using any built-in classes, and I have done so successfully by using an array to store the queued objects. However, I'm interested in learning how to implement another queue by using an actual tree structure, but in doing so I've run across a bit of a problem.
How would I keep track of the nodes on which I would perform insertion and deletion? I have tried using a linked list, which appends each node as it is inserted - new children are added starting from the first list node, and deleted from the opposite end. However, this falls apart when elements are rearranged in the tree, as children are added at the wrong position.
Edit: Perhaps I should clarify - I'm not sure how I would be able to find the last occupied and first unoccupied leaves. For example, I would always be able to tell the last inserted leaf, but if I were to delete it, how would I know which leaf to delete when I next remove the item? The same goes for inserting - how would I know which leaf to jump to next after the current leaf has both children accounted for?
A tree implementation of a binary heap uses a complete tree [or almost full tree: every level is full, except the deepest one].
You always 'know' which is the last occupied leaf - where you delete from [and modifying it is O(logn) after it changed so it is not a problem], and you always 'know' which is the first non-occupied leaf, in which you add elements to [and again, modifying it is also O(logn) after it changed].
The algorithm idea is simple:
insert: insert element to the first non-occupied leaf, and use heapify [sift up] to get this element to its correct place in the heap.
delete_min: replace the first element with the last occupied leaf, and remove the last occupied leaf. then, heapify [sift down] the heap.
EDIT: note that delete() can be done to any element, and not only the head, however - finding the element you want to replace with the last leaf will be O(n), which will make this op expensive. for this reason, the delete() method [besides the head], is usually not a part of the heap data structure.
I really wanted to do this for almost a decade.Finally sat down today and wrote it.Anyone who wants it can use it.I got inspired by Quora founder to relearn Heap.Apparently he was asked how would you find K near points in a set of n points in his Google phone screen.Apparently his answer was to use a Max Heap and to store K values and remove the maximum element after the size of the heap exceeds K.The approach is pretty simple and the worst case is nlog K which is better than n^2 in most sorting cases.Here is the code.
import java.util.ArrayList;
import java.util.List;
/**
* #author Harish R
*/
public class HeapPractise<T extends Comparable<T>> {
private List<T> heapList;
public List<T> getHeapList() {
return heapList;
}
public void setHeapList(List<T> heapList) {
this.heapList = heapList;
}
private int heapSize;
public HeapPractise() {
this.heapList = new ArrayList<>();
this.heapSize = heapList.size();
}
public void insert(T item) {
if (heapList.size() == 0) {
heapList.add(item);
} else {
siftUp(item);
}
}
public void siftUp(T item) {
heapList.add(item);
heapSize = heapList.size();
int currentIndex = heapSize - 1;
while (currentIndex > 0) {
int parentIndex = (int) Math.floor((currentIndex - 1) / 2);
T parentItem = heapList.get(parentIndex);
if (parentItem != null) {
if (item.compareTo(parentItem) > 0) {
heapList.set(parentIndex, item);
heapList.set(currentIndex, parentItem);
currentIndex = parentIndex;
continue;
}
}
break;
}
}
public T delete() {
if (heapList.size() == 0) {
return null;
}
if (heapList.size() == 1) {
T item = heapList.get(0);
heapList.remove(0);
return item;
}
return siftDown();
}
public T siftDown() {
T item = heapList.get(0);
T lastItem = heapList.get(heapList.size() - 1);
heapList.remove(heapList.size() - 1);
heapList.set(0, lastItem);
heapSize = heapList.size();
int currentIndex = 0;
while (currentIndex < heapSize) {
int leftIndex = (2 * currentIndex) + 1;
int rightIndex = (2 * currentIndex) + 2;
T leftItem = null;
T rightItem = null;
int currentLargestItemIndex = -1;
if (leftIndex <= heapSize - 1) {
leftItem = heapList.get(leftIndex);
}
if (rightIndex <= heapSize - 1) {
rightItem = heapList.get(rightIndex);
}
T currentLargestItem = null;
if (leftItem != null && rightItem != null) {
if (leftItem.compareTo(rightItem) >= 0) {
currentLargestItem = leftItem;
currentLargestItemIndex = leftIndex;
} else {
currentLargestItem = rightItem;
currentLargestItemIndex = rightIndex;
}
} else if (leftItem != null && rightItem == null) {
currentLargestItem = leftItem;
currentLargestItemIndex = leftIndex;
}
if (currentLargestItem != null) {
if (lastItem.compareTo(currentLargestItem) >= 0) {
break;
} else {
heapList.set(currentLargestItemIndex, lastItem);
heapList.set(currentIndex, currentLargestItem);
currentIndex = currentLargestItemIndex;
continue;
}
}
}
return item;
}
public static void main(String[] args) {
HeapPractise<Integer> heap = new HeapPractise<>();
for (int i = 0; i < 32; i++) {
heap.insert(i);
}
System.out.println(heap.getHeapList());
List<Node<Integer>> nodeArray = new ArrayList<>(heap.getHeapList()
.size());
for (int i = 0; i < heap.getHeapList().size(); i++) {
Integer heapElement = heap.getHeapList().get(i);
Node<Integer> node = new Node<Integer>(heapElement);
nodeArray.add(node);
}
for (int i = 0; i < nodeArray.size(); i++) {
int leftNodeIndex = (2 * i) + 1;
int rightNodeIndex = (2 * i) + 2;
Node<Integer> node = nodeArray.get(i);
if (leftNodeIndex <= heap.getHeapList().size() - 1) {
Node<Integer> leftNode = nodeArray.get(leftNodeIndex);
node.left = leftNode;
}
if (rightNodeIndex <= heap.getHeapList().size() - 1) {
Node<Integer> rightNode = nodeArray.get(rightNodeIndex);
node.right = rightNode;
}
}
BTreePrinter.printNode(nodeArray.get(0));
}
}
public class Node<T extends Comparable<?>> {
Node<T> left, right;
T data;
public Node(T data) {
this.data = data;
}
}
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
class BTreePrinter {
public static <T extends Comparable<?>> void printNode(Node<T> root) {
int maxLevel = BTreePrinter.maxLevel(root);
printNodeInternal(Collections.singletonList(root), 1, maxLevel);
}
private static <T extends Comparable<?>> void printNodeInternal(
List<Node<T>> nodes, int level, int maxLevel) {
if (nodes.isEmpty() || BTreePrinter.isAllElementsNull(nodes))
return;
int floor = maxLevel - level;
int endgeLines = (int) Math.pow(2, (Math.max(floor - 1, 0)));
int firstSpaces = (int) Math.pow(2, (floor)) - 1;
int betweenSpaces = (int) Math.pow(2, (floor + 1)) - 1;
BTreePrinter.printWhitespaces(firstSpaces);
List<Node<T>> newNodes = new ArrayList<Node<T>>();
for (Node<T> node : nodes) {
if (node != null) {
String nodeData = String.valueOf(node.data);
if (nodeData != null) {
if (nodeData.length() == 1) {
nodeData = "0" + nodeData;
}
}
System.out.print(nodeData);
newNodes.add(node.left);
newNodes.add(node.right);
} else {
newNodes.add(null);
newNodes.add(null);
System.out.print(" ");
}
BTreePrinter.printWhitespaces(betweenSpaces);
}
System.out.println("");
for (int i = 1; i <= endgeLines; i++) {
for (int j = 0; j < nodes.size(); j++) {
BTreePrinter.printWhitespaces(firstSpaces - i);
if (nodes.get(j) == null) {
BTreePrinter.printWhitespaces(endgeLines + endgeLines + i
+ 1);
continue;
}
if (nodes.get(j).left != null)
System.out.print("//");
else
BTreePrinter.printWhitespaces(1);
BTreePrinter.printWhitespaces(i + i - 1);
if (nodes.get(j).right != null)
System.out.print("\\\\");
else
BTreePrinter.printWhitespaces(1);
BTreePrinter.printWhitespaces(endgeLines + endgeLines - i);
}
System.out.println("");
}
printNodeInternal(newNodes, level + 1, maxLevel);
}
private static void printWhitespaces(int count) {
for (int i = 0; i < 2 * count; i++)
System.out.print(" ");
}
private static <T extends Comparable<?>> int maxLevel(Node<T> node) {
if (node == null)
return 0;
return Math.max(BTreePrinter.maxLevel(node.left),
BTreePrinter.maxLevel(node.right)) + 1;
}
private static <T> boolean isAllElementsNull(List<T> list) {
for (Object object : list) {
if (object != null)
return false;
}
return true;
}
}
Please note that BTreePrinter is a code I took somewhere in Stackoverflow long back and I modified to use with 2 digit numbers.It will be broken if we move to 3 digit numbers and it is only for simple understanding of how the Heap structure looks.A fix for 3 digit numbers is to keep everything as multiple of 3.
Also due credits to Sesh Venugopal for wonderful tutorial on Youtube on Heap data structure
public class PriorityQ<K extends Comparable<K>> {
private class TreeNode<T extends Comparable<T>> {
T val;
TreeNode<T> left, right, parent;
public String toString() {
return this.val.toString();
}
TreeNode(T v) {
this.val = v;
left = null;
right = null;
}
public TreeNode<T> insert(T val, int position) {
TreeNode<T> parent = findNode(position/2);
TreeNode<T> node = new TreeNode<T>(val);
if(position % 2 == 0) {
parent.left = node;
} else {
parent.right = node;
}
node.parent = parent;
heapify(node);
return node;
}
private void heapify(TreeNode<T> node) {
while(node.parent != null && (node.parent.val.compareTo(node.val) < 0)) {
T temp = node.val;
node.val = node.parent.val;
node.parent.val = temp;
node = node.parent;
}
}
private TreeNode<T> findNode(int pos) {
TreeNode<T> node = this;
int reversed = 1;
while(pos > 0) {
reversed <<= 1;
reversed |= (pos&1);
pos >>= 1;
}
reversed >>= 1;
while(reversed > 1) {
if((reversed & 1) == 0) {
node = node.left;
} else {
node = node.right;
}
reversed >>= 1;
}
return node;
}
public TreeNode<T> remove(int pos) {
if(pos <= 1) {
return null;
}
TreeNode<T> last = findNode(pos);
if(last.parent.right == last) {
last.parent.right = null;
} else {
last.parent.left = null;
}
this.val = last.val;
bubbleDown();
return null;
}
public void bubbleDown() {
TreeNode<T> node = this;
do {
TreeNode<T> left = node.left;
TreeNode<T> right = node.right;
if(left != null && right != null) {
T max = left.val.compareTo(right.val) > 0 ? left.val : right.val;
if(max.compareTo(node.val) > 0) {
if(left.val.equals(max)) {
left.val = node.val;
node.val = max;
node = left;
} else {
right.val = node.val;
node.val = max;
node = right;
}
} else {
break;
}
} else if(left != null) {
T max = left.val;
if(left.val.compareTo(node.val) > 0) {
left.val = node.val;
node.val = max;
node = left;
} else {
break;
}
} else {
break;
}
} while(true);
}
}
private TreeNode<K> root;
private int position;
PriorityQ(){
this.position = 1;
}
public void insert(K val) {
if(val == null) {
return;
}
if(root == null) {
this.position = 1;
root = new TreeNode<K>(val);
this.position++;
return ;
}
root.insert(val, position);
position++;
}
public K remove() {
if(root == null) {
return null;
}
K val = root.val;
root.remove(this.position-1);
this.position--;
if(position == 1) {
root = null;
}
return val;
}
public static void main(String[] args) {
PriorityQ<Integer> q = new PriorityQ<>();
System.out.println(q.remove());
q.insert(1);
q.insert(11);
q.insert(111);
q.insert(1111);
q.remove();
q.remove();
q.remove();
q.remove();
q.insert(2);
q.insert(4);
}
}

Categories