How do I fix this Java BubbleSort algorithm? - java

I'm doing a Java programming assignment which involves bubble sorting a .dat file BetelgeuseNames.dat with strings in it alphabetically. My AP Computer Science A teacher told me my code is correct, but it still gives the wrong output.
There are three classes called BubbleSort, BubbleSortTimer, and StopWatch. The program runs from BubbleSortTimer.
BubbleSort:
import java.util.ArrayList;
import javax.swing.JOptionPane;
import java.io.FileWriter;
import java.io.IOException;
public class BubbleSort {
// Private instance variables:
private ArrayList<String> list;
private int number;
public BubbleSort(ArrayList<String> a_list) {
list = a_list;
}
public void swap(int first, int second) {
String temp1 = list.get(first);
String temp2 = list.get(second);
list.set(first, temp2);
list.set(second, temp1);
}
public int getNumber() {
String numStr;
numStr = JOptionPane.showInputDialog("How many names do you want to sort?");
number = Integer.parseInt(numStr);
return number;
}
public void printSorted() {
try {
FileWriter writer = new FileWriter("sorted.dat");
for (int i = 0; i < number; i++) {
writer.write(list.get(i) + "\n");
}
writer.close();
} catch (IOException exception) {
System.out.println("Error processing file: " + exception);
}
}
public void bubbleSort() {
for (int i = 0; i < number; i++) {
for (int j = 0; j < number - i - 1; j++) {
if (list.get(i).compareTo(list.get(i+1)) > 0) {
swap(i, i + 1);
}
}
}
} // End method
}
BubbleSortTimer:
import java.util.ArrayList;
import java.io.BufferedReader;
import java.io.FileReader;
import javax.swing.JOptionPane;
import java.io.IOException;
public class BubbleSortTimer {
private ArrayList<String> list = new ArrayList<String>();
public void readNames() {
try {
FileReader reader = new FileReader("BetelgeuseNames.dat");
BufferedReader in = new BufferedReader(reader);
boolean done = false;
String name;
while (done == false) {
name = in.readLine();
if (name == null) {
done = true;
} else {
list.add(name);
}
}
reader.close();
} catch (IOException exception) {
System.out.println("Error processing file: " + exception);
}
} // End method
public void runSort() {
readNames();
StopWatch timer = new StopWatch();
BubbleSort sorter = new BubbleSort(list);
int number = sorter.getNumber();
timer.start();
sorter.bubbleSort();
timer.stop();
sorter.printSorted();
String msg = "Number of names sorted: " + number + "\nMilliseconds required to sort: " + timer.getElapsedTime() + "\nOutput file is \"sorted.dat\"";
JOptionPane.showMessageDialog(null, msg);
}
public static void main(String[] args) {
BubbleSortTimer bubble = new BubbleSortTimer();
bubble.runSort();
}
}
StopWatch:
/**
* A stopwatch accumulates time when it is running. You can
* repeatedly start and stop the stopwatch. You can use a
* stopwatch to measure the running time of a program.
* from section 18.2 of Horstmann's CCJ
*/
public class StopWatch {
/**
* Constructs a stopwatch that is in the stopped state
* and has no time accumulated.
*/
public StopWatch() {
reset();
}
/**
* Starts the stopwatch. Times starts accumulating now.
*/
public void start() {
if (isRunning) return;
isRunning = true;
startTime = System.currentTimeMillis();
}
/**
* Stops the stopwatch. Time stops accumulating and is
* added to the elapsed time.
*/
public void stop() {
if (!isRunning) return;
isRunning = false;
long endTime = System.currentTimeMillis();
elapsedTime = elapsedTime + endTime - startTime;
}
/**
* Returns the total elapsed time.
#return the total elapsed time
*/
public long getElapsedTime() {
if (isRunning) {
long endTime = System.currentTimeMillis();
elapsedTime = elapsedTime + endTime - startTime;
startTime = endTime;
}
return elapsedTime;
}
/**
* Stops the watch and resets the elapsed time to 0.
*/
public void reset() {
elapsedTime = 0;
isRunning = false;
}
private long elapsedTime;
private long startTime;
private boolean isRunning;
}
Input:
Moewm
Bmlzvltcso
Aqxjor
Wwgjie
Qqqtpivd
Xgyhaerv
Wqpjwdvxjq
Ecsfnow
Zlptuqxctt
Jhtprwvopk
Expected Output:
Aqxjor
Bmlzvltcso
Ecsfnow
Jhtprwvopk
Moewm
Qqqtpivd
Wqpjwdvxjq
Wwgjie
Xgyhaerv
Zlptuqxctt
Actual Output:
Bmlzvltcso
Aqxjor
Moewm
Qqqtpivd
Wwgjie
Wqpjwdvxjq
Ecsfnow
Xgyhaerv
Jhtprwvopk
Zlptuqxctt

This is how Android did (binary) sorting (edited to fix this situation):
public void binarySort() {
int lo = 0; // sort start
for (int start=lo ; start < number; start++) {
String pivot = list.get(start);
// Set left (and right) to the index where list.get(start) (pivot) belongs
int left = 0;
int right = start;
assert left <= right;
/*
* Invariants:
* pivot >= all in [lo, left].
* pivot < all in [right, start].
*/
while (left < right) {
int mid = (left + right) >>> 1;
if (pivot.compareTo(list.get(mid)) < 0)
right = mid;
else
left = mid + 1;
}
assert left == right;
/*
* The invariants still hold: pivot >= all in [lo, left] and
* pivot < all in [left, start], so pivot belongs at left. Note
* that if there are elements equal to pivot, left points to the
* first slot after them -- that's why this sort is stable.
* Slide elements over to make room for pivot.
*/
int n = start - left; // The number of elements to move
// Switch is just reshifter in default case
switch (n) {
case 2: list.set(left + 2,list.get(left + 1));
case 1: list.set(left + 1,list.get(left));
break;
default:
if(n>0){
list.add(left,list.remove(left+n));
}
}
list.set(left,pivot);
}
}
This is how you can do (bubble) sorting:
public void bubbleSort() {
for (int i = 0; i < number; i++) {
for (int j = i + 1; j < number; j++) {
if (list.get(i).compareTo(list.get(j)) > 0) {
swap(i, j);
}
}
}
}
BUBBLE SORTING V/S BINARY SORTING:
OFF TOPIC: As you can compare above, bubble sorting is easier to code/read/understand and is also faster as compared to binary sorting, because binary sorting (actually) uses array recreation many times which ofcourse takes more time compared to swap.

Because there is a problem with your bubbleSort() method. Please try this way.
public void bubbleSort() {
for (int i = 0; i < number; i++) {
for (int j = 1; j < number - i; j++) {
if (list.get(j - 1).compareTo(list.get(j)) > 0) {
swap(j - 1, j);
}
}
}
}

Related

MLFQ only functions when other class runs

I have a multi-level feedback class which I am not sure what its doing - it only ever seems to print the output I want when I run a pre-emptive multi-level class before it, when I don't it prints a different output. I am not sure how these are connected and making this happen.
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class MultiLevelFeedback {
List<Process> processList;
private int timeQuantum1;
private int timeQuantum2;
private int count;
int j=0;
private int ganntP[];
private int ganntT[];
private int totalWaitingTime = 0;
private int totalTurnAroundTime = 0;
private float avgWatingTime = 0;
private float avgTurnaroundTime = 0;
MultiLevelFeedback(List<Process> processList, int timeQuantum1,int timeQuantum2) {
count = processList.size();
ganntT=new int[200];
ganntP=new int[200];
this.timeQuantum1 = timeQuantum1;
this.timeQuantum2 = timeQuantum2;
this.processList=new ArrayList<Process>();
for(Process p : processList)
{
this.processList.add(new Process(p.getProcessId(), p.getArrivalTime(), p.getBurstTime(),p.getPriority()));
}
Collections.sort(this.processList, Process.BY_PRIORITY);
}
public void simulate() {
int currentTime =0;
int remainingProcess = count;
while (remainingProcess > processList.size()/2)
{
int clockTime=currentTime;
for (int i = 0; i < count; i++)
{
Process current = processList.get(i);
if(currentTime<current.getArrivalTime())
break;
if (current.getStartTime() == -1)
current.setStartTime(currentTime);
ganntP[j]=current.getProcessId();
ganntT[j]=currentTime;
j++;
if (current.getRemainingTime() <= timeQuantum1 && current.getEndTime()==-1)
{
current.setEndTime(currentTime + current.getRemainingTime());
currentTime += current.getRemainingTime();
current.setRemainingTime(0);
remainingProcess--;
}
else if (current.getRemainingTime()>timeQuantum1)
{
currentTime += timeQuantum1;
current.setRemainingTime(current.getRemainingTime()-timeQuantum1);
}
}
if(clockTime==currentTime)
{
currentTime++;
}
}
while (remainingProcess > processList.size()/2)
{
int clockTime=currentTime;
for (int i = 0; i < count; i++)
{
Process current = processList.get(i);
if(currentTime<current.getArrivalTime())
break;
if (current.getStartTime() == -1)
current.setStartTime(currentTime);
ganntP[j]=current.getProcessId();
ganntT[j]=currentTime;
j++;
if (current.getRemainingTime() <= timeQuantum2 && current.getEndTime()==-1)
{
current.setEndTime(currentTime + current.getRemainingTime());
currentTime += current.getRemainingTime();
current.setRemainingTime(0);
remainingProcess--;
}
else if (current.getRemainingTime()>timeQuantum2)
{
currentTime += timeQuantum2;
current.setRemainingTime(current.getRemainingTime()-timeQuantum2);
}
}
if(clockTime==currentTime)
{
currentTime++;
}
}
for(int i=0;i<count;i++)
{
Process current=processList.get(i);
if(current.getRemainingTime()>0 )
{
if(currentTime<current.getArrivalTime())
{
currentTime=current.getArrivalTime();
current.setStartTime(currentTime);
}
current.setEndTime(currentTime+current.getRemainingTime());
currentTime+=current.getRemainingTime();
}
}
for (int i = 0; i < count; i++)
{
Process current = processList.get(i);
current.setWaitingTime(current.getEndTime()-current.getBurstTime()-current.getArrivalTime());
current.setTurnaroundTime(current.getEndTime() - current.getArrivalTime());
totalWaitingTime += current.getWaitingTime();
totalTurnAroundTime += current.getTurnaroundTime();
}
avgWatingTime = (float) totalWaitingTime / count;
avgTurnaroundTime = (float) totalTurnAroundTime / count;
}
public void printResult()
{
System.out.println("Simulation result of MultiLevelFeedback ");
System.out.println("PId ArrivalT BurstT Priority StartT EndT WaitingT TurnAroundT");
for (Process p : processList)
{
System.out.println(p);
}
System.out.println("Average Waiting Time of MultiLevelFeedback "
+ avgWatingTime);
System.out.println("Average TurnAround Time of MultiLevelFeedback "
+ avgTurnaroundTime);
for(int i=0;i<j;i++)
{
System.out.println("time "+ganntT[i]+" process "+ganntP[i]);
}
System.out.println();
}
}
I am confused as there's nothing in the mlfq class which has anything to do with the pre-emptive multi-level class - they are both separate algorithms - except it is differing the output when I run both.

How can I make this more efficient path finding?

I am working on a maze solver. It runs very fast on my first 2 mazes, however, my third maze takes forever. I am supposed to be able to do it in under a minute, on reasonable hardware.
The solve method takes an immense amount of time on my high-end gaming rig.
Here is the relevant source code
import java.awt.Point;
import java.io.IOException;
import java.nio.charset.Charset;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.Queue;
/**
* Created by jphamlett on 6/16/17.
*/
public class main {
static class fileIO {
public static String readFile(String path, Charset encoding)
throws IOException {
byte[] encoded = Files.readAllBytes(Paths.get(path));
return new String(encoded, encoding);
}
}
static class mazeNode {
private Point point;
private int dist;
public Point getPoint() {
return point;
}
public void setPoint(Point point) {
this.point = point;
}
public int getDist() {
return dist;
}
public void setDist(int dist) {
this.dist = dist;
}
public mazeNode(Point point, int dist) {
setPoint(point);
setDist(dist);
}
}
static class Solver {
private String[] pathGrid;
private int[][] gridLength;
public void setPath(String path) {
try {
this.pathGrid = generatePath(fileIO.readFile(path, Charset.defaultCharset()));
} catch (IOException e) {
e.printStackTrace();
}
}
public Point findA() {
for (int row = 0; row < pathGrid.length; row++) {
int pos = pathGrid[row].indexOf("A");
if (pos != -1) {
return new Point(row, pos);
}
}
return null; // Something went wrong
}
public Point findB() {
for (int row = 0; row < pathGrid.length; row++) {
int pos = pathGrid[row].indexOf("B");
if (pos != -1) {
return new Point(row, pos);
}
}
return null; // Something went wrong
}
public Boolean canMove(char symbol) {
return symbol != '#';
}
public String[] generatePath(String path) {
return path.split("\n");
}
public String[] getPath() {
return this.pathGrid;
}
// Use BFS to solve the maze
public int[][] solve(int[][] gridLength, Point src, Point dest) {
if (src == null || dest == null) {
return null;
}
gridLength[src.x][src.y] = 0; // Distance to self is 0
Boolean visited[][] = new Boolean[gridLength.length][gridLength[0].length]; //Set all booleans to false
for (Boolean[] booleans : visited) {
Arrays.fill(booleans, Boolean.FALSE);
}
//System.out.println("Finished making visited array");
visited[src.x][src.y] = Boolean.TRUE;
Queue<mazeNode> queue = new LinkedList<>();
mazeNode initialNode = new mazeNode(src, 0);
queue.add(initialNode);
while (!queue.isEmpty()) {
mazeNode currentNode = queue.peek();
Point currentPoint = currentNode.getPoint();
//System.out.println("Point: " + currentPoint);
visited[currentPoint.x][currentPoint.y] = Boolean.TRUE;
if (currentPoint.equals(dest)) {
return gridLength;
}
queue.poll();
// Add adjacent valid cells
try {
if (canMove(pathGrid[currentPoint.x].charAt(currentPoint.y - 1)) && !visited[currentPoint.x][currentPoint.y - 1]) {
gridLength[currentPoint.x][currentPoint.y - 1] = currentNode.getDist() + 1;
queue.add(new mazeNode(new Point(currentPoint.x, currentPoint.y - 1), currentNode.getDist() + 1));
}
} catch (IndexOutOfBoundsException e) {
}
try {
if (canMove(pathGrid[currentPoint.x].charAt(currentPoint.y + 1)) && !visited[currentPoint.x][currentPoint.y + 1]) {
gridLength[currentPoint.x][currentPoint.y + 1] = currentNode.getDist() + 1;
queue.add(new mazeNode(new Point(currentPoint.x, currentPoint.y + 1), currentNode.getDist() + 1));
}
} catch (IndexOutOfBoundsException e) {
}
try {
if (canMove(pathGrid[currentPoint.x - 1].charAt(currentPoint.y)) && !visited[currentPoint.x - 1][currentPoint.y]) {
gridLength[currentPoint.x - 1][currentPoint.y] = currentNode.getDist() + 1;
queue.add(new mazeNode(new Point(currentPoint.x - 1, currentPoint.y), currentNode.getDist() + 1));
}
} catch (IndexOutOfBoundsException e) {
}
try {
if (canMove(pathGrid[currentPoint.x + 1].charAt(currentPoint.y)) && !visited[currentPoint.x + 1][currentPoint.y]) {
gridLength[currentPoint.x + 1][currentPoint.y] = currentNode.getDist() + 1;
queue.add(new mazeNode(new Point(currentPoint.x + 1, currentPoint.y), currentNode.getDist() + 1));
}
} catch (IndexOutOfBoundsException e) {
}
}
return null; // Cannot be reached
}
public Solver(String path) {
setPath(path);
}
}
public static void main(String[] args) {
long startTime = System.currentTimeMillis();
Solver solver = new Solver("mazes/maze3.txt");
int[][] path = solver.solve(new int[solver.getPath().length][solver.getPath()[0].length()], solver.findA(), solver.findB());
long endTime = System.currentTimeMillis();
long totalTime = endTime - startTime;
System.out.println(totalTime);
for (int[] i : path) {
for (int j : i) {
System.out.print(j + " ");
}
System.out.println();
}
endTime = System.currentTimeMillis();
totalTime = endTime - startTime;
System.out.println(totalTime);
}
}
Here is maze2.txt
###############B#############################################
##.....########.#......................................#...##
##.###.#........####################################.#.#.#.##
##.###.#.#########..........#########.......########.#.#.#.##
##.#####...........########.#.......#.#####.########.#.#.#.##
##.########################.#.#####.#.#...#.########.#.#.#.##
##............................#####.#.##.##.########.#.#.#.##
##.###.############################.#.##.##.########.#.#.#.##
##.###.##...#...#...#...#...#.......#.##.##.########.#.#.#.##
##.###....#...#...#...#...#...#######.##.##.########.#.#.#.##
##.##################################.##.##.########.#.#.#.##
##.......................................##.########.#.#.#.##
###########################################.########.#.#.#.##
###...............................#########..........#.#.#.##
########################.###########################.#.#.#.##
#........................#...........................#.#.#.##
#.######################.#############################.#.#.##
#.#..........#.........................................#.#.##
#.#.########.#.#########################################.#.##
#.#........#.#.#.........................................#.##
#.##########.#.#.#########################################.##
#............#.#.##........................................##
##############.#.#############################.#####.########
#..............................................#####........#
########################A####################################
I have attached maze3 because the formatting here makes it shift oddly.
https://pastebin.com/c4LhG5hT
Your problem is the visited array.
First, a minor issue: The visited array should not be a Boolean[][]. Just make it a boolean[][], which is automatically initialized to all false values, so that initialization loop can be eliminated too.
Now, the main problem is that visited is not marked true until you actually process that point. This means that the same point is added many times to the queue.
Example maze:
#####################
#...#...#...#...#...#
A.#1..#2..#3..#4..#5B
#...#...#...#...#...#
#####################
In this case, point 1 is added twice to the queue. Each point up to point 2 will also be added twice. Point 2 will be added 4 times, point 3 8 times, point 4 16 times, and point 5 32 times.
As you can see, that is an exponential number of queue items for each round1 to process, doubling each time multiple paths meet.
Solution: Rename visited to queued, and mark point true at the same time you add it to the queue, thus preventing the addition of the same point multiple times.
Result: Code completes in less then 50 milliseconds for maze 3.
1) By "round" I mean processing of all queued points that is one step further away from start (distance).

Failed to make my ArrayList Thread-Safe. Exception in thread "main" java.lang.ClassCastException: What is wrong?

I decided to optimize the piece of code below but encounter with problem. I tried to change the ArrayList to thread-safe collection by using this discussion but unfortunately something went wrong. The code is compiling but throw the exception.
Exception in thread "main" java.lang.ClassCastException:
java.util.Collections$SynchronizedRandomAccessList cannot be cast to
java.util.ArrayList at
bfpasswrd_multi.PasswordCracker.doItMulti(PasswordCracker.java:73) at
bfpasswrd_multi.PasswordCracker.runMulti(PasswordCracker.java:60) at
bfpasswrd_multi.Test.main(Test.java:16)
Please, tell me what is wrong ?
package bfpasswrd_multi;
import java.util.Scanner;
public class Test
{
public static void main(String[] args)
{
System.out.print("Type password to be cracked: ");
#SuppressWarnings("resource")
String input = new Scanner(System.in).nextLine();
PasswordCracker cracker = new PasswordCracker();
System.out.println("Multithreaded");
cracker.runMulti(input);
cracker = new PasswordCracker();
System.out.println("Finished...");
}
}
package bfpasswrd_multi;
import java.util.ArrayList;
import java.util.Collections;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
public class PasswordCracker
{
String passwordToCrack;
public boolean passwordFound;
int min;
int max;
StringBuffer crackedPassword;
public void prepare(String text)
{
passwordToCrack = text;
passwordFound = false;
min = 48;
max = 57; // http://ascii.cl/
crackedPassword = new StringBuffer();
crackedPassword.append((char) (min - 1));
}
public void result()
{
System.out.println("Cracked Password is: " + crackedPassword.toString());
}
public void incrementString(StringBuffer toCrack, int min, int max)
{
toCrack.setCharAt(0, (char) ((int) toCrack.charAt(0) + 1));
for (int i = 0; i < toCrack.length(); i++)
{
if (toCrack.charAt(i) > (char) max)
{
toCrack.setCharAt(i, (char) min);
if (toCrack.length() == i + 1)
{
toCrack.append((char) min);
}
else
{
toCrack.setCharAt(i + 1, (char) ((int) toCrack.charAt(i + 1) + 1));
}
}
}
}
public void runMulti(String text)
{
prepare(text);
double time = System.nanoTime();
doItMulti();
time = System.nanoTime() - time;
System.out.println(time / (1000000000));
result();
}
public void doItMulti()
{
int cores = Runtime.getRuntime().availableProcessors();
ArrayList<Future<?>> tasks ; // How do I make my ArrayList Thread-Safe? Another approach to problem in Java?
// https://stackoverflow.com/questions/2444005/how-do-i-make-my-arraylist-thread-safe-another-approach-to-problem-in-java
tasks = (ArrayList<Future<?>>) Collections.synchronizedList(new ArrayList<Future<?>>(cores));
// ArrayList<Future<?>> tasks = new ArrayList<>(cores);
ExecutorService executor = Executors.newFixedThreadPool(cores);
final long step = 2000;
for (long i = 0; i < Long.MAX_VALUE; i += step)
{
while(tasks.size() > cores)
{
for(int w = 0; w < tasks.size();w++)
{
if(tasks.get(w).isDone())
{
tasks.remove(w);
break;
}
}
try
{
Thread.sleep(0);
}
catch (InterruptedException e)
{
// TODO Auto-generated catch block
e.printStackTrace();
}
}
{
final long j = i;
if (passwordFound == false)
{
tasks.add(executor.submit(new Runnable()
{
public void run()
{
long border = j + step;
StringBuffer toCrack = new StringBuffer(10);
toCrack.append(constructString3(j, min, max));
for (long k = j; k < border; k++)
{
incrementString(toCrack, min, max);
boolean found = toCrack.toString().equals(passwordToCrack);
if (found)
{
crackedPassword = toCrack;
passwordFound = found;
break;
}
}
}
}));
}
else
{
break;
}
}
}
executor.shutdownNow();
}
public String constructString3(long number, long min, long max)
{
StringBuffer text = new StringBuffer();
if (number > Long.MAX_VALUE - min)
{
number = Long.MAX_VALUE - min;
}
ArrayList<Long> vector = new ArrayList<Long>(10);
vector.add(min - 1 + number);
long range = max - min + 1;
boolean nextLetter = false;
for (int i = 0; i < vector.size(); i++)
{
long nextLetterCounter = 0;
while (vector.get(i) > max)
{
nextLetter = true;
long multiplicator = Math.abs(vector.get(i) / range);
if ((vector.get(i) - (multiplicator * range)) < min)
{
multiplicator -= 1;
}
vector.set(i, vector.get(i) - (multiplicator * range));
nextLetterCounter += multiplicator;
}
if (nextLetter)
{
vector.add((long) (min + nextLetterCounter - 1));
nextLetter = false;
}
text.append((char) vector.get(i).intValue());
}
return text.toString();
}
}
Many thanks in advance !
The issue that you're seeing is with this line:
tasks = (ArrayList<Future<?>>) Collections.synchronizedList(new ArrayList<Future<?>>(cores));
Collections.synchronizedList doesn't return an ArrayList; it returns some subclass of List - java.util.Collections$SynchronizedRandomAccessList to be exact - and I don't know anything about that class other than it's a List, but it's not an ArrayList.
The easy solution to this is to declare tasks to be a List<Future<?>>:
List<Future<?>> tasks =
Collections.synchronizedList(new ArrayList<Future<?>>(cores));
Dear community members thanks you for your comments. It seems that now my safe-thread list is working. For the people who interesting in solution I will submit the resolved code below. Also, probably I should mention that I rename task
to futures, please pay attention. Once again everybody thanks !
package bfpasswrd_multi;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
public class PasswordCracker
{
String passwordToCrack;
public boolean passwordFound;
int min;
int max;
StringBuffer crackedPassword;
public void prepare(String text)
{
passwordToCrack = text;
passwordFound = false;
min = 48;
max = 57; // http://ascii.cl/
crackedPassword = new StringBuffer();
crackedPassword.append((char) (min - 1));
}
public void result()
{
System.out.println("Cracked Password is: " + crackedPassword.toString());
}
public void incrementString(StringBuffer toCrack, int min, int max)
{
toCrack.setCharAt(0, (char) ((int) toCrack.charAt(0) + 1));
for (int i = 0; i < toCrack.length(); i++)
{
if (toCrack.charAt(i) > (char) max)
{
toCrack.setCharAt(i, (char) min);
if (toCrack.length() == i + 1)
{
toCrack.append((char) min);
}
else
{
toCrack.setCharAt(i + 1, (char) ((int) toCrack.charAt(i + 1) + 1));
}
}
}
}
public void runMulti(String text)
{
prepare(text);
double time = System.nanoTime();
doItMulti();
time = System.nanoTime() - time;
System.out.println(time / (1000000000));
result();
}
public void doItMulti()
{
int cores = Runtime.getRuntime().availableProcessors();
// ArrayList<Future<?>> task; // HOW IT WAS
//
// tasks = (ArrayList<Future<?>>) Collections.synchronizedList(new ArrayList<Future<?>>(cores)); // HOW IT WAS
List<Future<?>> futures ; // THE SOLUTION
futures = Collections.synchronizedList(new ArrayList<Future<?>>(cores)); // THE SOLUTION
// ArrayList<Future<?>> tasks = new ArrayList<>(cores);
ExecutorService executor = Executors.newFixedThreadPool(cores);
final long step = 2000;
for (long i = 0; i < Long.MAX_VALUE; i += step)
{
while(futures.size() > cores)
{
for(int w = 0; w < futures.size();w++)
{
if(futures.get(w).isDone())
{
futures.remove(w);
break;
}
}
try
{
Thread.sleep(0);
}
catch (InterruptedException e)
{
// TODO Auto-generated catch block
e.printStackTrace();
}
}
{
final long j = i;
if (passwordFound == false)
{
futures.add(executor.submit(new Runnable()
{
public void run()
{
long border = j + step;
StringBuffer toCrack = new StringBuffer(10);
toCrack.append(constructString3(j, min, max));
for (long k = j; k < border; k++)
{
incrementString(toCrack, min, max);
boolean found = toCrack.toString().equals(passwordToCrack);
if (found)
{
crackedPassword = toCrack;
passwordFound = found;
break;
}
}
}
}));
}
else
{
break;
}
}
}
executor.shutdownNow();
}
public String constructString3(long number, long min, long max)
{
StringBuffer text = new StringBuffer();
if (number > Long.MAX_VALUE - min)
{
number = Long.MAX_VALUE - min;
}
ArrayList<Long> vector = new ArrayList<Long>(10);
vector.add(min - 1 + number);
long range = max - min + 1;
boolean nextLetter = false;
for (int i = 0; i < vector.size(); i++)
{
long nextLetterCounter = 0;
while (vector.get(i) > max)
{
nextLetter = true;
long multiplicator = Math.abs(vector.get(i) / range);
if ((vector.get(i) - (multiplicator * range)) < min)
{
multiplicator -= 1;
}
vector.set(i, vector.get(i) - (multiplicator * range));
nextLetterCounter += multiplicator;
}
if (nextLetter)
{
vector.add((long) (min + nextLetterCounter - 1));
nextLetter = false;
}
text.append((char) vector.get(i).intValue());
}
return text.toString();
}
}

Stopwatch Class

public class Stopwatch {
private double startTime;
private double endTime;
public static void main(String[]args) {
}
public void stopWatch() {
startTime = System.currentTimeMillis();
}
public void start() {
startTime = System.currentTimeMillis();
}
public void stop() {
endTime = System.currentTimeMillis();
}
public long getStartTime()
{
return (long) startTime;
}
public long getEndTime()
{
return (long) endTime;
}
public long getElapsedTime()
{
return (long) (System.currentTimeMillis() - startTime);
}
public short getMilliSeconds()
{
return (short)((System.currentTimeMillis() - startTime) % 1000);
}
}
I need to run this testSearch with the StopWatch Class above
When I input the array size I get the Linear Search result but the Binary Search stays at 0 nano seconds
import java.util.*;
public class testSearch {
public static void main(String[] args){
// input array size from user
Scanner input = new Scanner(System.in);
System.out.print("Enter array size: ");
int size = input.nextInt();
System.out.println();
// create the array (the numbers do not really matter)
int[] numbers = new int[size];
for(int i=0; i<numbers.length; i++){
// we want the numbers sorted for binary search
// so why not just the numbers 0,1,...,size-1
numbers[i]=i;
}
// store the time now
long startTime = System.nanoTime();
// linear search for size (which is not in the array)
linearSearch(numbers,size);
// display the time elapsed
System.out.println("The time taken by Linear Search is " + (System.nanoTime() - startTime) + "nanoseconds.");
// prepare to measure the time elapsed again
startTime = System.nanoTime();
// binary search for size
binarySearch(numbers,size);
// display the time elapsed
System.out.println("The time taken by Binary Search is " + (System.nanoTime() - startTime) + "nanoseconds.");
}
public static boolean linearSearch(int[] a, int key) {
for(int i=0; i<a.length; i++){
if(a[i]==key) return true;
}
return false;
}
public static boolean binarySearch(int[] a, int key) {
int low = 0;
int high = a.length -1;
int mid;
while (low <= high) {
mid = (low + high) / 2;
if (a[mid]>key) {
high = mid - 1;
} else if (a[mid]<key) {
low = mid + 1;
} else {
return true;
}
}
return false;
}
}
Here is the output that I get
Enter array size:
2
The time taken by Linear Search is 1456959922854 milliseconds.
The time taken by Binary Search is 0 milliseconds.

Fork and Join Java

Hey guys I need some help with my homework. I understand the way the Fork and Join Framework works, but my code does not join the results. Our exercise is to write a program, that counts the true values in an array. Sorry for any mistakes (bad grammar or something else) in this post, it is my first one.
Edit:
Thanks for all the requests here is my solution of this problem:
TrueFinder Class:
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveTask;
class TrueFinder extends RecursiveTask<TrueResult>
{
private static final int SEQUENTIAL_THRESHOLD = 5;
private boolean[] trueData;
private final int start;
private final int end;
public TrueFinder(boolean[] data, int start, int end)
{
this.trueData = data;
this.start = start;
this.end = end;
}
public TrueFinder(boolean[] data)
{
this(data, 0, data.length);
}
protected TrueResult compute()
{
final int length = end - start;
int counter = 0;
if (length < SEQUENTIAL_THRESHOLD)
{
for (int i = start; i < end; i++)
{
if (trueData[i])
{
counter++;
}
}
return new TrueResult(counter);
}
else
{
final int split = length / 2;
TrueFinder left = new TrueFinder(trueData, start, start + split);
left.fork();
TrueFinder right = new TrueFinder(trueData, start + split, end);
TrueResult subResultRight = right.compute();
TrueResult subResultLeft = left.join();
return new TrueResult(subResultRight.getTrueCounter() +
subResultLeft.getTrueCounter());
}
}
public static void main(String[] args)
{
int trues = 0;
boolean[] trueArray = new boolean[500];
for (int i = 0; i < 500; i++)
{
if (Math.random() < 0.3)
{
trueArray[i] = true;
trues++;
}
else
{
trueArray[i] = false;
}
}
TrueFinder finder = new TrueFinder(trueArray);
ForkJoinPool pool = new ForkJoinPool(4);
long startTime = System.currentTimeMillis();
TrueResult result = pool.invoke(finder);
long endTime = System.currentTimeMillis();
long actualTime = endTime - startTime;
System.out.println("Array mit der Länge " + trueArray.length + " in"
actualTime + " msec dursucht und " + result.getTrueCounter() +
" von " + trues + " True Werten gefunden.");
}
}
And the result class:
public class TrueResult
{
private int trueCounter;
public TrueResult(int counter)
{
this.trueCounter = counter;
}
public int getTrueCounter()
{
return trueCounter;
}
}
The splitting task of your souce code is wrong as :
(1) your splitting isn't started from 0:
your start is 1
(2) fraction point is ignored for your splitting;
(granted that SEQUENTIAL_THRESHOLD=5 and trueArray.length = 13, your splitting is ignoring of the numbers from 11 to 12)
(3) if you modify for (1) and (2), the length of subtasks must be split not SQCUQNTIALTHRESHOLD.
So, the modifying source code is below:
else
{
int split = (length - 1 ) / SEQUENTIAL_THRESHOLD + 1;
TrueFinder[] subtasks = new TrueFinder[split];
int start = 0;
for(int i = 0; i < split - 1; i++)
{
subtasks[i] = new TrueFinder(trueData, start, start + SEQUENTIAL_THRESHOLD);
subtasks[i].fork();
start += SEQUENTIAL_THRESHOLD;
}
subtasks[split - 1] = new TrueFinder(trueData, start, length);
counter = subtasks[split - 1].compute();// better invoking compute than join
for (int i = 0; i < SEQUENTIAL_THRESHOLD; i++)
{
counter += subtasks[i].join();
}
return new TrueResult(counter);
}

Categories