Java ASM method override check - java

I have a problem with method override checks. I can detect simple override relations, but if the parent class has generics and the abstract method uses type parameters (return value/args), my code breaks down because the method description is not equal to the checked method.
Example:
public interface ISetting<T> {
public T method();
}
public class Setting implements ISetting<Integer> {
public Integer method() {
//Something
}
}
In ISetting, the method description is ()Ljava/lang/Object;
and in Setting, the method description is ()Ljava/lang/Integer;
How I can check this Override ?
On my head no thoughts come, how I can make this >~< All ideas which come to my head are bad (example: ignore check on desc, but overload method just break this idea)

Note that your issue does not only apply to generic supertype. You can also override a method with a more specific return type, with no Generics involved, e.g.
interface SomeInterface {
Object method();
}
class SomeImplementation implements SomeInterface {
#Override
public Integer method() {
return null;
}
}
You have to understand the concept of bridge methods.
A bridge method performs the task of overriding a method on the byte code level, having exactly the same parameter types and return type as the overridden method, and delegates to the actual implementation method.
Since the bridge method only consists of this invocation instruction, some type casts if required, and the return instruction, it is easy to parse such a method to find the actual method it belongs to, without dealing with the complex rules of the Generic type system.
Using, the following helper classes
record MethodSignature(String name, String desc) {}
record MethodInfo(int access, String owner, String name, String desc) {
MethodSignature signature() {
return new MethodSignature(name, desc);
}
}
final class MethodAndBridges {
MethodInfo actual;
final List<MethodInfo> bridges = new ArrayList<>();
MethodAndBridges(MethodSignature sig) {}
void set(MethodInfo mi) {
if(actual != null) throw new IllegalStateException();
actual = mi;
}
void addBridge(MethodInfo mi) {
bridges.add(mi);
}
}
We can gather the information in a form ready for checking override relations with the ASM library as follows:
class MethodCollector extends ClassVisitor {
static Map<MethodSignature, MethodAndBridges> getMethods(ClassReader cr) {
MethodCollector mc = new MethodCollector();
cr.accept(mc, ClassReader.SKIP_DEBUG | ClassReader.SKIP_FRAMES);
return mc.found;
}
final Map<MethodSignature, MethodAndBridges> found = new HashMap<>();
String owner, superClass;
List<String> interfaces;
protected MethodCollector() {
super(Opcodes.ASM9);
}
#Override
public void visit(int version, int acc,
String name, String sig, String superName, String[] ifNames) {
owner = name;
superClass = superName;
this.interfaces = ifNames == null? List.of(): List.of(ifNames);
}
#Override
public MethodVisitor visitMethod(
int acc, String name, String desc, String sig, String[] exceptions) {
MethodInfo mi = new MethodInfo(acc, owner, name, desc);
if((acc & Opcodes.ACC_BRIDGE) == 0) {
found.computeIfAbsent(mi.signature(), MethodAndBridges::new).set(mi);
return null;
}
return new MethodVisitor(Opcodes.ASM9) {
#Override public void visitMethodInsn(
int op, String owner, String name, String tDesc, boolean i) {
found.computeIfAbsent(new MethodSignature(name, tDesc),
MethodAndBridges::new).addBridge(mi);
}
};
}
}
To demonstrate how this work, let’s enhance your example, to address more cases
interface SupplierOfSerializable {
Serializable get();
}
interface ISetting<T extends CharSequence> extends Supplier<T>, Consumer<T> {
T get();
#Override void accept(T t);
Number method(int i);
static void method(Object o) {}
private void method(Number n) {}
}
class Setting implements ISetting<String>, SupplierOfSerializable {
public String get() {
return "";
}
#Override
public void accept(String t) {}
public Integer method(int i) {
return i;
}
static void method(Object o) {}
void method(Number n) {}
}
and check the override relations (only considering the direct interfaces, without recursion)
public class CheckOverride {
public static void main(String[] args) throws IOException {
MethodCollector mc = new MethodCollector();
new ClassReader(Setting.class.getName())
.accept(mc, ClassReader.SKIP_DEBUG | ClassReader.SKIP_FRAMES);
Map<MethodSignature, MethodAndBridges> implMethods = mc.found;
Map<MethodInfo, Set<MethodInfo>> overrides = new HashMap<>();
for(String ifType: mc.interfaces) {
Map<MethodSignature, MethodAndBridges> ifMethods
= MethodCollector.getMethods(new ClassReader(ifType));
System.out.println("interface " + ifType.replace('/', '.'));
printMethods(ifMethods);
System.out.println();
ifMethods.values().removeIf(CheckOverride::nonOverridable);
implMethods.forEach((sig, method) -> {
if(nonOverridable(method)) {
overrides.putIfAbsent(method.actual, Set.of());
return;
}
var overridden = ifMethods.get(sig);
if(overridden == null && method.bridges.isEmpty()) {
overrides.putIfAbsent(method.actual, Set.of());
return;
}
Set<MethodInfo> set = overrides.compute(method.actual,
(k, s) -> s == null || s.isEmpty()? new HashSet<>(): s);
if(overridden != null) set.add(overridden.actual);
for(var mi: method.bridges) {
overridden = ifMethods.get(mi.signature());
if(overridden != null) set.add(overridden.actual);
}
});
}
System.out.println("class " + mc.owner.replace('/', '.'));
printMethods(implMethods);
System.out.println();
System.out.println("Final result");
System.out.println("class " + mc.owner.replace('/', '.'));
overrides.forEach((m,overridden) -> {
System.out.println(" " + toDeclaration(m, false));
if(!overridden.isEmpty()) {
System.out.println(" overrides");
overridden.forEach(o ->
System.out.println(" " + toDeclaration(o, true)));
}
});
}
static boolean nonOverridable(MethodAndBridges m) {
return (m.actual.access() & (Opcodes.ACC_PRIVATE|Opcodes.ACC_STATIC)) != 0
|| m.actual.name().startsWith("<");
}
static void printMethods(Map<MethodSignature, MethodAndBridges> methods) {
methods.forEach((sig, methodAndBridges) -> {
System.out.println(" "+toDeclaration(methodAndBridges.actual,false));
if(!methodAndBridges.bridges.isEmpty()) {
System.out.println(" bridges");
for(MethodInfo mi: methodAndBridges.bridges) {
System.out.println(" " + toDeclaration(mi, false));
}
};
});
}
private static String toDeclaration(MethodInfo mi, boolean withType) {
StringBuilder sb = new StringBuilder();
sb.append(Modifier.toString(mi.access() & Modifier.methodModifiers()));
if(sb.length() > 0) sb.append(' ');
String clName = mi.owner();
var mt = MethodTypeDesc.ofDescriptor(mi.desc());
if(mi.name().equals("<init>"))
sb.append(clName, clName.lastIndexOf('/') + 1, clName.length());
else {
sb.append(mt.returnType().displayName()).append(' ');
if(withType) sb.append(clName.replace('/', '.')).append('.');
sb.append(mi.name());
}
if(mt.parameterCount() == 0) sb.append("()");
else {
String sep = "(";
for(ClassDesc cd: mt.parameterList()) {
sb.append(sep).append(cd.displayName());
sep = ", ";
}
sb.append(')');
}
return sb.toString();
}
}
interface ISetting
public static void method(Object)
public abstract void accept(CharSequence)
bridges
public void accept(Object)
public abstract Number method(int)
private void method(Number)
public abstract CharSequence get()
bridges
public Object get()
interface SupplierOfSerializable
public abstract Serializable get()
class Setting
Setting()
public Integer method(int)
bridges
public Number method(int)
public void accept(String)
bridges
public void accept(Object)
public void accept(CharSequence)
static void method(Object)
public String get()
bridges
public Object get()
public CharSequence get()
public Serializable get()
void method(Number)
Final result
class Setting
public String get()
overrides
public abstract Serializable SupplierOfSerializable.get()
public abstract CharSequence ISetting.get()
Setting()
public Integer method(int)
overrides
public abstract Number ISetting.method(int)
public void accept(String)
overrides
public abstract void ISetting.accept(CharSequence)
void method(Number)
static void method(Object)
The code uses newer Java features, like var, record, and the constant API, but I think, the result is straight-forward enough for converting it to older Java versions, if really required.

Related

Java, Object-independent null return

Given Java source code and a preprocessor (like C++), I would like to replace all mentions of null with a function that returns null. It finds a call to null and replaces it with the following function.
public static Object returnNull(){
return null;
}
This fails because there are varied classes and:
functionThatWantsCustomClass( returnNull() ); //Object cannot be converted to CustomClass
or
if( cc == returnNull() ) //Object cannot be converted to CustomClass
etc.
Easiest solution I can imagine is having to parametrize the preprocessor, although that would require going through every single null to add the parameter maually, eg: null/*CustomClass*/.
Another method is spending a lot of time writing a much better parser so it always knows the required class for a returnTypedNull() function.
Is there a way to get through this error with minimal modification/parsing?
Use generics:
public static <T> T returnNull() {
return (T) null;
}
Follow-up from comment
The following code is as close to comment as I can decipher, and it compiles fine:
public class Test {
public static void main(String[] args) {
CustomClass cc = new CustomClass();
if (cc != returnNull())
cc.errlog( returnNull() );
}
public static <T> T returnNull() {
return (T) null;
}
}
class CustomClass {
void errlog(Exception e) {
}
}
Now, if there are 2 errlog methods with only one non-primitive parameter:
class CustomClass {
void errlog(Exception e) {
}
void errlog(String s) {
}
}
Then it will fail with error The method errlog(Exception) is ambiguous for the type CustomClass, because the compiler doesn't know whether T should be Exception or String, i.e. which of the two to call.
You have to explicitly tell the compiler:
cc.errlog( Test.<Exception>returnNull() );
Use generics ant it will work.
Example:
public class ReturnNullExample {
public static void main(String[] args) {
ReturnNullExample example = new ReturnNullExample();
example.someMethod(ReturnNullClass.returnNull());
CustomClass cc = null;
if(cc == ReturnNullClass.returnNull()) {
System.out.println("cc is null");
}
cc = new CustomClass();
if(cc != ReturnNullClass.returnNull()) {
System.out.println("cc is not null");
}
}
public void someMethod(CustomClass customClass) {
System.out.println("This method does nothing");
}
}
class CustomClass {
private int number;
public int getNumber() {
return number;
}
public void setNumber(int number) {
this.number = number;
}
}
class ReturnNullClass {
public static <T> T returnNull() {
return null;
}
}

Invoking getters of a generic enum

I need to invoke the field accessor methods, i.e the getter of a generic enum, but cannot figure out how to invoke the methods, or more specifically how to pass a generic enum as a parameter for the invoke-method.
Thanks in advance, any help is appreciated.
this is what I'd like to do more or less.
public void(Class<? extends Enum<?>> enumType) {
Enum<?>[] enumConstants = enumType.getEnumConstants();
String[] text = new String[enumConstants.length];
String[] names = new String[enumConstants.length];
for (int i = 0; i < enumConstants.length; i++ ) {
Method[] methods = enumConstants[i].getClass().getDeclaredMethods();
for (Method m: enumConstants[i].getClass().getDeclaredMethods()) {
System.out.println(enumConstants[i].name() + ": " + m.getName() + "()");
try {
if (GET_KEY_METHOD_NAME.equalsIgnoreCase(m.getName())) {
Object value = m.invoke(I HAVE NO IDEA WHAT TO PUT HERE, "");
System.out.println(value.toString());
}
if (GET_VALUE_METHOD_NAME.equalsIgnoreCase(m.getName())) {
Object value = m.invoke(I HAVE NO IDEA WHAT TO PUT HERE, "");
System.out.println(value.toString());
}
} catch (IllegalAccessException e) {
e.printStackTrace();
} catch (IllegalArgumentException e) {
e.printStackTrace();
} catch (InvocationTargetException e) {
e.printStackTrace();
}
}
}
}
The parameters for the Method.invoke method are always the instance the method is called for, followed by the list of parameters.
Object value = m.invoke(enumConstants[i]);
is most likely what you need.
Also you should add a type parameter to the method:
public <T extends Enum<T>> void myMethod(Class<T> enumType) {
T[] enumConstants = enumType.getEnumConstants();
BTW: Have you considered using a interface containing those methods? This would allow you to access the methods without having to use reflection.
Also take a look at the getDeclaredMethod method and keep in mind that enum constants may instances of a subclass of the enum class, so you should use the methods not containing Declared. Also find the methods for the enum class, not for the individual classes for less lookups:
For example consider the following:
public enum MyEnum implements M1M2Interface {
ONE() {
#Override
public String m1(String s) {
return "1";
}
}, TWO() {
#Override
public int m2(BigInteger i) {
return 2;
}
}
;
}
public interface M1M2Interface {
default String m1(String s) {
return "2";
}
default int m2(BigInteger i) {
return 1;
}
}
public static <T extends Enum<T>> void testEnum(Class<T> enumType) throws NoSuchMethodException {
T[] enumConstants = enumType.getEnumConstants();
Method m1 = enumType.getMethod("m1", String.class);
Method m2 = enumType.getMethod("m2", BigInteger.class);
for (int i = 0; i < enumConstants.length; i++) {
System.out.println(enumConstants[i].name() + ":");
try {
System.out.println(" m1:" + m1.invoke(enumConstants[i], "Hello World"));
System.out.println(" m2:" + m2.invoke(enumConstants[i], (BigInteger) null));
} catch (IllegalAccessException | IllegalArgumentException | InvocationTargetException ex) {
ex.printStackTrace();
}
}
}
getDeclaredMethod wouldn't work here, since the methods could be declared/implemented by:
The interface (declared only prior to java 8)
the enum class
the enum constant (if there is no declaration at a "higher level" the method cannot be accessed using EnumName.CONSTANT_NAME.methodName() so it's unlikely to be done...)
Reflection is rarely the correct answer to anything. Consider having your enum classes implement a common interface, like StandardCopyOption and Month do.
If you can't modify the enum classes, and if you're using Java 8, you can pass the getter method as an argument:
public <E extends Enum<E>> E findMatch(Class<E> enumClass,
Function<E, String> nameGetter,
Predicate<String> matcher) {
for (E value : EnumSet.allOf(enumClass)) {
String name = nameGetter.apply(value);
if (matcher.test(name)) {
return value;
}
}
return null;
}
Example usage:
public static enum Season {
SPRING("Spr"),
SUMMER("Sum"),
FALL("Fal"),
WINTER("Win");
private final String abbreviation;
private Season(String abbrev) {
this.abbreviation = abbrev;
}
public getAbbreviation() {
return abbreviation;
}
}
public void doStuff() {
// ...
String abbrToFind = "Sum";
Season match = findMatch(Season.class,
Season::getAbbreviation,
Predicate.isEqual(abbrToFind));
}
If you're using a version older than Java 8, you can still do the same thing, but you'll need to define and implement the interfaces yourself:
public interface Function<A, B> {
B apply(A input);
}
public interface Predicate<T> {
boolean test(T value);
}
public void doStuff() {
// ...
final String abbrToFind = "Sum";
Season match = findMatch(Season.class,
new Function<Season, String>() {
#Override
public String apply(Season season) {
return season.getAbbreviation(),
}
},
new Predicate<String>() {
#Override
public boolean test(String name) {
return Objects.equals(name, abbrToFind);
}
});
}

Unique classes in generic list

I have a generic class with a generic list in it. I want to ensure that the generic list only contains unique classes.
What I have done so far is to compare the class names with reflection (getClass()). But I think that's not a clean solution. Are there any better practices to check?
public class MyGenericClass<T extends MyGenericClass.MyInterface> {
private List<T> members = new ArrayList<>(0);
public void add(T t) {
final boolean[] classInMembers = {false};
members.forEach(member -> {
if (member.getClass().getName().equals(t.getClass().getName())) {
classInMembers[0] = true;
}
});
if (!classInMembers[0]) {
members.add(t);
}
}
public interface MyInterface {
void doSomething(String text);
}
}
public class Main {
public static void main(String[] args) {
MyGenericClass<MyGenericClass.MyInterface> myGenericClass = new MyGenericClass<>();
myGenericClass.add(new Performer1());
myGenericClass.add(new Performer2());
myGenericClass.add(new Performer3());
myGenericClass.add(new Performer3()); // should not be inserted!
}
private static class Performer1 implements MyGenericClass.MyInterface {
#Override
public void doSomething(String text) {
text = "Hi, I am performer 1!";
}
}
private static class Performer2 implements MyGenericClass.MyInterface {
#Override
public void doSomething(String text) {
text = "Hi, I am performer 2!";
}
}
private static class Performer3 implements MyGenericClass.MyInterface {
#Override
public void doSomething(String text) {
text = "Hi, I am performer 3!";
}
}
}
You could subclass a java.util.Set interface implementation. It will likely be easiest to subclass java.util.AbstractSet.
By default 'Set' will compare objects by their .equals() method - In your case, this is not sufficient. You will need to override the contains method to ensure that only instances of a unique class are added.
In your overrideen contains, it's probably the same / easier to compare class instances rather than their stringified package name
I.e. use a.getClass() == b.getClass(), rather than a.getClass().getName()
Don't use a List, use a java.util.Set instead.
A collection that contains no duplicate elements. More formally, sets contain no pair of elements e1 and e2 such that e1.equals(e2), and at most one null element.
If the iteration order is important or if you want to use a custom Comparator, the TreeSet implementation can be used:
A NavigableSet implementation based on a TreeMap. The elements are ordered using their natural ordering, or by a Comparator provided at set creation time, depending on which constructor is used.
Example of a Set using a Comparator:
class MyComparator implements Comparator<Object> {
#Override
public int compare(Object e1, Object e2) {
if (e1.getClass() == e2.getClass())
return 0;
//if you wish to have some extra sort order
return e1.getClass().getName().compareTo(e2.getClass().getName());
}
}
. . .
Set mySet = new TreeSet<Object>(new MyComparator());
mySet.add(new Object());
mySet.add(new Object());//same class already in set
mySet.add("wtf");
//mySet.size() is now 2 - the second "new Object()" was not inserted due to the comparator check
Why so complicated?
public class Main {
public static void main(String[] args) {
final Class<?> helloClass = "Hello".getClass();
final Class<?> worldClass = "World".getClass();
final Class<?> intClass = Integer.class;
System.out.println(helloClass.equals(worldClass)); // -> true
System.out.println(helloClass.equals(intClass)); // -> false
}
}
You could maintain a roster of members in a Set.
public static class MyGenericClass<T extends MyGenericClass.MyInterface> {
private List<T> members = new ArrayList<>(0);
// Add this.
private Set<Class<?>> roster = new HashSet<>();
public void add(T t) {
if (!roster.contains(t.getClass())) {
members.add(t);
roster.add(t.getClass());
}
}
private void soundOff() {
for (T t : members) {
t.doSomething();
}
}
public interface MyInterface {
void doSomething();
}
}
private static class Performer implements MyGenericClass.MyInterface {
final int n;
public Performer(int n) {
this.n = n;
}
#Override
public void doSomething() {
System.out.println("Hi, I am a " + this.getClass().getSimpleName() + "(" + n + ")");
}
}
private static class Performer1 extends Performer {
public Performer1(int n) {
super(n);
}
}
private static class Performer2 extends Performer {
public Performer2(int n) {
super(n);
}
}
private static class Performer3 extends Performer {
public Performer3(int n) {
super(n);
}
}
public void test() {
MyGenericClass<MyGenericClass.MyInterface> myGenericClass = new MyGenericClass<>();
myGenericClass.add(new Performer1(1));
myGenericClass.add(new Performer2(2));
myGenericClass.add(new Performer3(3));
myGenericClass.add(new Performer3(4)); // should not be inserted!
myGenericClass.soundOff();
}
You could implement a Wrapper which provides the necessary comparison and add the wrapped instance to the set. This way you don't have to override equals and hashcode in your concrete Performer classes and you don't have to subclass a concrete Set implementation (which you are coupled to. When you subclass a HashSet, you have to use that concrete class. But what if you want to use a LinkedHashSet at some point? You have to override LinkedHashSet as well) , which may be fragile since you have to make sure that the overridden method is consistent with the rest of the class.
class MyGenericClass<T extends MyInterface> {
private Set<ClassCompareWrapper<T>> members = new HashSet<>();
public void add(T t) {
members.add(new ClassCompareWrapper<T>(t));
}
}
class ClassCompareWrapper<T> {
T t;
public ClassCompareWrapper(T t) {
this.t = t;
}
#Override
public boolean equals(Object o) {
if (this == o)
return true;
if (!(o instanceof ClassCompareWrapper))
return false;
ClassCompareWrapper<?> that = (ClassCompareWrapper<?>) o;
return Objects.equals(t.getClass(), that.t.getClass());
}
#Override
public int hashCode() {
return Objects.hash(t.getClass());
}
#Override
public String toString() {
return "Wrapper{" +
"t=" + t +
'}';
}
}
Here are a few other ideas.
Using streams:
public void add(T t) {
if (!members.stream().anyMatch(m -> m.getClass() == t.getClass())) {
members.add(t);
}
}
Using AbstractSet and HashMap:
class ClassSet<E> extends AbstractSet<E> {
private final Map<Class<?>, E> map = new HashMap<>();
#Override
public boolean add(E e) {
// this can be
// return map.putIfAbsent(e.getClass(), e) != null;
// in Java 8
Class<?> clazz = e.getClass();
if (map.containsKey(clazz)) {
return false;
} else {
map.put(clazz, e);
return true;
}
}
#Override
public boolean remove(Object o) {
return map.remove(o.getClass()) != null;
}
#Override
public boolean contains(Object o) {
return map.containsKey(o.getClass());
}
#Override
public int size() {
return map.size();
}
#Override
public Iterator<E> iterator() {
return map.values().iterator();
}
}
A HashMap could also be used without wrapping it in a Set. The Set interface is defined around equals and hashCode, so any implementation which deviates from this is technically non-contractual. Additionally, you might want to use LinkedHashMap if the values are iterated often.

Java: How to design collection using a superclass

This is a practical question, but I am not sure if it has a practical answer. If you have a superclass with let's say 10 subclasses, what is the most simple way to put those 10 subclasses in a collection? Right now (this may be bad design), I have put them in a static collection field in the superclass.
The motivation for this question, however, came because I had obtained the identity of one of the fields of one of the subclasses, but I needed a reference to a different field in the same subclass.
For instance, let's say the subclass has the following fields:
public class SampleSubClass extends SampleSuperClass{
...
private Object1 o_1;
private Object2 o_2;
private Object3 o_3;
...
}
Somewhere else in the program, I have only the identity of o_2, and I wanted to get at o_3.
In theory, there might be an easier way than having to put all of the instances of SampleClass in a collection somewhere. For instance, perhaps in my dreams, there is a software language out there, where the superclass DOES carry information about its subclasses, and the superclass serves as a collection in and of itself.
But nevermind that. To me now, it seems like a good way to put the collection somewhere in the program, is to use a hashmap/hashtable, and to use it as a static member of the superclass.
Please tell me there is a better way. Is there any way to reference field A in an object by having only a reference to field B in an object?
For instance, say I have an ActionPerformed method, it has a source object that is contained in the ActionEvent object parameter. How would I find the instance of the class that owned/contained that source object? What is the best way to design this?
There is no native way to find the owner of a field given the object the field references. The JVM records the number of references pointing to each object so it can do garbage collection, but it doesn't keep track of the owners of the references.
You can store the values of all the fields in a Map which maps them to their owners:
import java.util.*;
public class Super
{
static Map<Object, Super> owners = new IdentityHashMap<Object, Super>();
// IdentityHashMap will not work with primitives due to autoboxing,
// but HashMap requires all field values to have sensible implementations
// of hashCode() and equals().
/** Gets the owner associated with a field. */
public static Object getOwner(Object field)
{
return owners.get(field);
}
/** Establishes ownership over a field. */
protected void own(Object field)
{
owners.put(field, this);
}
/** Removes an ownership, but only if this is the owner. */
protected void disown(Object field)
{
if (owners.get(field) == this) owners.remove(field);
}
/** Shorthand for disown(oldField); own(newField). */
protected <T> T change(T oldField, T newField)
{
disown(oldField);
own(newField);
return newField;
}
}
public class SubA extends Super
{
protected String s;
protected Integer i;
public SubA(String aString, Integer anInt) { setS(aString); setI(anInt); }
public void setS(String aString) { s = change(s, aString); }
public void setI(Integer anInt) { i = change(i, anInt); }
public String toString() { return "SubA(" + s + "," + i + ")"; }
}
public class SubB extends Super
{
protected Object o;
public SubB(Object anObject) { setO(anObject); }
public void setO(Object anObject) { o = change(o, anObject); }
public String toString() { return "SubB(" + o + ")"; }
}
public class Demo
{
public static void main(String[] args)
{
String s1 = "String1", s2 = "String2", s3 = "String3";
Integer i1 = 111, i2 = 222;
Object o1 = new Object(), o2 = new Object();
SubA a1 = new SubA(s1, i1), a2 = new SubA(s2, i2);
SubB b = new SubB(o1);
p("s1 owner = %s", Super.getOwner(s1)); // SubA(String1,111)
p("s2 owner = %s", Super.getOwner(s2)); // SubB(String2,222)
p("s3 owner = %s", Super.getOwner(s3)); // null
p("i1 owner = %s", Super.getOwner(i1)); // SubA(String1,111)
p("i2 owner = %s", Super.getOwner(i2)); // SubA(String2,222)
p("o1 owner = %s", Super.getOwner(o1)); // SubB(java.lang.Object#...)
p("o2 owner = %s", Super.getOwner(o2)); // null
p("s1 -> s3, o1 -> o2");
a1.setS(s3);
b.setO(o2);
p("s1 owner = %s", Super.getOwner(s1)); // null
p("s3 owner = %s", Super.getOwner(s3)); // SubA(String3,111)
p("o1 owner = %s", Super.getOwner(o1)); // null
p("o2 owner = %s", Super.getOwner(o2)); // SubB(java.lang.Object#...)
}
static void p(String fmt, Object... args)
{
System.out.format(fmt, args);
System.out.println();
}
}
Or you could make the field values themselves maintain a reference to their owner, either through inheritance or using a wrapper class:
public class OwnableObject
{
protected Object owner;
public OwnableObject(Object anOwner) { owner = anOwner; }
public Object getOwner() { return owner; }
public void setOwner(Object anOwner) { owner = anOwner; }
}
public class MyString extends OwnableObject
{
protected String str = null;
public MyString(Object anOwner) { super(anOwner); }
public String toString() { return str; }
public void set(String aString) { str = aString; }
}
public class FieldWrapper<E> extends OwnableObject
{
protected E value = null;
public FieldWrapper(Object anOwner) { super(anOwner); }
public E getValue() { return value; }
public void setValue(E aValue) { value = aValue; }
}
public class Demo
{
protected MyString s = new MyString(this);
protected FieldWrapper<Integer> i = new FieldWrapper<Integer>(this);
public void setS(String aString) { s.set(aString); }
public void setI(int anInt) { i.setValue(anInt); }
public String toString() { return "Demo(" + s + "," + i.getValue() + ")"; }
public static void main(String[] args)
{
Demo d1 = new Demo();
Demo d2 = new Demo();
MyString f1 = d1.s;
FieldWrapper<Integer> f2 = d1.i;
OwnableObject f3 = d2.s;
OwnableObject f4 = d2.i;
d1.setS("one");
d2.setS("two");
d1.setI(1000);
d2.setI(2000);
p("f1 = %s, owner = %s", f1, f1.getOwner());
p("f2 = %d, owner = %s", f2.getValue(), f2.getOwner());
p("f3 = %s, owner = %s", f3, f3.getOwner());
p("f4 = %s, owner = %s", f4, f4.getOwner());
}
static void p(String fmt, Object... args)
{
System.out.format(fmt, args);
System.out.println();
}
}
Answering your direct question: how to easily define a collection containing a given set of classes?
public class ClassA {
private final List<Class<? extends a>> knownSubclasses = Arrays.asList(ClassB.class, ClassC.class);
};
class ClassB extends ClassA {}
class ClassC extends ClassA {}
Answering your motivation: how to access a field in a subclass without declaring it for the super class?
public class SomeSuperclass {
protected Object3 getObject3() throws UnsupportedOperationException {
throw new UnsupportedOperationException();
}
}
public class SomeSubclass extends SomeSuperclass {
private final Object3 object3 = null;
#Override
protected Object3 getObject3() { return object3; }
}
Maybe recognize instances having an object3 by the use of interfaces
public interface MyClassWithObject3 { Object3 getObject3(); }
...
void someOperation(SomeSuperclass that) {
if (that instanceof MyClassWithObject3) { ... }
}
You could also use named properties
void someOperation(SomeSuperClass that) {
Object3 object3 = that.getProperty("object3");
}

A generic observer pattern in Java

The java.util.Observer and java.util.Observable are ugly. They require the sorts of casts that make type-safety fans uncomfortable, and you can't define a class to be an Observer of multiple things without ugly casts. In fact, in "How do I know the generic object that the Observer class sends in Java?", an answerer says that only one type of data should be used in each observer / observable.
I'm trying to make a generic version of the observer pattern in Java to get round both these problems. It's not unlike the one in the previously mentioned post, but that question was not obviously resolved (the last comment is an unanswered question from the OP).
Observer.java
package util;
public interface Observer<ObservedType> {
public void update(Observable<ObservedType> object, ObservedType data);
}
Observable.java
package util;
import java.util.LinkedList;
import java.util.List;
public class Observable<ObservedType> {
private List<Observer<ObservedType>> _observers =
new LinkedList<Observer<ObservedType>>();
public void addObserver(Observer<ObservedType> obs) {
if (obs == null) {
throw new IllegalArgumentException("Tried
to add a null observer");
}
if (_observers.contains(obs)) {
return;
}
_observers.add(obs);
}
public void notifyObservers(ObservedType data) {
for (Observer<ObservedType> obs : _observers) {
obs.update(this, data);
}
}
}
Hopefully this will be useful to someone.
I prefer using an annotation so a listener can listen to different types of events.
public class BrokerTestMain {
public static void main(String... args) {
Broker broker = new Broker();
broker.add(new Component());
broker.publish("Hello");
broker.publish(new Date());
broker.publish(3.1415);
}
}
class Component {
#Subscription
public void onString(String s) {
System.out.println("String - " + s);
}
#Subscription
public void onDate(Date d) {
System.out.println("Date - " + d);
}
#Subscription
public void onDouble(Double d) {
System.out.println("Double - " + d);
}
}
prints
String - Hello
Date - Tue Nov 13 15:01:09 GMT 2012
Double - 3.1415
#Target(ElementType.METHOD)
#Retention(RetentionPolicy.RUNTIME)
public #interface Subscription {
}
public class Broker {
private final Map<Class, List<SubscriberInfo>> map = new LinkedHashMap<Class, List<SubscriberInfo>>();
public void add(Object o) {
for (Method method : o.getClass().getMethods()) {
Class<?>[] parameterTypes = method.getParameterTypes();
if (method.getAnnotation(Subscription.class) == null || parameterTypes.length != 1) continue;
Class subscribeTo = parameterTypes[0];
List<SubscriberInfo> subscriberInfos = map.get(subscribeTo);
if (subscriberInfos == null)
map.put(subscribeTo, subscriberInfos = new ArrayList<SubscriberInfo>());
subscriberInfos.add(new SubscriberInfo(method, o));
}
}
public void remove(Object o) {
for (List<SubscriberInfo> subscriberInfos : map.values()) {
for (int i = subscriberInfos.size() - 1; i >= 0; i--)
if (subscriberInfos.get(i).object == o)
subscriberInfos.remove(i);
}
}
public int publish(Object o) {
List<SubscriberInfo> subscriberInfos = map.get(o.getClass());
if (subscriberInfos == null) return 0;
int count = 0;
for (SubscriberInfo subscriberInfo : subscriberInfos) {
subscriberInfo.invoke(o);
count++;
}
return count;
}
static class SubscriberInfo {
final Method method;
final Object object;
SubscriberInfo(Method method, Object object) {
this.method = method;
this.object = object;
}
void invoke(Object o) {
try {
method.invoke(object, o);
} catch (Exception e) {
throw new AssertionError(e);
}
}
}
}
A modern update: ReactiveX is a very nice API for asynchronous programming based on the Observer pattern, and it's fully generic. If you're using Observer/Observable to "stream" data or events from one place in your code to another, you should definitely look into it.
It's based on functional programming, so it looks very sleek with Java 8's lambda syntax:
Observable.from(Arrays.asList(1, 2, 3, 4, 5))
.reduce((x, y) -> x + y)
.map((v) -> "DecoratedValue: " + v)
.subscribe(System.out::println);
I once wrote a generic implementation of the observer pattern for Java using dynamic proxies. Here's a sample of how it could be used:
Gru gru = new Gru();
Minion fred = new Minion();
fred.addObserver(gru);
fred.moo();
public interface IMinionListener
{
public void laughing(Minion minion);
}
public class Minion extends AbstractObservable<IMinionListener>
{
public void moo()
{
getEventDispatcher().laughing(this);
}
}
public class Gru implements IMinionListener
{
public void punch(Minion minion) { ... }
public void laughing(Minion minion)
{
punch(minion);
}
}
The full source code of AbstractObservable is available on pastebin. Way back I blogged about how it works in a bit more detail, also referring to related projects.
Jaana wrote an interesting summary of different approaches, also contrasting the dynamic proxy approach with others. Much thanks of course goes to Allain Lalonde from which I got the original idea. I still haven't checked out PerfectJPattern, but it might just contain a stable implementation of the observer pattern; at least it seems like a mature library.
Try to use class EventBus of Guava.
You can declare a Observer like this:
public class EventObserver {
#Subscribe
public void onMessage(Message message) {
...
}
}
New a EventBus like this:
EventBus eventBus = new EventBus();
And register Observer like this:
eventBus.register(new EventObserver());
Last notify Observer like:
eventBus.post(message);
I found a similar request but it was rather on codereview.
I think it's worth mentioning it here.
import java.util.ArrayList;
import java.util.Collection;
import java.util.function.Supplier;
/**
* like java.util.Observable, But uses generics to avoid need for a cast.
*
* For any un-documented variable, parameter or method, see java.util.Observable
*/
public class Observable<T> {
public interface Observer<U> {
public void update(Observable<? extends U> observer, U arg);
}
private boolean changed = false;
private final Collection<Observer<? super T>> observers;
public Observable() {
this(ArrayList::new);
}
public Observable(Supplier<Collection<Observer<? super T>>> supplier) {
observers = supplier.get();
}
public void addObserver(final Observer<? super T> observer) {
synchronized (observers) {
if (!observers.contains(observer)) {
observers.add(observer);
}
}
}
public void removeObserver(final Observer<? super T> observer) {
synchronized (observers) {
observers.remove(observer);
}
}
public void clearObservers() {
synchronized (observers) {
this.observers.clear();
}
}
public void setChanged() {
synchronized (observers) {
this.changed = true;
}
}
public void clearChanged() {
synchronized (observers) {
this.changed = false;
}
}
public boolean hasChanged() {
synchronized (observers) {
return this.changed;
}
}
public int countObservers() {
synchronized (observers) {
return observers.size();
}
}
public void notifyObservers() {
notifyObservers(null);
}
public void notifyObservers(final T value) {
ArrayList<Observer<? super T>> toNotify = null;
synchronized(observers) {
if (!changed) {
return;
}
toNotify = new ArrayList<>(observers);
changed = false;
}
for (Observer<? super T> observer : toNotify) {
observer.update(this, value);
}
}
}
Original answer from codereview stackexchange

Categories