I just want to understand why do we really need thread safety with collections? I know that if there are two threads and first thread is iterating over the collection and second thread is modifying the collection then first thread will get ConcurrentModificationException.
But then what if, if I know that none of my threads will iterate over the collection using an iterator, so does it means that thread safety is only needed because we want to allow other threads to iterator over the collection using an iterator? Are there any other reasons and usecases?
Any sort of reading and any sort of writing in two different threads can cause issues if you're not using a thread safe collection.
Iterating is a kind of reading, but so are List.get, Set.contains, Map.get, and many other operations.
(Iterating is a case in which Java can easily detect thread safety issues -- though multiple threads are rarely the actual reason for ConcurrentModificationException.)
I know that if there are two threads and first thread is iterating over the collection and second thread is modifying the collection then first thread will get ConcurrentModificationException.
That's not true. ConcurrentModificationException is for situation when your iterate thru collection and change it at the same time.
Thread safety is complex concept that includes several parts. It won't be easy to explain why we need it.
Main thing is because of the reason outside of scope of this discussion changes made in one thread may not be visible in another.
I just want to understand why do we really need thread safety with collections?
We need thread safety with any object that is being modified. Period. If two threads are sharing the same object and one thread makes a modification, there is no guarantee that the update to the object will be seen by the other thread and there are possibilities that the object may be partially updated causing exceptions, hangs, or other unexpected results.
One of the speedups that is gained with threads is local CPU cached memory. Each thread running in a CPU has local cached memory that is much faster than system memory. The cache is used as much as possible for high speed calculations and then invalidated or flushed to system memory when necessary. Without locking and memory synchronization, each thread could be working with invalid memory and could experience race conditions.
This is why threaded programs need to use concurrent collections (think ConcurrentHashMap) or protect collections (or any mutable object) using synchronized locks or other mechanisms. These ensure that the objects can't be modified at the same time and ensure that the modifications are published between threads appropriately.
Related
I have an ArrayList instance that is shared by multiple threads. It's gets initialized in a synchronized block (so there is a memory barrier to make it visible to all threads) and all threads only read from it. The ArrayList never changes.
I've read lots of posts online but it's still not clear to me if it's safe to read no matter how I do the read. If I get an iterator from it in each thread do the iterators share some state that gets altered while iterating etc. I'm not sharing the iterators, each thread gets it's own.
Is it thread safe for reads, no matter how I do the read?
As long as each thread has its own iterator, then you are OK.
The only time you need to worry about synchronization is when one thread is modifying (writing) a shared data structure while others are reading from it. This can lead to the data-structure being in an inconsistent state (imagine the thread wasn't finished its modifications when all of a sudden the scheduler pre-empts it/switches to another thread).
When all threads are only reading, the data will never be in an inconsistent state, and you don't need to worry about thread synchronization.
As long as iterators are used to read only this will work as expected.Also an iterator is fail-fast because it may throws a ConcurrentModificationException due to following reasons:
In multithreaded processing, if one thread is trying to modify a
Collection while another thread is iterating over it.
In single-threaded or in multithreaded, if after the creation of the
Iterator, the collection is modified using its own methods rather
using the Iterator's own methods.
I have a HashMap that I need multiple threads to access. My design is such that each thread will be reading and writing to its own entry in the map: the same map, but no two threads work on the same entry. No one thread will ever need to iterate over the map or call size(). So my question is: do I have to synchronize on the Hashmap or may I just use it with confidence that it will never throw a ConcurrentModificationException? My obvious worry is that synchronizing will create a huge bottleneck.
So my question is: do I have to synchronize on the Hashmap or may I just use it with confidence that it will never throw a ConcurrentModificationException?
You should use ConcurrentHashMap for this purpose. The issue is not just about iterating but it is also about memory synchronization.
... each thread will be reading and writing to its own entry in the map ...
This is someone ambiguous. If your HashMap is static in that the threads are only reading from the map and only making changes to the object that is referenced in the map but not changing the value in the map then you will be fine. You can initialize your map before the threads are started and they can use the map without memory synchronization.
However, if one thread changes the map in any manner to point to a new object, it must publish that change to central memory and other threads must see those updates. That requires memory synchronization on both the reading and writing sides.
My obvious worry is that synchronizing will create a huge bottleneck.
This smacks of premature optimization. Most likely you will be limit by IO long before contention over the map is an issue. In any case, switching to use a ConcurrentHashMap will alleviate your worries and it will be a minimal performance decrease compared to a non-synchronized map.
I'm new to java.
I'm little bit confused between Threadsafe and synchronized.
Thread safe means that a method or class instance can be used by multiple threads at the same time without any problems occurring.
Where as Synchronized means only one thread can operate at single time.
So how they are related to each other?
The definition of thread safety given in Java Concurrency in Practice is:
A class is thread-safe if it behaves correctly when accessed from multiple threads, regardless of the scheduling or interleaving of the execution of those threads by the runtime environment, and with no additional synchronization or other coordination on the part of the calling code.
For example, a java.text.SimpleDateFormat object has internal mutable state that is modified when a method that parses or formats is called. If multiple threads call the methods of the same dateformat object, there is a chance a thread can modify the state needed by the other threads, with the result that the results obtained by some of the threads may be in error. The possibility of having internal state get corrupted causing bad output makes this class not threadsafe.
There are multiple ways of handling this problem. You can have every place in your application that needs a SimpleDateFormat object instantiate a new one every time it needs one, you can make a ThreadLocal holding a SimpleDateFormat object so that each thread of your program can access its own copy (so each thread only has to create one), you can use an alternative to SimpleDateFormat that doesn't keep state, or you can do locking using synchronized so that only one thread at a time can access the dateFormat object.
Locking is not necessarily the best approach, avoiding shared mutable state is best whenever possible. That's why in Java 8 they introduced a date formatter that doesn't keep mutable state.
The synchronized keyword is one way of restricting access to a method or block of code so that otherwise thread-unsafe data doesn't get corrupted. This keyword protects the method or block by requiring that a thread has to acquire exclusive access to a certain lock (the object instance, if synchronized is on an instance method, or the class instance, if synchronized is on a static method, or the specified lock if using a synchronized block) before it can enter the method or block, while providing memory visibility so that threads don't see stale data.
Thread safety is a desired behavior of the program, where the synchronized block helps you achieve that behavior. There are other methods of obtaining Thread safety e.g immutable class/objects. Hope this helps.
Thread safety: A thread safe program protects it's data from memory consistency errors. In a highly multi-threaded program, a thread safe program does not cause any side effects with multiple read/write operations from multiple threads on shared data (objects). Different threads can share and modify object data without consistency errors.
synchronized is one basic method of achieving ThreadSafe code.
Refer to below SE questions for more details:
What does 'synchronized' mean?
You can achieve thread safety by using advanced concurrency API. This documentation page provides good programming constructs to achieve thread safety.
Lock Objects support locking idioms that simplify many concurrent applications.
Concurrent Collections make it easier to manage large collections of data, and can greatly reduce the need for synchronization.
Atomic Variables have features that minimize synchronization and help avoid memory consistency errors.
ThreadLocalRandom (in JDK 7) provides efficient generation of pseudorandom numbers from multiple threads.
Refer to java.util.concurrent and java.util.concurrent.atomic packages too for other programming constructs.
Related SE question:
Synchronization vs Lock
Synchronized: only one thread can operate at same time.
Threadsafe: a method or class instance can be used by multiple threads at the same time without any problems occurring.
If you relate this question as, Why synchronized methods are thread safe? than you can get better idea.
As per the definition this appears to be confusive. But not,if you understand it analytically.
Synchronized means: sequentially one by one in an order,Not concurrently [Not at the same time].
synchronized method not allows to act another thread on it, While a thread is already working on it.This avoids concurrency.
example of synchronization: If you want to buy a movie ticket,and stand in a queue. you will get the ticket only after the person in front of you get the ticket.
Thread safe means: method becomes safe to be accessed by multiple threads without any problem at the same time.synchronized keyword is one of the way to achieve 'thread safe'. But Remember:Actually while multiple threads tries to access synchronized method they follow the order so becomes safe to access. Actually, Even they act at the same time, but cannot access the same resource(method/block) at the same time, because of synchronized behavior of the resource.
Because If a method becomes synchronized, so this is becomes safe to allow multiple threads to act on it, without any problem. Remember:: multiple threads "not act on it at the same time" hence we call synchronized methods thread safe.
Hope this helps to understand.
After patiently reading through a lot of answers and not being too technical at the same time, I could say something definite but close to what Nayak had already replied to fastcodejava above, which comes later on in my answer but look
synchronization is not even close to brute-forcing thread-safety; it's just making a piece of code (or method) safe and incorruptible for a single authorized thread by preventing it from being used by any other threads.
Thread safety is about how all threads accessing a certain element behave and get their desired results in the same way if they would have been sequential (or even not so), without any form of undesired corruption (sorry for the pleonasm) as in an ideal world.
One of the ways of achieving proximity to thread-safety would be using classes in java.util.concurrent.atomic.
Sad, that they don't have final methods though!
Nayak, when we declare a method as synchronized, all other calls to it from other threads are locked and can wait indefinitely. Java also provides other means of locking with Lock objects now.
You can also declare an object to be final or volatile to guarantee its availability to other concurrent threads.
ref: http://www.javamex.com/tutorials/threads/thread_safety.shtml
In practice, performance wise, Thread safe, Synchronised, non-thread safe and non-synchronised classes are ordered as:
Hashtable(slower) < Collections.SynchronizedMap < HashMap(fastest)
Question arises after reading this one. What is the difference between synchronized and unsynchronized objects? Why are unsynchronized objects perform better than synchronized ones?
What is the difference between Synchronized and Unsynchronized objects ? Why is Unsynchronized Objects perform better than Synchronized ones ?
HashTable is considered synchronized because its methods are marked as synchronized. Whenever a thread enters a synchronized method or a synchronized block it has to first get exclusive control over the monitor associated with the object instance being synchronized on. If another thread is already in a synchronized block on the same object then this will cause the thread to block which is a performance penalty as others have mentioned.
However, the synchronized block also does memory synchronization before and after which has memory cache implications and also restricts code reordering/optimization both of which have significant performance implications. So even if you have a single thread calling entering the synchronized block (i.e. no blocking) it will run slower than none.
One of the real performance improvements with threaded programs is realized because of separate CPU high-speed memory caches. When a threaded program does memory synchronization, the blocks of cached memory that have been updated need to be written to main memory and any updates made to main memory will invalidate local cached memory. By synchronizing more, again even in a single threaded program, you will see a performance hit.
As an aside, HashTable is an older class. If you want a reentrant Map then ConcurrentHashMap should be used.
Popular speaking the Synchronized Object is a single thread model,if there are 2 thread want to modify the Synchronized Object . if the first one get the lock of the Object ,that the last one should be waite。but if the Object is Unsynchronized,they can operat the object at the same time,It is the reason that why the Unsynchronized is unsafe。
For synchronization to work, the JVM has to prevent more than one thread entering a synchronized block at a time. This requires extra processing than if the synchronized block did not exist placing additional load on the JVM and therefore reducing performance.
The exact locking mechanisms in play when synchronization occurs are explain in How the Java virtual machine performs thread synchronization
Synchronization:
Array List is non-synchronized which means multiple threads can work
on Array List at the same time. For e.g. if one thread is performing
an add operation on Array List, there can be an another thread
performing remove operation on Array List at the same time in a multi
threaded environment
while Vector is synchronized. This means if one thread is working on
Vector, no other thread can get a hold of it. Unlike Array List, only
one thread can perform an operation on vector at a time.
Performance:
Synchronized operations consumes more time compared to
non-synchronized ones so if there is no need for thread safe
operation, Array List is a better choice as performance will be
improved because of the concurrent processes.
Synchronization is useful because it allows you to prevent code from being run twice at the same time (commonly called concurrency). This is important in a threaded environment for a multitude of reasons. In order to provide this guarantee the JVM has to do extra work which means that performance decreases. Because synchronization requires that only one process be allowed to execute at a time, it can cause multi-threaded programs to function as slowly (or slower!) than single-threaded programs.
It is important to note that the amount of performance decrease is not always obvious. Depending on the circumstances, the decrease may be tiny or huge. This depends on all sorts of things.
Finally, I'd like to add a short warning: Concurrent programming using synchronization is hard. I've found that usually other concurrency controls better suit my needs. One of my favorites is Atomic Reference. This utility is great because it very narrowly limits the amount of synchronized code. This makes it easier to read, maintain and write.
From the code, it seems that there is a difference in the way ownership of members is handled in the case of a LinkedList and ArayBlockingQueue.
(It may be the same in others too - but as of now I am focussing only on the above.)
While in the case of ArrayBlockingQueue, the ownership seems to be transferred from the input thread to the extracting thread - in LinkedList, the thread that puts in an object, maintains a reference to it even after it has been retrieved by a separate thread(potentially).
Is my understanding correct?
Why do we have this difference in behaviour?
(Here I am using instance and thread synonymously,as an instance would be running in a particular thread.)
LinkedList does not provide any thread safety or synchronization at all. You are responsible for doing that yourself.
The concurrent package collections do provide thread safety on the collection itself, you are still responsible for managing any modifications you might make to objects within the collection though.
There is no concept of "ownership" of objects in Java.
Watching Oracle documentation:
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/ArrayBlockingQueue.html
http://docs.oracle.com/javase/6/docs/api/java/util/LinkedList.html
You can read that they are different about thread safety.
The first one is inside cuncurrent subpackege.
In the second (LinkedList) you can read "Note that this implementation is not synchronized".
This should be the cause of the differences you are observing.