I am using my REST API, which is camelCase, to call a 3rd party graphQL API, which returns objects in snake_case. To do this, I am using a library to generate the mappers and model files (graphql-java-codegen). As a result, I end up with models that look like
class MyModel {
public my_string;
//...
}
I cannot force the model generation to be done in camelCase. I would like to directly return the generated models as ResponseObjects to my client, but would like the serialization to be in camelCase, without needing to copy the generated model with camelCase fields. So when returning the example, it would look like
{
"myString": "Example str"
}
In my code generation configuration, I have the ability to add annotations at both the class and field level (but no way to customize it at each field, so no #JsonProperty("myString"))
tl;dr:
Is there some annotation / Spring Boot configuration I can use to force models with snake_case naming to serialize into camelCase, without needing to specify the #JsonProperty for every field?
You can create a custom PropertyNamingStrategy subclass and set it as the default naming strategy for one ObjectMapper mapper used only for serialization (you can check this for conversion of a string from snake_case to camelcase):
public class SnakeCaseToCamelCase extends PropertyNamingStrategy {
#Override
public String nameForField(MapperConfig<?> config, AnnotatedField field, String defaultName) {
return Pattern.compile("_([a-z])")
.matcher(defaultName)
.replaceAll(m -> m.group(1).toUpperCase());
}
}
public class MyModel {
public String my_string = "Example str";
}
MyModel model = new MyModel();
mapper.setPropertyNamingStrategy(new SnakeCaseToCamelCase());
//it prints {"myString":"Example str"}
System.out.println(mapper.writeValueAsString(model));
Related
I have a DTO class and some REST services that sometimes return (among other things) a List of those DTOs.
I cannot alter that DTO, as it's used in several places of the project.
However, only for one specific REST service, I need to exclude some of the fields of that DTO object.
Basically I need to be able to apply this solution only at a certain point.
I tried applying #JsonFilter("restrictionFilter") to my DTO class, but then I get an error if I don't use that filter with a mapper every time I marshall the object into a JSON, like this:
final String writeValueAsString = mapper.writer(
new SimpleFilterProvider()
.addFilter("restrictionFilter",
SimpleBeanPropertyFilter.filterOutAllExcept("name", "sizeInByte"))
).writeValueAsString(objectsList);
The error is Cannot resolve PropertyFilter with id 'restrictionFilter'; no FilterProvider configured...
This issue sounds like a perfect Decorator design pattern use.
Create a new DTO with a constructor that gets the original DTO and create which get methods you want or ignore whatever get methods you like.
For example:
public class NewDto {
OldDto oldDto;
public NewDto(OldDto oldDto){
this.oldDto = oldDto;
}
public String getName(){
return oldDto.getName();
}
}
Now you will only need to return the NewDto object, like so:
return new NewDto(oldDto)
I'm using Retrofit along with GSON to retrieve data from an API and deserialize it to Java objects using GSON's #SerializedName annotation like below:
public class MyApiObject {
#SerializedName("apiJsonKey")
private String myValue;
...
}
It works fine, but I need to send objects of MyApiObject to a Firebase database and for that the object needs to be serialized back to JSON. Firebase's Java API does this automatically, but it generates the keys based on the instance variable's names (myValue) and not the serialized name ("apiJsonKey").
I know I can use Firebase's #PropertyName annotation, but that would require me to use two annotations with the same values, which is redundant and error-prone.
Is there a better way to do this?
The usual aproach in this cases is to set a constant and use it in both annotations.
public class MyApiObject {
private static final String MY_VALUE_NAME = "apiJsonKey";
#SerializedName(MY_VALUE_NAME)
#ParameterName(MY_VALUE_NAME)
private String myValue;
...
}
This is fairly usual in sequence annotations for JPA.
I am using jackson to handle JSON (de)-serialization. I have a bunch of classes which are annotated with are essentially objects holding properties and associated getters and setters.
However, I often find that at some point I want to add additional properties which I don't want to include in the (de)-serialization process. This does work using #JsonIgnore, but it strikes me as relatively ugly since I have to add the annotation everywhere and things break down as soon as I forget.
I would like to know if there is a better way to separate the ignored and serialized properties. I have the following two ideas:
Use inheritance, add the new properties to the inherited class:
// everything here should be (de)-serialized
class Base {
public int getJSONProperty() {...}
}
// nothing specific to the class Derived should be (de)-serialized
class Derived extends Base {
// *not* to be included
public SomeClass getAdditionalProperty() {...}
}
However, I don't know how to tell jackson to deserialize the Derived
objects as Bases. Is this possible (Does jackson make guarantees
regarding (non)-polymorphic serialization of classes)?
Use MixIn annotations. This would require an additional abstract
class for each existing class. Also I am not sure whether this solves
the problem. Are getters which do not appear in the MixIn base class
ignored automatically or do I need to #JsonIgnore them manually?
I've seen that you don't like the previous solution i've provided, so I'm again here to provide another way to do what you want using Gson Library. I hope to help you this time.
This is The Base Class that you want to serialize
public class Base {
public int getJSONProperty() {
return jsonProperty;
}
private int jsonProperty = 2;
}
This is The Derived Class that you don't want to serialize
public class Derived extends Base{
public String getAdditionalProperty(){
return additionalProperty;
}
private String additionalProperty = "value-not-to-serialize";
}
Using Type type = new TypeToken<Base>(){}.getType(); you can define the class to use for serialization so you get the JSON String using:
Derived derived = new Derived();
Gson gson = new Gson();
Type type = new TypeToken<Base>(){}.getType();
String jsonString = gson.toJson(derived, type);
You know Gson? it's a good library to handle JSON.
You can use transient keyword to define variable thats not must be serialized, this works with Gson (It should work well with jackson, but i'm not sure)...
class Base {
// (de)-serialized
private int jsonProperty;
// not (de)-serialized
private transient SomeClass additionalProperty;
}
I think the best approach is to add annotation or use the transient variable.
Create the inheritance only for the purpose of serialization an object complicates the application uselessly in my point of view...
So I am just trying out Jersey for REST services and it seems to we working out fine. I only expose get services and all of the object types that I expose with these services have an immutable object representation in Java. By default Jersey seems to use a parser (JAXB?), requiring a #XmlRootElement annotation for the class that should be parsed, zero-arg constructor and setters.
I have been using Gson with no zero-arg constructor, no setters and final on all fields with no problems at all. Is there any way to accomplish this with Jersey(i.e. the paser it is using)? I have seen solutions with adapter classes that map data from a immutable object to a mutable representation, but this seems like a lot of boilerplate(new classes, more annotations, etc.) if it can be achieved with Gson without anything added.
Note: 1) I have heard people promote using zero-arg constructor and claim that Gson should not work without it. This is not what I am interested in. 2) I really have tried googling this but my keywords might be off. In other words, humiliate me in moderation.
EDIT 1:
My webservice works if I do like this:
#XmlRootElement
public class Code{
private String code; //Silly object just used for example.
public Code(){}
//(G || S)etters
}
With this class exposing the object:
#GET
#Produces(MediaType.APPLICATION_JSON)
public Set<Code> get(#QueryParam("name") String name) { // Here I want to use a class of my own instead of String name, haven't figured out how yet.
return this.codeService.get(name);
}
If I replace the Code with the following, the webservice stops working:
public class Code{
private final String code;
#JsonCreator
public Code(#JsonProperty("code") String code) {
this.code = code;
}
//Getters omitted
}
What I want is to be able to 1) have immutable objects that can be parsed to/from json and 2) Be able to define something like #RequestBody in Spring MVC for my incoming objects.
Actually this could be pretty easy with Genson. You just need the jar and then configure the Genson feature to use constructors with arguments (if you don't want to put annotations on it).
Genson genson = new GensonBuilder().useConstructorWithArguments(true).create();
// and then register it with jersey
new ResourceConfig().register(new GensonJaxRSFeature().use(genson));
Or you can use JsonProperty on the arguments. See the User Guide for more details.
Currently I have a project that makes use of Spring-Hibernate and also Jackson to deal with JSON. The first time I tried to use Jackson I always got LazyInitializationException and sometimes infinite loop for multiple entities that references each other. Then I found #JsonIgnore and #JsonIdentityInfo.
Now the problem is sometimes it is needed to ignore properties but sometimes I just need those properties to be serializable. Is there a way to sometimes ignore several fields and sometimes serialize the fields at the runtime?
I found "Serialization and Deserialization with Jackson: how to programmatically ignore fields?"
But if I always have to use the mix in annotation, it would be cumbersome if an object dozens of properties to retrieve. Eg. In page1 I need propertyA, propertyB, propertyC; in page2 I need propertyA and propertyC; in page3 I only need propertyB. In those cases alone I would have to create 1 class for each page resulting in 3 classes.
So in that case is there a way to define something like:
objectA.ignoreAllExcept('propertyA');
String[] properties = {'propertyA', 'propertyC'};
objectB.ignoreAllExcept(properties); // Retrieve propertyA and propertyC
objectC.ignore(properties);
What you might be looking for is a Module. The documentation says that Modules are
Simple interface for extensions that can be registered with ObjectMappers to provide a well-defined set of extensions to default functionality.
Following is am example of how you might use them to accomplish what you want. Note, there are other ways using which this can be achieved; this is just one of them.
A simple DTO that can be used for specifying the properties to filter:
public class PropertyFilter {
public Class<?> classToFilter;
public Set<String> propertiesToIgnore = Collections.emptySet();
public PropertyFilter(Class<?> classToFilter, Set<String> propertiesToIgnore) {
this.classToFilter = classToFilter;
this.propertiesToIgnore = propertiesToIgnore;
}
}
A custom module that filters out properties based on some attribute that you store in the current request.
public class MyModule extends Module {
#Override
public String getModuleName() {
return "Test Module";
}
#Override
public void setupModule(SetupContext context) {
context.addBeanSerializerModifier(new MySerializerModifier());
}
#Override
public Version version() {
// Modify if you need to.
return Version.unknownVersion();
}
public static class MySerializerModifier extends BeanSerializerModifier {
public BeanSerializerBuilder updateBuilder(SerializationConfig config,
BeanDescription beanDesc,
BeanSerializerBuilder builder) {
List<PropertyFilter> filters = (List<PropertyFilter>) RequestContextHolder.getRequestAttributes().getAttribute("filters", RequestAttributes.SCOPE_REQUEST);
PropertyFilter filter = getPropertyFilterForClass(filters, beanDesc.getBeanClass());
if(filter == null) {
return builder;
}
List<BeanPropertyWriter> propsToWrite = new ArrayList<BeanPropertyWriter>();
for(BeanPropertyWriter writer : builder.getProperties()) {
if(!filter.propertiesToIgnore.contains(writer.getName())) {
propsToWrite.add(writer);
}
}
builder.setProperties(propsToWrite);
return builder;
}
private PropertyFilter getPropertyFilterForClass(List<PropertyFilter> filters, Class<?> classToCheck) {
for(PropertyFilter f : filters) {
if(f.classToFilter.equals(classToCheck)) {
return f;
}
}
return null;
}
}
}
Note: There is a changeProperties method in the BeanSerializerModifier class that is more appropriate for changing the property list (according to the documentation). So you can move the code written in the updateBuilder to changeProperties method with appropriate changes.
Now, you need to register this custom module with your ObjectMapper. You can get the Jackson HTTP message converter from your application context, and get its object mapper. I am assuming you already know how to do that as you have been dealing with the lazy-initialization issue as well.
// Figure out a way to get the ObjectMapper.
MappingJackson2HttpMessageConverter converter = ... // get the jackson-mapper;
converter.getObjectMapper().registerModule(new MyModule())
And you are done. When you want to customize the serialization for a particular type of object, create a PropertyFilter for that, put it in a List and make it available as an attribute in the current request. This is just a simple example. You might need to tweak it a bit to suit your needs.
In your question, you seem to be looking for a way to specify the properties-to-filter-out on the serialized objects themselves. That, in my opinion, should be avoided as the list of properties to filter-out doesn't belong to your entities. However, if you do want to do that, create an interface that provides setters and getters for the list of properties. Suppose the name of the interface is CustomSerialized Then, you can modify the MyModule class to look for the instances of this CustomSerialized interface and filter out the properties accordingly.
Note: You might need to adjust/tweak a few things based on the versions of the libraries you are using.
I think there is a more flexible way to do it. You can configure Jackson in a such a way that it will silently ignore lazy loaded properties instead of stopping serialization process. So you can reuse the same class. Just load all necessary properties / relations and pass it to Jackson. You can try to do it by declaring your custom ObjectMapper and by turning off SerializationFeature.FAIL_ON_EMPTY_BEANS feature. Hope it helps.
You can filter out properties without modifying classes by creating a static interface for a mixin annotation. Next, annotate that interface with the #JsonFilter annotation. Create a SimpleBeanPropertyFilter and a SimpleFilterProvider. Then create an ObjectWriter with your filter provider by invoking objectMapper.writer(filterProvider)