What is the reason behind this weird implementation of System.console()? - java

I stumbled upon the source code of System.console() and I'm unsure why exactly it is implemented like this:
/**
* Returns the unique {#link java.io.Console Console} object associated
* with the current Java virtual machine, if any.
*
* #return The system console, if any, otherwise {#code null}.
*
* #since 1.6
*/
public static Console console() {
Console c;
if ((c = cons) == null) {
synchronized (System.class) {
if ((c = cons) == null) {
cons = c = SharedSecrets.getJavaIOAccess().console();
}
}
}
return c;
}
More specifically, what is the point of the assignments to c? The variable cons is already static and holds the console object.

tl;dr: It’s a common optimisation technique.
This pattern is called double-checked locking.
The implementation could also just look much simpler, as follows:
public static synchronized Console console() {
if (cons == null) {
cons = SharedSecrets.getJavaIOAccess().console();
}
return cons;
}
However, that way we would always lock the entire System class for every single call of the console method, which would lead to a substantial slowdown in typical applications.
Instead, the actual implementation defensively locks the object only if it can’t acquire a valid cons instance. And it assigns the result to a local variable c so that this instance remains valid even if another thread overrides cons after the (unlocked) check happens. It also helps reduce reading the cons reference, which is declared as volatile, and reading it is thus slower than reading a non-volatile reference.

Related

A rare usage of WeakReference?

I have a class whose instances are initialized and used by underlying flatform.
class MyAttributeConverter implements AttributeConverter<XX, YY> {
public YY convertToDatabaseColumn(XX attribute) { return null; }
public XX convertToEntityAttribute(YY dbData) { return null; }
}
Nothing's wrong and I thought I need to add some static methods for being used as method references.
private static MyAttributeConverter instance;
// just a lazy-initialization;
// no synchronization is required;
// multiple instantiation is not a problem;
private static MyAttributeConverter instance() {
if (instance == null) {
instance = new MyAttributeConverter();
}
return instance;
}
// do as MyAttributeConverter::toDatabaseColumn(xx)
public static YY toDatabaseColumn(XX attribute) {
return instance().convertToDatabaseColumn(attribute);
}
public static XX toEntityAttribute(YY dbData) {
return instance().convertToEntityAttribute(attribute);
}
Still nothing seems wrong (I believe) and I don't like the instance persisted with the class and that's why I'm trying to do this.
private static WeakReference<MyAttributeConverter> reference;
public static <R> R applyInstance(Function<? super MyAttributeConverter, ? extends R> function) {
MyAttributeConverter referent;
if (reference == null) {
referent = new MyAttributeConverter();
refernce = new WeakReference<>(referent);
return applyInstance(function);
}
referent = reference.get();
if (referent == null) {
referent = new MyAttributeConverter();
refernce = new WeakReference<>(referent);
return applyInstance(function);
}
return function.apply(referent); // ##?
}
I basically don't even know how to test this code. And I'm sorry for my questions which each might be somewhat vague.
Is this a (right/wrong) approach?
Is there any chance that reference.get() inside the function.apply idiom may be null?
Is there any chance that there may be some problems such as memory-leak?
Should I rely on SoftReference rather than WeakReference?
Thank you.
Note that a method like
// multiple instantiation is not a problem;
private static MyAttributeConverter instance() {
if (instance == null) {
instance = new MyAttributeConverter();
}
return instance;
}
is not thread safe, as it bears two reads of the instance field; each of them may perceive updates made by other threads or not. This implies that the first read in instance == null may perceive a newer value written by another thread whereas the second in return instance; could evaluate to the previous value, i.e. null. So this method could return null when more than one thread is executing it concurrently. This is a rare corner case, still, this method is not safe. You’d need a local variable to ensure that the test and the return statement use the same value.
// multiple instantiation is not a problem;
private static MyAttributeConverter instance() {
MyAttributeConverter current = instance;
if (current == null) {
instance = current = new MyAttributeConverter();
}
return current;
}
This still is only safe when MyAttributeConverter is immutable using only final fields. Otherwise, a thread may return an instance created by another thread in an incompletely constructed state.
You can use the simple way to make it safe without those constraints:
private static final MyAttributeConverter instance = new MyAttributeConverter();
private static MyAttributeConverter instance() {
return instance;
}
This still is lazy as class initialization only happens on one of the specified triggers, i.e. the first invocation of the method instance().
Your usage of WeakReference is subject to the same problems. Further, it’s not clear why you resort to a recursive invocation of your method at two points where you already have the required argument in a local variable.
A correct implementation can be far simpler:
private static WeakReference<MyAttributeConverter> reference;
public static <R> R applyInstance(
Function<? super MyAttributeConverter, ? extends R> function) {
WeakReference<MyAttributeConverter> r = reference;
MyAttributeConverter referent = r != null? r.get(): null;
if (referent == null) {
referent = new MyAttributeConverter();
reference = new WeakReference<>(referent);
}
return function.apply(referent);
}
But before you are going to use it, you should reconsider whether the complicated code is worth the effort. The fact that you are accepting the need to reconstruct the object when it has been garbage collected, even potentially constructing multiple instances on concurrent invocations, suggest that you know that the construction will be cheap. When the construction is cheap, you probably don’t need to cache an instance of it at all.
Just consider
public static <R> R applyInstance(
Function<? super MyAttributeConverter, ? extends R> function) {
return function.apply(new MyAttributeConverter());
}
It’s at least worth trying, measuring the application’s performance and comparing it with the other approaches.
On the other hand, it doesn’t look like the instance was occupying a significant amount of memory nor holding non-memory resources. As otherwise, you were more worried about the possibility of multiple instances flying around. So the other variant worth trying and comparing, is the one shown above using a static final field with lazy class initialization and no opportunity to garbage collect that small object.
One last clarification. You asked
Is there any chance that reference.get() inside the function.apply idiom may be null?
Since there is no reference.get() invocation inside the evaluation of function.apply, there is no chance that such an invocation may evaluate to null at this point. The function receives a strong reference and since the calling code ensured that this strong reference is not null, it will never become null during the invocation of the apply method.
Generally, the garbage collector will never alter the application state in a way that code using strong references will notice a difference (letting the availability of more memory aside).
But since you asked specifically about reference.get(), a garbage collector may collect an object after its last use, regardless of method executions or local scopes. So the referent could get collected during the execution of the apply method when this method does not use the object anymore. Runtime optimizations may allow this to happen earlier than you might guess by looking at the source code, because what may look like an object use (e.g. a field read) may not use the object at runtime (e.g. because that value is already held in a CPU register, eliminating the need to access the object’s memory). As said, all without altering the method’s behavior.
So a hypothetical reference.get() during the execution of the apply method could in principle evaluate to null, but there is no reason for concern, as said, the behavior of the apply method does not change. The JVM will retain the object’s memory as long as needed for ensuring this correct method execution.
But that explanation was just for completeness. As said, you should not use weak nor soft references for objects not holding expensive resources.

Why DCL without volatile is valid for primitives?

Disclaimer: I don't use DCL in real production code - I have an academic interest only.
I've read following famous article: The "Double-Checked Locking is Broken" Declaration
The problem declaration(my vision):
// Correct multithreaded version
class Foo {
private Helper helper = null;
public synchronized Helper getHelper() {
if (helper == null)
helper = new Helper();
return helper;
}
// other functions and members...
}
Let's imagine that thread_1 executed line helper = new Helper();
Another Thread(thread_2) might see that helper link is not null but it is not initialized yet. It happens because of constructor invocation might be reordered with helper link assignment
fromthread_2 veiw.
But at this article mentioned that this approach works properly for 32 bit primitives.
Although the double-checked locking idiom cannot be used for
references to objects, it can work for 32-bit primitive values (e.g.,
int's or float's). Note that it does not work for long's or double's,
since unsynchronized reads/writes of 64-bit primitives are not
guaranteed to be atomic.
// Correct Double-Checked Locking for 32-bit primitives
class Foo {
private int cachedHashCode = 0;
public int hashCode() {
int h = cachedHashCode;
if (h == 0)
synchronized(this) {
if (cachedHashCode != 0) return cachedHashCode;
h = computeHashCode();
cachedHashCode = h;
}
return h;
}
// other functions and members...
}
Please explain me why it works ? I know that 32 bit write is atomic.
What the reason of local variable here ?
The essence of the "DCL is broken" trope is that, using DCL to initialize a singleton object, a thread could see the reference to the object before it sees the object in a fully initialized state. DCL adequately synchronizes the effectively final global variable that refers to the singleton, but it fails to synchronize the singleton object to which the global refers.
In your example, there's only just the global variable. There is no "object to which it refers."

Visibility effects of synchronization in Java

This article says:
In this noncompliant code example, the Helper class is made immutable
by declaring its fields final. The JMM guarantees that immutable
objects are fully constructed before they become visible to any other
thread. The block synchronization in the getHelper() method guarantees
that all threads that can see a non-null value of the helper field
will also see the fully initialized Helper object.
public final class Helper {
private final int n;
public Helper(int n) {
this.n = n;
}
// Other fields and methods, all fields are final
}
final class Foo {
private Helper helper = null;
public Helper getHelper() {
if (helper == null) { // First read of helper
synchronized (this) {
if (helper == null) { // Second read of helper
helper = new Helper(42);
}
}
}
return helper; // Third read of helper
}
}
However, this code is not guaranteed to succeed on all Java Virtual
Machine platforms because there is no happens-before relationship
between the first read and third read of helper. Consequently, it is
possible for the third read of helper to obtain a stale null value
(perhaps because its value was cached or reordered by the compiler),
causing the getHelper() method to return a null pointer.
I don't know what to make of it. I can agree that there is no happens before relationship between first and third read, at least no immediate relationship. Isn't there a transitive happens-before relationship in a sense that first read must happen before second, and that second read has to happen before third, therefore first read has to happen before third
Could someone elaborate more proficiently?
No, there is no transitive relationship.
The idea behind the JMM is to define rules that JVM must respect. Providing the JVM follows these rules, they are authorized to reorder and execute code as they want.
In your example, the 2nd read and the 3rd read are not related - no memory barrier introduced by the use of synchronized or volatile for example. Thus, the JVM is allowed to execute it as follow:
public Helper getHelper() {
final Helper toReturn = helper; // "3rd" read, reading null
if (helper == null) { // First read of helper
synchronized (this) {
if (helper == null) { // Second read of helper
helper = new Helper(42);
}
}
}
return toReturn; // Returning null
}
Your call would then return a null value. Yet, a singleton value would have been created. However, sub-sequent calls may still get a null value.
As suggested, using a volatile would introduce new memory barrier. Another common solution is to capture the read value and return it.
public Helper getHelper() {
Helper singleton = helper;
if (singleton == null) {
synchronized (this) {
singleton = helper;
if (singleton == null) {
singleton = new Helper(42);
helper = singleton;
}
}
}
return singleton;
}
As your rely on a local variable, there is nothing to reorder. Everything is happening in the same thread.
No, there's no any transitive relationship between those reads. synchornized only guarantees visibility of changes that were made within synchronized blocks of the same lock. In this case all reads do not use the synchronized blocks on the same lock, hence this is flawed and visibility is not guaranteed.
Because there is no locking once the field is initialized, it is critical that the field be declared volatile. This will ensure the visibility.
private volatile Helper helper = null;
It's all explained here https://shipilev.net/blog/2014/safe-public-construction/#_singletons_and_singleton_factories, the issue simple.
... Notice that we do several reads of instance in this code, and at
least "read 1" and "read 3" are the reads without any
synchronization ... Specification-wise, as mentioned in happens-before
consistency rules, a read action can observe the unordered write via
the race. This is decided for each read action, regardless what other
actions have already read the same location. In our example, that
means that even though "read 1" could read non-null instance, the code
then moves on to returning it, then it does another racy read, and it
can read a null instance, which would be returned!

synchronized in java - Proper use

I'm building a simple program to use in multi processes (Threads).
My question is more to understand - when I have to use a reserved word synchronized?
Do I need to use this word in any method that affects the bone variables?
I know I can put it on any method that is not static, but I want to understand more.
thank you!
here is the code:
public class Container {
// *** data members ***
public static final int INIT_SIZE=10; // the first (init) size of the set.
public static final int RESCALE=10; // the re-scale factor of this set.
private int _sp=0;
public Object[] _data;
/************ Constructors ************/
public Container(){
_sp=0;
_data = new Object[INIT_SIZE];
}
public Container(Container other) { // copy constructor
this();
for(int i=0;i<other.size();i++) this.add(other.at(i));
}
/** return true is this collection is empty, else return false. */
public synchronized boolean isEmpty() {return _sp==0;}
/** add an Object to this set */
public synchronized void add (Object p){
if (_sp==_data.length) rescale(RESCALE);
_data[_sp] = p; // shellow copy semantic.
_sp++;
}
/** returns the actual amount of Objects contained in this collection */
public synchronized int size() {return _sp;}
/** returns true if this container contains an element which is equals to ob */
public synchronized boolean isMember(Object ob) {
return get(ob)!=-1;
}
/** return the index of the first object which equals ob, if none returns -1 */
public synchronized int get(Object ob) {
int ans=-1;
for(int i=0;i<size();i=i+1)
if(at(i).equals(ob)) return i;
return ans;
}
/** returns the element located at the ind place in this container (null if out of range) */
public synchronized Object at(int p){
if (p>=0 && p<size()) return _data[p];
else return null;
}
Making a class safe for multi-threaded access is a complex subject. If you are not doing it in order to learn about threading, you should try to find a library that does it for you.
Having said that, a place to start is by imagining two separate threads executing a method line by line, in an alternating fashion, and see what would go wrong. For example, the add() method as written above is vulnerable to data destruction. Imagine thread1 and thread2 calling add() more or less at the same time. If thread1 runs line 2 and before it gets to line 3, thread2 runs line 2, then thread2 will overwrite thread1's value. Thus you need some way to prevent the threads from interleaving like that. On the other hand, the isEmpty() method does not need synchronization since there is just one instruction that compares a value to 0. Again, it is hard to get this stuff right.
You can check the following documentation about synchronized methods: http://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html
By adding the synchronized keyword two things are guaranteed to happen:
First, it is not possible for two invocations of synchronized methods on the same object to interleave. When one thread is executing a synchronized method for an object, all other threads that invoke synchronized methods for the same object block (suspend execution) until the first thread is done with the object.
Second, when a synchronized method exits, it automatically establishes a happens-before relationship with any subsequent invocation of a synchronized method for the same object. This guarantees that changes to the state of the object are visible to all threads.
So whenever you need to guarantee that only one thread accesses your variable at a time to read/write it to avoid consistency issues, one way is to make your method synchronized.
My advice to you is to first read Oracle's concurrency tutorial.
A few comments:
Having all your methods synchronized causes bottlenecks
Having _data variable public is a bad practice and will difficult concurrent programming.
It seems that you are reimplementing a collection, better use existing Java's concurrent collections.
Variable names would better not begin with _
Avoid adding comments to your code and try to have declarative method names.
+1 for everybody who said read a tutorial, but here's a summary anyway.
You need mutual exclusion (i.e., synchronized blocks) whenever it is possible for one thread to create a temporary situation that other threads must not be allowed to see. Suppose you have objects stored in a search tree. A method that adds a new object to the tree probably will have to reassign several object references, and until it finishes its work, the tree will be in an invalid state. If one thread is allowed to search the tree while another thread is in the add() method, then the search() function may return an incorrect result, or worse (maybe crash the program.)
One solution is to synchronize the add() method, and the search() method, and any other method that depends on the tree structure. All must be synchronized on the same object (the root node of the tree would be an obvious choice).
Java guarantees that no more than one thread can be synchronized on the same object at any given time. Therefore, no more than one thread will be able to see or change the internals of the tree at the same time, and the temporary invalid state created inside the add() method will be harmless.
My example above explains the principle of mutual exclusion, but it is a simplistic and inefficient solution to protecting a search tree. A more practical approach would use reader/writer locks, and synchronize only on interesting parts of the tree rather than on the whole thing. Practical synchronization of complex data structures is a hard problem, and whenever possible, you should let somebody else solve it for you. E.g., If you use the container classes in java.util.concurrent instead of creating your own data structures, you'll probably save yourself a lot of work (and maybe a whole lot of debugging).
You need to protect variables that form the object's state. If these variables are used in static method, you have to protect them as well. But, be careful, following example is wrong:
private static int stateVariable = 0;
//wrong!!!!
public static synchronized void increment() {
stateVariable++;
}
public synchronized int getValue() {
return stateVariable;
}
It seems that above is safe, but these methods operate on different locks. Above is more or less corresponds to following:
private static int stateVariable = 0;
//wrong!!!!
public static void increment() {
synchronized (YourClassName.class) {
stateVariable++;
}
}
public synchronized int getValue() {
synchronized (this) {
return stateVariable;
}
}
Notice that different locks are used when mixing static and object methods.

Ensuring safe publication and thread safety in java by means of static factories

The class below is meant to be immutable (but see edit):
public final class Position extends Data {
double latitude;
double longitude;
String provider;
private Position() {}
private static enum LocationFields implements
Fields<Location, Position, List<Byte>> {
LAT {
#Override
public List<byte[]> getData(Location loc, final Position out) {
final double lat = loc.getLatitude();
out.latitude = lat;
// return an arrayList
}
#Override
public void parse(List<Byte> list, final Position pos)
throws ParserException {
try {
pos.latitude = listToDouble(list);
} catch (NumberFormatException e) {
throw new ParserException("Malformed file", e);
}
}
}/* , LONG, PROVIDER, TIME (field from Data superclass)*/;
}
// ========================================================================
// Static API (factories essentially)
// ========================================================================
public static Position saveData(Context ctx, Location data)
throws IOException {
final Position out = new Position();
final List<byte[]> listByteArrays = new ArrayList<byte[]>();
for (LocationFields bs : LocationFields.values()) {
listByteArrays.add(bs.getData(data, out).get(0));
}
Persist.saveData(ctx, FILE_PREFIX, listByteArrays);
return out;
}
public static List<Position> parse(File f) throws IOException,
ParserException {
List<EnumMap<LocationFields, List<Byte>>> entries;
// populate entries from f
final List<Position> data = new ArrayList<Position>();
for (EnumMap<LocationFields, List<Byte>> enumMap : entries) {
Position p = new Position();
for (LocationFields field : enumMap.keySet()) {
field.parse(enumMap.get(field), p);
}
data.add(p);
}
return data;
}
/**
* Constructs a Position instance from the given string. Complete copy
* paste just to get the picture
*/
public static Position fromString(String s) {
if (s == null || s.trim().equals("")) return null;
final Position p = new Position();
String[] split = s.split(N);
p.time = Long.valueOf(split[0]);
int i = 0;
p.longitude = Double.valueOf(split[++i].split(IS)[1].trim());
p.latitude = Double.valueOf(split[++i].split(IS)[1].trim());
p.provider = split[++i].split(IS)[1].trim();
return p;
}
}
Being immutable it is also thread safe and all that. As you see the only way to construct instances of this class - except reflection which is another question really - is by using the static factories provided.
Questions :
Is there any case an object of this class might be unsafely published ?
Is there a case the objects as returned are thread unsafe ?
EDIT : please do not comment on the fields not being private - I realize this is not an immutable class by the dictionary, but the package is under my control and I won't ever change the value of a field manually (after construction ofc). No mutators are provided.
The fields not being final on the other hand is the gist of the question. Of course I realize that if they were final the class would be truly immutable and thread safe (at least after Java5). I would appreciate providing an example of bad use in this case though.
Finally - I do not mean to say that the factories being static has anything to do with thread safety as some of the comments seem(ed) to imply. What is important is that the only way to create instances of this class is through those (static of course) factories.
Yes, instances of this class can be published unsafely. This class is not immutable, so if the instantiating thread makes an instance available to other threads without a memory barrier, those threads may see the instance in a partially constructed or otherwise inconsistent state.
The term you are looking for is effectively immutable: the instance fields could be modified after initialization, but in fact they are not.
Such objects can be used safely by multiple threads, but it all depends on how other threads get access to the instance (i.e., how they are published). If you put these objects on a concurrent queue to be consumed by another thread—no problem. If you assign them to a field visible to another thread in a synchronized block, and notify() a wait()-ing thread which reads them—no problem. If you create all the instances in one thread which then starts new threads that use them—no problem!
But if you just assign them to a non-volatile field and sometime "later" another thread happens to read that field, that's a problem! Both the writing thread and the reading thread need synchronization points so that the write truly can be said to have happened before the read.
Your code doesn't do any publication, so I can't say if you are doing it safely. You could ask the same question about this object:
class Option {
private boolean value;
Option(boolean value) { this.value = value; }
boolean get() { return value; }
}
If you are doing something "extra" in your code that you think would make a difference to the safe publication of your objects, please point it out.
Position is not immutable, the fields have package visibility and are not final, see definition of immutable classes here: http://www.javapractices.com/topic/TopicAction.do?Id=29.
Furthermore Position is not safely published because the fields are not final and there is no other mechanism in place to ensure safe publication. The concept of safe publication is explained in many places, but this one seems particularly relevant: http://www.ibm.com/developerworks/java/library/j-jtp0618/
There are also relevant sources on SO.
In a nutshell, safe publication is about what happens when you give the reference of your constructed instance to another thread, will that thread see the fields values as intended? the answer here is no, because the Java compiler and JIT compiler are free to re-order the field initialization with the reference publication, leading to half baked state becoming visible to other threads.
This last point is crucial, from the OP comment to one of the answers below he appears to believe static methods somehow work differently from other methods, that is not the case. A static method can get inlined much like any other method, and the same is true for constructors (the exception being final fields in constructors post Java 1.5). To be clear, while the JMM doesn't guarantee the construction is safe, it may well work fine on certain or even all JVMs. For ample discussion, examples and industry expert opinions see this discussion on the concurrency-interest mailing list: http://jsr166-concurrency.10961.n7.nabble.com/Volatile-stores-in-constructors-disallowed-to-see-the-default-value-td10275.html
The bottom line is, it may work, but it is not safe publishing according to JMM. If you can't prove it is safe, it isn't.
The fields of the Position class are not final, so I believe that their values are not safely published by the constructor. The constructor is therefore not thread-safe, so no code (such as your factory methods) that use them produce thread-safe objects.

Categories