Difference between java.lang.RuntimeException and java.lang.Exception - java

Someone please explain the difference between java.lang.RuntimeException and java.lang.Exception? How do I decide which one to extend if I create my own exception?

Generally RuntimeExceptions are exceptions that can be prevented programmatically. E.g NullPointerException, ArrayIndexOutOfBoundException. If you check for null before calling any method, NullPointerException would never occur. Similarly ArrayIndexOutOfBoundException would never occur if you check the index first. RuntimeException are not checked by the compiler, so it is clean code.
EDIT : These days people favor RuntimeException because the clean code it produces. It is totally a personal choice.

In Java, there are two types of exceptions: checked exceptions and un-checked exceptions. A checked exception must be handled explicitly by the code, whereas, an un-checked exception does not need to be explicitly handled.
For checked exceptions, you either have to put a try/catch block around the code that could potentially throw the exception, or add a "throws" clause to the method, to indicate that the method might throw this type of exception (which must be handled in the calling class or above).
Any exception that derives from "Exception" is a checked exception, whereas a class that derives from RuntimeException is un-checked. RuntimeExceptions do not need to be explicitly handled by the calling code.

Before looking at the difference between java.lang.RuntimeException and java.lang.Exception classes, you must know the Exception hierarchy. Both Exception and Error classes are derived from class Throwable (which derives from the class Object). And the class RuntimeException is derived from class Exception.
All the exceptions are derived either from Exception or RuntimeException.
All the exceptions which derive from RuntimeException are referred to as unchecked exceptions. And all the other exceptions are checked exceptions. A checked exception must be caught somewhere in your code, otherwise, it will not compile. That is why they are called checked exceptions. On the other hand, with unchecked exceptions, the calling method is under no obligation to handle or declare it.
Therefore all the exceptions which compiler forces you to handle are directly derived from java.lang.Exception and all the other which compiler does not force you to handle are derived from java.lang.RuntimeException.
Following are some of the direct known subclasses of RuntimeException.
AnnotationTypeMismatchException,
ArithmeticException,
ArrayStoreException,
BufferOverflowException,
BufferUnderflowException,
CannotRedoException,
CannotUndoException,
ClassCastException,
CMMException,
ConcurrentModificationException,
DataBindingException,
DOMException,
EmptyStackException,
EnumConstantNotPresentException,
EventException,
IllegalArgumentException,
IllegalMonitorStateException,
IllegalPathStateException,
IllegalStateException,
ImagingOpException,
IncompleteAnnotationException,
IndexOutOfBoundsException,
JMRuntimeException,
LSException,
MalformedParameterizedTypeException,
MirroredTypeException,
MirroredTypesException,
MissingResourceException,
NegativeArraySizeException,
NoSuchElementException,
NoSuchMechanismException,
NullPointerException,
ProfileDataException,
ProviderException,
RasterFormatException,
RejectedExecutionException,
SecurityException,
SystemException,
TypeConstraintException,
TypeNotPresentException,
UndeclaredThrowableException,
UnknownAnnotationValueException,
UnknownElementException,
UnknownTypeException,
UnmodifiableSetException,
UnsupportedOperationException,
WebServiceException

An Exception is checked, and a RuntimeException is unchecked.
Checked means that the compiler requires that you handle the exception in a catch, or declare your method as throwing it (or one of its superclasses).
Generally, throw a checked exception if the caller of the API is expected to handle the exception, and an unchecked exception if it is something the caller would not normally be able to handle, such as an error with one of the parameters, i.e. a programming mistake.

The runtime exception classes (RuntimeException and its subclasses) are exempted from compile-time checking, since the compiler cannot establish that run-time exceptions cannot occur. (from JLS).
In the classes that you design you should subclass Exception and throw instances of
it to signal any exceptional scenarios. Doing so you will be explicitly signaling the
clients of your class that usage of your class might throw exception and they have to
take steps to handle those exceptional scenarios.
Below code snippets explain this point:
//Create your own exception class subclassing from Exception
class MyException extends Exception {
public MyException(final String message) {
super(message);
}
}
public class Process {
public void execute() {
throw new RuntimeException("Runtime");
}
public void process() throws MyException {
throw new MyException("Checked");
}
}
In the above class definition of class Process, the method execute can
throw a RuntimeException but the method declaration need not specify that
it throws RuntimeException.
The method process throws a checked exception and it should declare that it
will throw a checked exception of kind MyException and not doing so will be
a compile error.
The above class definition will affect the code that uses Process class as well.
The call new Process().execute() is a valid invocation where as the call of form
new Process().process() gives a compile error. This is because the client code should
take steps to handle MyException (say call to process() can be enclosed in
a try/catch block).

Proper use of RuntimeException?
From Unchecked Exceptions -- The Controversy:
If a client can reasonably be expected
to recover from an exception, make it
a checked exception. If a client
cannot do anything to recover from the
exception, make it an unchecked
exception.
Note that an unchecked exception is one derived from RuntimeException and a checked exception is one derived from Exception.
Why throw a RuntimeException if a client cannot do anything to recover from the exception? The article explains:
Runtime exceptions represent problems
that are the result of a programming
problem, and as such, the API client
code cannot reasonably be expected to
recover from them or to handle them in
any way. Such problems include
arithmetic exceptions, such as
dividing by zero; pointer exceptions,
such as trying to access an object
through a null reference; and indexing
exceptions, such as attempting to
access an array element through an
index that is too large or too small.

From oracle documentation:
Here's the bottom line guideline: If a client can reasonably be
expected to recover from an exception, make it a checked exception. If
a client cannot do anything to recover from the exception, make it an
unchecked exception.
Runtime exceptions represent problems that are the result of a programming problem and as such, the API client code cannot reasonably be expected to recover from them or to handle them in any way.
RuntimeExceptions are like "exceptions by invalid use of an api" examples of runtimeexceptions: IllegalStateException, NegativeArraySizeException, NullpointerException
With the Exceptions you must catch it explicitly because you can still do something to recover. Examples of Exceptions are: IOException, TimeoutException, PrintException...

In simple words, if your client/user can recover from the Exception then make it a Checked Exception, if your client can't do anything to recover from the Exception then make it Unchecked RuntimeException. E.g, a RuntimeException would be a programmatic error, like division by zero, no user can do anything about it but the programmer himself, then it is a RuntimeException.

RuntimeException is a child class of Exception class
This is one of the many child classes of Exception class. RuntimeException is the superclass of those exceptions that can be thrown during the normal operation of the Java Virtual Machine. A method is not required to declare in its throws clause any subclasses of RuntimeException that might be thrown during the execution of the method but not caught.
The hierchy is
java.lang.Object
---java.lang.Throwable
-------java.lang.Exception
-------------java.lang.RuntimeException

Exceptions are a good way to handle unexpected events in your application flow. RuntimeException are unchecked by the Compiler but you may prefer to use Exceptions that extend Exception Class to control the behaviour of your api clients as they are required to catch errors for them to compile. Also forms good documentation.
If want to achieve clean interface use inheritance to subclass the different types of exception your application has and then expose the parent exception.

There are two types of exception, You can recover from checked exception if you get such kind of exception. Runtime exception are irrecoverable, runtime exceptions are programming errors, and programmer should take care of it while writing the code, and continue execution of this might give you incorrect result. Runtime exceptions are about violating precondition ex. you have an array of size 10, and you are trying to access 11 th element, it will throw ArrayIndexOutOfBoundException

User-defined Exception can be Checked Exception or Unchecked Exception, It depends on the class it is extending to.
User-defined Exception can be Custom Checked Exception, if it is extending to Exception class
User-defined Exception can be Custom Unchecked Exception , if it is extending to Run time Exception class.
Define a class and make it a child to Exception or Run time Exception

Related

When is Throws needed and how is an exception passed? [duplicate]

Joshua Bloch in "Effective Java" said that
Use checked exceptions for
recoverable conditions and runtime
exceptions for programming errors
(Item 58 in 2nd edition)
Let's see if I understand this correctly.
Here is my understanding of a checked exception:
try{
String userInput = //read in user input
Long id = Long.parseLong(userInput);
}catch(NumberFormatException e){
id = 0; //recover the situation by setting the id to 0
}
1. Is the above considered a checked exception?
2. Is RuntimeException an unchecked exception?
Here is my understanding of an unchecked exception:
try{
File file = new File("my/file/path");
FileInputStream fis = new FileInputStream(file);
}catch(FileNotFoundException e){
//3. What should I do here?
//Should I "throw new FileNotFoundException("File not found");"?
//Should I log?
//Or should I System.exit(0);?
}
4. Now, couldn't the above code also be a checked exception? I can try to recover the situation like this? Can I? (Note: my 3rd question is inside the catch above)
try{
String filePath = //read in from user input file path
File file = new File(filePath);
FileInputStream fis = new FileInputStream(file);
}catch(FileNotFoundException e){
//Kindly prompt the user an error message
//Somehow ask the user to re-enter the file path.
}
5. Why do people do this?
public void someMethod throws Exception{
}
Why do they let the exception bubble up? Isn't handling the error sooner better? Why bubble up?
6. Should I bubble up the exact exception or mask it using Exception?
Below are my readings
In Java, when should I create a checked exception, and when should it be a runtime exception?
When to choose checked and unchecked exceptions
Many people say that checked exceptions (i.e. these that you should explicitly catch or rethrow) should not be used at all. They were eliminated in C# for example, and most languages don't have them. So you can always throw a subclass of RuntimeException (unchecked exception)
However, I think checked exceptions are useful - they are used when you want to force the user of your API to think how to handle the exceptional situation (if it is recoverable). It's just that checked exceptions are overused in the Java platform, which makes people hate them.
Here's my extended view on the topic.
As for the particular questions:
Is the NumberFormatException consider a checked exception?
No. NumberFormatException is unchecked (= is subclass of RuntimeException). Why? I don't know. (but there should have been a method isValidInteger(..))
Is RuntimeException an unchecked exception?
Yes, exactly.
What should I do here?
It depends on where this code is and what you want to happen. If it is in the UI layer - catch it and show a warning; if it's in the service layer - don't catch it at all - let it bubble. Just don't swallow the exception. If an exception occurs in most of the cases you should choose one of these:
log it and return
rethrow it (declare it to be thrown by the method)
construct a new exception by passing the current one in constructor
Now, couldn't the above code also be a checked exception? I can try to recover the situation like this? Can I?
It could've been. But nothing stops you from catching the unchecked exception as well
Why do people add class Exception in the throws clause?
Most often because people are lazy to consider what to catch and what to rethrow. Throwing Exception is a bad practice and should be avoided.
Alas, there is no single rule to let you determine when to catch, when to rethrow, when to use checked and when to use unchecked exceptions. I agree this causes much confusion and a lot of bad code. The general principle is stated by Bloch (you quoted a part of it). And the general principle is to rethrow an exception to the layer where you can handle it.
Whether something is a "checked exception" has nothing to do with whether you catch it or what you do in the catch block. It's a property of exception classes. Anything that is a subclass of Exception except for RuntimeException and its subclasses is a checked exception.
The Java compiler forces you to either catch checked exceptions or declare them in the method signature. It was supposed to improve program safety, but the majority opinion seems to be that it's not worth the design problems it creates.
Why do they let the exception bubble
up? Isnt handle error the sooner the
better? Why bubble up?
Because that's the entire point of exceptions. Without this possibility, you would not need exceptions. They enable you to handle errors at a level you choose, rather than forcing you to deal with them in low-level methods where they originally occur.
Is the above considered to be a checked exception?
No
The fact that you are handling an exception does not make it a Checked Exception if it is a RuntimeException.
Is RuntimeException an unchecked exception?
Yes
Checked Exceptions are subclasses of java.lang.Exception
Unchecked Exceptions are subclasses of java.lang.RuntimeException
Calls throwing checked exceptions need to be enclosed in a try{} block or handled in a level above in the caller of the method. In that case the current method must declare that it throws said exceptions so that the callers can make appropriate arrangements to handle the exception.
Hope this helps.
Q: should I bubble up the exact
exception or mask it using Exception?
A: Yes this is a very good question and important design consideration. The class Exception is a very general exception class and can be used to wrap internal low level exceptions. You would better create a custom exception and wrap inside it. But, and a big one - Never ever obscure in underlying original root cause. For ex, Don't ever do following -
try {
attemptLogin(userCredentials);
} catch (SQLException sqle) {
throw new LoginFailureException("Cannot login!!"); //<-- Eat away original root cause, thus obscuring underlying problem.
}
Instead do following:
try {
attemptLogin(userCredentials);
} catch (SQLException sqle) {
throw new LoginFailureException(sqle); //<-- Wrap original exception to pass on root cause upstairs!.
}
Eating away original root cause buries the actual cause beyond recovery is a nightmare for production support teams where all they are given access to is application logs and error messages.
Although the latter is a better design but many people don't use it often because developers just fail to pass on the underlying message to caller. So make a firm note: Always pass on the actual exception back whether or not wrapped in any application specific exception.
On try-catching RuntimeExceptions
RuntimeExceptions as a general rule should not be try-catched. They generally signal a programming error and should be left alone. Instead the programmer should check the error condition before invoking some code which might result in a RuntimeException. For ex:
try {
setStatusMessage("Hello Mr. " + userObject.getName() + ", Welcome to my site!);
} catch (NullPointerException npe) {
sendError("Sorry, your userObject was null. Please contact customer care.");
}
This is a bad programming practice. Instead a null-check should have been done like -
if (userObject != null) {
setStatusMessage("Hello Mr. " + userObject.getName() + ", Welome to my site!);
} else {
sendError("Sorry, your userObject was null. Please contact customer care.");
}
But there are times when such error checking is expensive such as number formatting, consider this -
try {
String userAge = (String)request.getParameter("age");
userObject.setAge(Integer.parseInt(strUserAge));
} catch (NumberFormatException npe) {
sendError("Sorry, Age is supposed to be an Integer. Please try again.");
}
Here pre-invocation error checking is not worth the effort because it essentially means to duplicate all the string-to-integer conversion code inside parseInt() method - and is error prone if implemented by a developer. So it is better to just do away with try-catch.
So NullPointerException and NumberFormatException are both RuntimeExceptions, catching a NullPointerException should replaced with a graceful null-check while I recommend catching a NumberFormatException explicitly to avoid possible introduction of error prone code.
1 . If you are unsure about an exception, check the API:
java.lang.Object
extended by java.lang.Throwable
extended by java.lang.Exception
extended by java.lang.RuntimeException //<-NumberFormatException is a RuntimeException
extended by java.lang.IllegalArgumentException
extended by java.lang.NumberFormatException
2 . Yes, and every exception that extends it.
3 . There is no need to catch and throw the same exception. You can show a new File Dialog in this case.
4 . FileNotFoundException is already a checked exception.
5 . If it is expected that the method calling someMethod to catch the exception, the latter can be thrown. It just "passes the ball". An example of it usage would be if you want to throw it in your own private methods, and handle the exception in your public method instead.
A good reading is the Oracle doc itself: http://download.oracle.com/javase/tutorial/essential/exceptions/runtime.html
Why did the designers decide to force a method to specify all uncaught checked exceptions that can be thrown within its scope? Any Exception that can be thrown by a method is part of the method's public programming interface. Those who call a method must know about the exceptions that a method can throw so that they can decide what to do about them. These exceptions are as much a part of that method's programming interface as its parameters and return value.
The next question might be: "If it's so good to document a method's API, including the exceptions it can throw, why not specify runtime exceptions too?" Runtime exceptions represent problems that are the result of a programming problem, and as such, the API client code cannot reasonably be expected to recover from them or to handle them in any way. Such problems include arithmetic exceptions, such as dividing by zero; pointer exceptions, such as trying to access an object through a null reference; and indexing exceptions, such as attempting to access an array element through an index that is too large or too small.
There's also an important bit of information in the Java Language Specification:
The checked exception classes named in the throws clause are part of the contract between the implementor and user of the method or constructor.
The bottom line IMHO is that you can catch any RuntimeException, but you are not required to and, in fact the implementation is not required to maintain the same non-checked exceptions thrown, as those are not part of the contract.
1) No, a NumberFormatException is an unchecked Exception. Even though you caught it (you aren't required to) because it's unchecked. This is because it is a subclass of IllegalArgumentException which is a subclass of RuntimeException.
2) RuntimeException is the root of all unchecked Exceptions. Every subclass of RuntimeException is unchecked. All other Exceptions and Throwable are checked except for Errors ( Which comes under Throwable).
3/4) You could alert the user that they picked a non-existent file and ask for a new one. Or just quit informing the user that they entered something invalid.
5) Throwing and catching 'Exception' is bad practice. But more generally, you might throw other exceptions so the caller can decide how to deal with it. For example, if you wrote a library to handle reading some file input and your method was passed a non-existent file, you have no idea how to handle that. Does the caller want to ask again or quit? So you throw the Exception up the chain back to the caller.
In many cases, an unchecked Exception occurs because the programmer did not verify inputs (in the case of NumberFormatException in your first question). That's why its optional to catch them, because there are more elegant ways to avoid generating those exceptions.
Checked - Prone to happen. Checked in Compile time.
Eg.. FileOperations
UnChecked - Due to Bad data. Checked in Run time.
Eg..
String s = "abc";
Object o = s;
Integer i = (Integer) o;
Exception in thread "main" java.lang.ClassCastException: java.lang.String cannot be cast to java.lang.Integer
at Sample.main(Sample.java:9)
Here exception is due to bad data and in no way it can be determined during compile time.
Runtime Exceptions :
Runtime exceptions are referring to as unchecked exceptions. All other exceptions
are checked exceptions, and they don't derive from java.lang.RuntimeException.
Checked Exceptions :
A checked exception must be caught somewhere in your code. If you invoke a
method that throws a checked exception but you don't catch the checked exception
somewhere, your code will not compile. That's why they're called checked
exceptions : the compiler checks to make sure that they're handled or declared.
A number of the methods in the Java API throw checked exceptions, so you will often write exception handlers to cope with exceptions generated by methods you didn't write.
Checked exceptions are checked at compile time by the JVM and its related to resources(files/db/stream/socket etc). The motive of checked exception is that at compile time if the resources are not available the application should define an alternative behaviour to handle this in the catch/finally block.
Unchecked exceptions are purely programmatic errors, wrong calculation, null data or even failures in business logic can lead to runtime exceptions. Its absolutely fine to handle/catch unchecked exceptions in code.
Explanation taken from http://coder2design.com/java-interview-questions/
My absolute favorite description of the difference between unchecked and checked exceptions is provided by the Java Tutorial trail article, "Unchecked Exceptions - the Controversy" (sorry to get all elementary on this post - but, hey, the basics are sometimes the best):
Here's the bottom line guideline: If a client can reasonably be
expected to recover from an exception, make it a checked exception. If
a client cannot do anything to recover from the exception, make it an
unchecked exception
The heart of "what type of exception to throw" is semantic (to some degree) and the above quote provides and excellent guideline (hence, I am still blown away by the notion that C# got rid of checked exceptions - particularly as Liskov argues for their usefulness).
The rest then becomes logical: to which exceptions does the compiler expect me to respond, explicitly? The ones from which you expect client to recover.
To answer the final question (the others seem thoroughly answered above), "Should I bubble up the exact exception or mask it using Exception?"
I am assuming you mean something like this:
public void myMethod() throws Exception {
// ... something that throws FileNotFoundException ...
}
No, always declare the most precise exception possible, or a list of such. The exceptions you declare your method as capable of throwing are a part of the contract between your method and the caller. Throwing "FileNotFoundException" means that it is possible the file name isn't valid and the file will not be found; the caller will need to handle that intelligently. Throwing Exception means "Hey, sh*t happens. Deal." Which is a very poor API.
In the comments on the first article there are some examples where "throws Exception" is a valid and reasonable declaration, but that's not the case for most "normal" code you will ever write.
I think that checked exceptions are a good reminder for the developer that uses an external library that things can go wrong with the code from that library in exceptional situations.
Why do they let the exception bubble up? Isn't handling the error sooner better? Why bubble up?
For example let say you have some client-server application and client had made a request for some resource that couldn't be find out or for something else error some might have occurred at the server side while processing the user request then it is the duty of the server to tell the client why he couldn't get the thing he requested for,so to achieve that at server side, code is written to throw the exception using throw keyword instead of swallowing or handling it.if server handles it/swallow it, then there will be no chance of intimating to the client that what error had occurred.
Note:To give a clear description of what the error type has occurred we can create our own Exception object and throw it to the client.
I just want to add some reasoning for not using checked exceptions at all. This is not a full answer, but I feel it does answer part of your question, and complements many other answers.
Whenever checked exceptions are involved, there's a throws CheckedException somewhere in a method signature (CheckedException could be any checked exception). A signature does NOT throw an Exception, throwing Exceptions is an aspect of implementation. Interfaces, method signatures, parent classes, all these things should NOT depend on their implementations. The usage of checked Exceptions here (actually the fact that you have to declare the throws in the method signature) is binding your higher-level interfaces with your implementations of these interfaces.
Let me show you an example.
Let's have a nice and clean interface like this
public interface IFoo {
public void foo();
}
Now we can write many implementations of method foo(), like these
public class Foo implements IFoo {
#Override
public void foo() {
System.out.println("I don't throw and exception");
}
}
Class Foo is perfectly fine. Now let's make a first attempt at class Bar
public class Bar implements IFoo {
#Override
public void foo() {
//I'm using InterruptedExcepton because you probably heard about it somewhere. It's a checked exception. Any checked exception will work the same.
throw new InterruptedException();
}
}
This class Bar won't compile. As InterruptedException is a checked exception, you must either capture it (with a try-catch inside method foo()) or declare that you're throwing it (adding throws InterruptedException to the method signature). As I don't want to capture this exception here (I want it to propagate upwards so I can properly deal with it somewhere else), let's alter the signature.
public class Bar implements IFoo {
#Override
public void foo() throws InterruptedException {
throw new InterruptedException();
}
}
This class Bar won't compile either! Bar's method foo() does NOT override IFoo's method foo() since their signatures are different. I could remove the #Override annotation, but I want to program against interface IFoo like IFoo foo; and later on decide on which implementation I want to use, like foo = new Bar();. If Bar's method foo() doesn't override IFoo's method foo, when I do foo.foo(); it won't call Bar's implementation of foo().
To make Bar's public void foo() throws InterruptedException override IFoo's public void foo() I MUST add throws InterruptedException to IFoo's method signature. This, however, will cause problems with my Foo class, since it's foo() method's signature differs from IFoo's method signature. Furthermore, if I added throws InterruptedException to Foo's method foo() I would get another error stating that Foo's method foo() declares that it throws an InterruptedException yet it never throws an InterruptedException.
As you can see (if I did a decent job at explaining this stuff), the fact that I'm throwing a checked exception like InterruptedException is forcing me to tie my interface IFoo to one of it's implementations, which in turn causes havoc on IFoo's other implementations!
This is one big reason why checked exceptions are BAD. In caps.
One solution is to capture the checked exception, wrap it in an unchecked exception and throw the unchecked exception.
Java distinguishes between two categories of exceptions (checked & unchecked).
Java enforces a catch or declared requirement for checked exceptions.
An exception's type determines whether an exception is checked or unchecked.
All exception types that are direct or indirect subclasses of class RuntimeException
are unchecked exception.
All classes that inherit from class Exception but not RuntimeException are considered to be checked exceptions.
Classes that inherit from class Error are considered to be unchecked.
Compiler checks each method call and deceleration to determine whether the
method throws checked exception.
If so the compiler ensures the exception is caught or is declared in a throws clause.
To satisfy the declare part of the catch-or-declare requirement, the method that generates
the exception must provide a throws clause containing the checked-exception.
Exception classes are defined to be checked when they are considered important enough to catch or declare.
Here is a simple rule that can help you decide. It is related to how interfaces are used in Java.
Take your class and imagine designing an interface for it such that the interface describes the functionality of the class but none of the underlying implementation (as an interface should). Pretend perhaps that you might implement the class in another way.
Look at the methods of the interface and consider the exceptions they might throw:
If an exception can be thrown by a method, regardless of the underlying implementation (in other words, it describes the functionality only) then it should probably be a checked exception in the interface.
If an exception is caused by the underlying implementation, it should not be in the interface. Therefore, it must either be an unchecked exception in your class (since unchecked exceptions need not appear in the interface signature), or you must wrap it and rethrow as a checked exception that is part of the interface method.
To decide if you should wrap and rethrow, you should again consider whether it makes sense for a user of the interface to have to handle the exception condition immediately, or the exception is so general that there is nothing you can do about it and it should propagate up the stack. Does the wrapped exception make sense when expressed as functionality of the new interface you are defining or is it just a carrier for a bag of possible error conditions that could also happen to other methods? If the former, it might still be a checked exception, otherwise it should be unchecked.
You should not usually plan to "bubble-up" exceptions (catch and rethrow). Either an exception should be handled by the caller (in which case it is checked) or it should go all the way up to a high level handler (in which case it is easiest if it is unchecked).
Just to point out that if you throw a checked exception in a code and the catch is few levels above, you need to declare the exception in the signature of each method between you and the catch. So, encapsulation is broken because all functions in the path of throw must know about details of that exception.
In short, exceptions which your module or modules above are supposed to handle during runtime are called checked exceptions; others are unchecked exceptions which are either RuntimeException or Error.
In this video, it explains checked and unchecked exceptions in Java:
https://www.youtube.com/watch?v=ue2pOqLaArw
All of those are checked exceptions. Unchecked exceptions are subclasses of RuntimeException. The decision is not how to handle them, it's should your code throw them. If you don't want the compiler telling you that you haven't handled an exception then you use an unchecked (subclass of RuntimeException) exception. Those should be saved for situations that you can't recover from, like out of memory errors and the like.
Checked Exceptions :
The exceptions which are checked by the compiler for smooth execution of the program at runtime are called Checked Exception.
These occur at compile time.
If these are not handled properly, they will give compile time error (Not Exception).
All subclasses of Exception class except RuntimeException are Checked Exception.
Hypothetical Example - Suppose you are leaving your house for the exam, but if you check whether you took your Hall Ticket at home(compile time) then there won't be any problem at Exam Hall(runtime).
Unchecked Exception :
The exceptions which are not checked by the compiler are called Unchecked Exceptions.
These occur at runtime.
If these exceptions are not handled properly, they don’t give compile time error. But the program will be terminated prematurely at runtime.
All subclasses of RunTimeException and Error are unchecked exceptions.
Hypothetical Example - Suppose you are in your exam hall but somehow your school had a fire accident (means at runtime) where you can't do anything at that time but precautions can be made before (compile time).
If anybody cares for yet another proof to dislike checked exceptions, see the first few paragraphs of the popular JSON library:
"Although this is a checked exception, it is rarely recoverable. Most callers should simply wrap this exception in an unchecked exception and rethrow: "
So why in the world would anyone make developers keep checking the exception, if we should "simply wrap it" instead? lol
http://developer.android.com/reference/org/json/JSONException.html
All exceptions must be checked exceptions.
Unchecked exceptions are unrestricted gotos. And unrestricted gotos are considered a bad thing.
Unchecked exceptions break encapsulation. To process them correctly, all the functions in the call tree between the thrower and the catcher must be known to avoid bugs.
Exceptions are errors in the function that throws them but not errors in the function that processes them. The purpose of exceptions is to give the program a second chance by deferring the decision of whether it's an error or not to another context. It's only in the other context can the correct decision be made.

Why we can not add unchecked exceptions in the same way as checked exceptions [duplicate]

Joshua Bloch in "Effective Java" said that
Use checked exceptions for
recoverable conditions and runtime
exceptions for programming errors
(Item 58 in 2nd edition)
Let's see if I understand this correctly.
Here is my understanding of a checked exception:
try{
String userInput = //read in user input
Long id = Long.parseLong(userInput);
}catch(NumberFormatException e){
id = 0; //recover the situation by setting the id to 0
}
1. Is the above considered a checked exception?
2. Is RuntimeException an unchecked exception?
Here is my understanding of an unchecked exception:
try{
File file = new File("my/file/path");
FileInputStream fis = new FileInputStream(file);
}catch(FileNotFoundException e){
//3. What should I do here?
//Should I "throw new FileNotFoundException("File not found");"?
//Should I log?
//Or should I System.exit(0);?
}
4. Now, couldn't the above code also be a checked exception? I can try to recover the situation like this? Can I? (Note: my 3rd question is inside the catch above)
try{
String filePath = //read in from user input file path
File file = new File(filePath);
FileInputStream fis = new FileInputStream(file);
}catch(FileNotFoundException e){
//Kindly prompt the user an error message
//Somehow ask the user to re-enter the file path.
}
5. Why do people do this?
public void someMethod throws Exception{
}
Why do they let the exception bubble up? Isn't handling the error sooner better? Why bubble up?
6. Should I bubble up the exact exception or mask it using Exception?
Below are my readings
In Java, when should I create a checked exception, and when should it be a runtime exception?
When to choose checked and unchecked exceptions
Many people say that checked exceptions (i.e. these that you should explicitly catch or rethrow) should not be used at all. They were eliminated in C# for example, and most languages don't have them. So you can always throw a subclass of RuntimeException (unchecked exception)
However, I think checked exceptions are useful - they are used when you want to force the user of your API to think how to handle the exceptional situation (if it is recoverable). It's just that checked exceptions are overused in the Java platform, which makes people hate them.
Here's my extended view on the topic.
As for the particular questions:
Is the NumberFormatException consider a checked exception?
No. NumberFormatException is unchecked (= is subclass of RuntimeException). Why? I don't know. (but there should have been a method isValidInteger(..))
Is RuntimeException an unchecked exception?
Yes, exactly.
What should I do here?
It depends on where this code is and what you want to happen. If it is in the UI layer - catch it and show a warning; if it's in the service layer - don't catch it at all - let it bubble. Just don't swallow the exception. If an exception occurs in most of the cases you should choose one of these:
log it and return
rethrow it (declare it to be thrown by the method)
construct a new exception by passing the current one in constructor
Now, couldn't the above code also be a checked exception? I can try to recover the situation like this? Can I?
It could've been. But nothing stops you from catching the unchecked exception as well
Why do people add class Exception in the throws clause?
Most often because people are lazy to consider what to catch and what to rethrow. Throwing Exception is a bad practice and should be avoided.
Alas, there is no single rule to let you determine when to catch, when to rethrow, when to use checked and when to use unchecked exceptions. I agree this causes much confusion and a lot of bad code. The general principle is stated by Bloch (you quoted a part of it). And the general principle is to rethrow an exception to the layer where you can handle it.
Whether something is a "checked exception" has nothing to do with whether you catch it or what you do in the catch block. It's a property of exception classes. Anything that is a subclass of Exception except for RuntimeException and its subclasses is a checked exception.
The Java compiler forces you to either catch checked exceptions or declare them in the method signature. It was supposed to improve program safety, but the majority opinion seems to be that it's not worth the design problems it creates.
Why do they let the exception bubble
up? Isnt handle error the sooner the
better? Why bubble up?
Because that's the entire point of exceptions. Without this possibility, you would not need exceptions. They enable you to handle errors at a level you choose, rather than forcing you to deal with them in low-level methods where they originally occur.
Is the above considered to be a checked exception?
No
The fact that you are handling an exception does not make it a Checked Exception if it is a RuntimeException.
Is RuntimeException an unchecked exception?
Yes
Checked Exceptions are subclasses of java.lang.Exception
Unchecked Exceptions are subclasses of java.lang.RuntimeException
Calls throwing checked exceptions need to be enclosed in a try{} block or handled in a level above in the caller of the method. In that case the current method must declare that it throws said exceptions so that the callers can make appropriate arrangements to handle the exception.
Hope this helps.
Q: should I bubble up the exact
exception or mask it using Exception?
A: Yes this is a very good question and important design consideration. The class Exception is a very general exception class and can be used to wrap internal low level exceptions. You would better create a custom exception and wrap inside it. But, and a big one - Never ever obscure in underlying original root cause. For ex, Don't ever do following -
try {
attemptLogin(userCredentials);
} catch (SQLException sqle) {
throw new LoginFailureException("Cannot login!!"); //<-- Eat away original root cause, thus obscuring underlying problem.
}
Instead do following:
try {
attemptLogin(userCredentials);
} catch (SQLException sqle) {
throw new LoginFailureException(sqle); //<-- Wrap original exception to pass on root cause upstairs!.
}
Eating away original root cause buries the actual cause beyond recovery is a nightmare for production support teams where all they are given access to is application logs and error messages.
Although the latter is a better design but many people don't use it often because developers just fail to pass on the underlying message to caller. So make a firm note: Always pass on the actual exception back whether or not wrapped in any application specific exception.
On try-catching RuntimeExceptions
RuntimeExceptions as a general rule should not be try-catched. They generally signal a programming error and should be left alone. Instead the programmer should check the error condition before invoking some code which might result in a RuntimeException. For ex:
try {
setStatusMessage("Hello Mr. " + userObject.getName() + ", Welcome to my site!);
} catch (NullPointerException npe) {
sendError("Sorry, your userObject was null. Please contact customer care.");
}
This is a bad programming practice. Instead a null-check should have been done like -
if (userObject != null) {
setStatusMessage("Hello Mr. " + userObject.getName() + ", Welome to my site!);
} else {
sendError("Sorry, your userObject was null. Please contact customer care.");
}
But there are times when such error checking is expensive such as number formatting, consider this -
try {
String userAge = (String)request.getParameter("age");
userObject.setAge(Integer.parseInt(strUserAge));
} catch (NumberFormatException npe) {
sendError("Sorry, Age is supposed to be an Integer. Please try again.");
}
Here pre-invocation error checking is not worth the effort because it essentially means to duplicate all the string-to-integer conversion code inside parseInt() method - and is error prone if implemented by a developer. So it is better to just do away with try-catch.
So NullPointerException and NumberFormatException are both RuntimeExceptions, catching a NullPointerException should replaced with a graceful null-check while I recommend catching a NumberFormatException explicitly to avoid possible introduction of error prone code.
1 . If you are unsure about an exception, check the API:
java.lang.Object
extended by java.lang.Throwable
extended by java.lang.Exception
extended by java.lang.RuntimeException //<-NumberFormatException is a RuntimeException
extended by java.lang.IllegalArgumentException
extended by java.lang.NumberFormatException
2 . Yes, and every exception that extends it.
3 . There is no need to catch and throw the same exception. You can show a new File Dialog in this case.
4 . FileNotFoundException is already a checked exception.
5 . If it is expected that the method calling someMethod to catch the exception, the latter can be thrown. It just "passes the ball". An example of it usage would be if you want to throw it in your own private methods, and handle the exception in your public method instead.
A good reading is the Oracle doc itself: http://download.oracle.com/javase/tutorial/essential/exceptions/runtime.html
Why did the designers decide to force a method to specify all uncaught checked exceptions that can be thrown within its scope? Any Exception that can be thrown by a method is part of the method's public programming interface. Those who call a method must know about the exceptions that a method can throw so that they can decide what to do about them. These exceptions are as much a part of that method's programming interface as its parameters and return value.
The next question might be: "If it's so good to document a method's API, including the exceptions it can throw, why not specify runtime exceptions too?" Runtime exceptions represent problems that are the result of a programming problem, and as such, the API client code cannot reasonably be expected to recover from them or to handle them in any way. Such problems include arithmetic exceptions, such as dividing by zero; pointer exceptions, such as trying to access an object through a null reference; and indexing exceptions, such as attempting to access an array element through an index that is too large or too small.
There's also an important bit of information in the Java Language Specification:
The checked exception classes named in the throws clause are part of the contract between the implementor and user of the method or constructor.
The bottom line IMHO is that you can catch any RuntimeException, but you are not required to and, in fact the implementation is not required to maintain the same non-checked exceptions thrown, as those are not part of the contract.
1) No, a NumberFormatException is an unchecked Exception. Even though you caught it (you aren't required to) because it's unchecked. This is because it is a subclass of IllegalArgumentException which is a subclass of RuntimeException.
2) RuntimeException is the root of all unchecked Exceptions. Every subclass of RuntimeException is unchecked. All other Exceptions and Throwable are checked except for Errors ( Which comes under Throwable).
3/4) You could alert the user that they picked a non-existent file and ask for a new one. Or just quit informing the user that they entered something invalid.
5) Throwing and catching 'Exception' is bad practice. But more generally, you might throw other exceptions so the caller can decide how to deal with it. For example, if you wrote a library to handle reading some file input and your method was passed a non-existent file, you have no idea how to handle that. Does the caller want to ask again or quit? So you throw the Exception up the chain back to the caller.
In many cases, an unchecked Exception occurs because the programmer did not verify inputs (in the case of NumberFormatException in your first question). That's why its optional to catch them, because there are more elegant ways to avoid generating those exceptions.
Checked - Prone to happen. Checked in Compile time.
Eg.. FileOperations
UnChecked - Due to Bad data. Checked in Run time.
Eg..
String s = "abc";
Object o = s;
Integer i = (Integer) o;
Exception in thread "main" java.lang.ClassCastException: java.lang.String cannot be cast to java.lang.Integer
at Sample.main(Sample.java:9)
Here exception is due to bad data and in no way it can be determined during compile time.
Runtime Exceptions :
Runtime exceptions are referring to as unchecked exceptions. All other exceptions
are checked exceptions, and they don't derive from java.lang.RuntimeException.
Checked Exceptions :
A checked exception must be caught somewhere in your code. If you invoke a
method that throws a checked exception but you don't catch the checked exception
somewhere, your code will not compile. That's why they're called checked
exceptions : the compiler checks to make sure that they're handled or declared.
A number of the methods in the Java API throw checked exceptions, so you will often write exception handlers to cope with exceptions generated by methods you didn't write.
Checked exceptions are checked at compile time by the JVM and its related to resources(files/db/stream/socket etc). The motive of checked exception is that at compile time if the resources are not available the application should define an alternative behaviour to handle this in the catch/finally block.
Unchecked exceptions are purely programmatic errors, wrong calculation, null data or even failures in business logic can lead to runtime exceptions. Its absolutely fine to handle/catch unchecked exceptions in code.
Explanation taken from http://coder2design.com/java-interview-questions/
My absolute favorite description of the difference between unchecked and checked exceptions is provided by the Java Tutorial trail article, "Unchecked Exceptions - the Controversy" (sorry to get all elementary on this post - but, hey, the basics are sometimes the best):
Here's the bottom line guideline: If a client can reasonably be
expected to recover from an exception, make it a checked exception. If
a client cannot do anything to recover from the exception, make it an
unchecked exception
The heart of "what type of exception to throw" is semantic (to some degree) and the above quote provides and excellent guideline (hence, I am still blown away by the notion that C# got rid of checked exceptions - particularly as Liskov argues for their usefulness).
The rest then becomes logical: to which exceptions does the compiler expect me to respond, explicitly? The ones from which you expect client to recover.
To answer the final question (the others seem thoroughly answered above), "Should I bubble up the exact exception or mask it using Exception?"
I am assuming you mean something like this:
public void myMethod() throws Exception {
// ... something that throws FileNotFoundException ...
}
No, always declare the most precise exception possible, or a list of such. The exceptions you declare your method as capable of throwing are a part of the contract between your method and the caller. Throwing "FileNotFoundException" means that it is possible the file name isn't valid and the file will not be found; the caller will need to handle that intelligently. Throwing Exception means "Hey, sh*t happens. Deal." Which is a very poor API.
In the comments on the first article there are some examples where "throws Exception" is a valid and reasonable declaration, but that's not the case for most "normal" code you will ever write.
I think that checked exceptions are a good reminder for the developer that uses an external library that things can go wrong with the code from that library in exceptional situations.
Why do they let the exception bubble up? Isn't handling the error sooner better? Why bubble up?
For example let say you have some client-server application and client had made a request for some resource that couldn't be find out or for something else error some might have occurred at the server side while processing the user request then it is the duty of the server to tell the client why he couldn't get the thing he requested for,so to achieve that at server side, code is written to throw the exception using throw keyword instead of swallowing or handling it.if server handles it/swallow it, then there will be no chance of intimating to the client that what error had occurred.
Note:To give a clear description of what the error type has occurred we can create our own Exception object and throw it to the client.
I just want to add some reasoning for not using checked exceptions at all. This is not a full answer, but I feel it does answer part of your question, and complements many other answers.
Whenever checked exceptions are involved, there's a throws CheckedException somewhere in a method signature (CheckedException could be any checked exception). A signature does NOT throw an Exception, throwing Exceptions is an aspect of implementation. Interfaces, method signatures, parent classes, all these things should NOT depend on their implementations. The usage of checked Exceptions here (actually the fact that you have to declare the throws in the method signature) is binding your higher-level interfaces with your implementations of these interfaces.
Let me show you an example.
Let's have a nice and clean interface like this
public interface IFoo {
public void foo();
}
Now we can write many implementations of method foo(), like these
public class Foo implements IFoo {
#Override
public void foo() {
System.out.println("I don't throw and exception");
}
}
Class Foo is perfectly fine. Now let's make a first attempt at class Bar
public class Bar implements IFoo {
#Override
public void foo() {
//I'm using InterruptedExcepton because you probably heard about it somewhere. It's a checked exception. Any checked exception will work the same.
throw new InterruptedException();
}
}
This class Bar won't compile. As InterruptedException is a checked exception, you must either capture it (with a try-catch inside method foo()) or declare that you're throwing it (adding throws InterruptedException to the method signature). As I don't want to capture this exception here (I want it to propagate upwards so I can properly deal with it somewhere else), let's alter the signature.
public class Bar implements IFoo {
#Override
public void foo() throws InterruptedException {
throw new InterruptedException();
}
}
This class Bar won't compile either! Bar's method foo() does NOT override IFoo's method foo() since their signatures are different. I could remove the #Override annotation, but I want to program against interface IFoo like IFoo foo; and later on decide on which implementation I want to use, like foo = new Bar();. If Bar's method foo() doesn't override IFoo's method foo, when I do foo.foo(); it won't call Bar's implementation of foo().
To make Bar's public void foo() throws InterruptedException override IFoo's public void foo() I MUST add throws InterruptedException to IFoo's method signature. This, however, will cause problems with my Foo class, since it's foo() method's signature differs from IFoo's method signature. Furthermore, if I added throws InterruptedException to Foo's method foo() I would get another error stating that Foo's method foo() declares that it throws an InterruptedException yet it never throws an InterruptedException.
As you can see (if I did a decent job at explaining this stuff), the fact that I'm throwing a checked exception like InterruptedException is forcing me to tie my interface IFoo to one of it's implementations, which in turn causes havoc on IFoo's other implementations!
This is one big reason why checked exceptions are BAD. In caps.
One solution is to capture the checked exception, wrap it in an unchecked exception and throw the unchecked exception.
Java distinguishes between two categories of exceptions (checked & unchecked).
Java enforces a catch or declared requirement for checked exceptions.
An exception's type determines whether an exception is checked or unchecked.
All exception types that are direct or indirect subclasses of class RuntimeException
are unchecked exception.
All classes that inherit from class Exception but not RuntimeException are considered to be checked exceptions.
Classes that inherit from class Error are considered to be unchecked.
Compiler checks each method call and deceleration to determine whether the
method throws checked exception.
If so the compiler ensures the exception is caught or is declared in a throws clause.
To satisfy the declare part of the catch-or-declare requirement, the method that generates
the exception must provide a throws clause containing the checked-exception.
Exception classes are defined to be checked when they are considered important enough to catch or declare.
Here is a simple rule that can help you decide. It is related to how interfaces are used in Java.
Take your class and imagine designing an interface for it such that the interface describes the functionality of the class but none of the underlying implementation (as an interface should). Pretend perhaps that you might implement the class in another way.
Look at the methods of the interface and consider the exceptions they might throw:
If an exception can be thrown by a method, regardless of the underlying implementation (in other words, it describes the functionality only) then it should probably be a checked exception in the interface.
If an exception is caused by the underlying implementation, it should not be in the interface. Therefore, it must either be an unchecked exception in your class (since unchecked exceptions need not appear in the interface signature), or you must wrap it and rethrow as a checked exception that is part of the interface method.
To decide if you should wrap and rethrow, you should again consider whether it makes sense for a user of the interface to have to handle the exception condition immediately, or the exception is so general that there is nothing you can do about it and it should propagate up the stack. Does the wrapped exception make sense when expressed as functionality of the new interface you are defining or is it just a carrier for a bag of possible error conditions that could also happen to other methods? If the former, it might still be a checked exception, otherwise it should be unchecked.
You should not usually plan to "bubble-up" exceptions (catch and rethrow). Either an exception should be handled by the caller (in which case it is checked) or it should go all the way up to a high level handler (in which case it is easiest if it is unchecked).
Just to point out that if you throw a checked exception in a code and the catch is few levels above, you need to declare the exception in the signature of each method between you and the catch. So, encapsulation is broken because all functions in the path of throw must know about details of that exception.
In short, exceptions which your module or modules above are supposed to handle during runtime are called checked exceptions; others are unchecked exceptions which are either RuntimeException or Error.
In this video, it explains checked and unchecked exceptions in Java:
https://www.youtube.com/watch?v=ue2pOqLaArw
All of those are checked exceptions. Unchecked exceptions are subclasses of RuntimeException. The decision is not how to handle them, it's should your code throw them. If you don't want the compiler telling you that you haven't handled an exception then you use an unchecked (subclass of RuntimeException) exception. Those should be saved for situations that you can't recover from, like out of memory errors and the like.
Checked Exceptions :
The exceptions which are checked by the compiler for smooth execution of the program at runtime are called Checked Exception.
These occur at compile time.
If these are not handled properly, they will give compile time error (Not Exception).
All subclasses of Exception class except RuntimeException are Checked Exception.
Hypothetical Example - Suppose you are leaving your house for the exam, but if you check whether you took your Hall Ticket at home(compile time) then there won't be any problem at Exam Hall(runtime).
Unchecked Exception :
The exceptions which are not checked by the compiler are called Unchecked Exceptions.
These occur at runtime.
If these exceptions are not handled properly, they don’t give compile time error. But the program will be terminated prematurely at runtime.
All subclasses of RunTimeException and Error are unchecked exceptions.
Hypothetical Example - Suppose you are in your exam hall but somehow your school had a fire accident (means at runtime) where you can't do anything at that time but precautions can be made before (compile time).
If anybody cares for yet another proof to dislike checked exceptions, see the first few paragraphs of the popular JSON library:
"Although this is a checked exception, it is rarely recoverable. Most callers should simply wrap this exception in an unchecked exception and rethrow: "
So why in the world would anyone make developers keep checking the exception, if we should "simply wrap it" instead? lol
http://developer.android.com/reference/org/json/JSONException.html
All exceptions must be checked exceptions.
Unchecked exceptions are unrestricted gotos. And unrestricted gotos are considered a bad thing.
Unchecked exceptions break encapsulation. To process them correctly, all the functions in the call tree between the thrower and the catcher must be known to avoid bugs.
Exceptions are errors in the function that throws them but not errors in the function that processes them. The purpose of exceptions is to give the program a second chance by deferring the decision of whether it's an error or not to another context. It's only in the other context can the correct decision be made.

Why do we need Error class?

We have Throwable class which is the base class for Error class (for unrecoverable errors) and Exception class(for recoverable errors)
So,
1> we can throw an object that implement error class.(Although it doesn't make sense to implement Error class because we have Exception class to do the same thing..)
2> Java doesn't recommend to catch Error object..
So what is the need of Error object then? Cant the compiler implement it internally? Isn't it a mistake?
Technically, the distinction is not really made between "unrecoverable error" and "recoverable error", but between checked exceptions and unchecked exceptions. Java does distinguish between them as follows:
you must declare a checked exception in your throws clause; if using a method which throws a checked exception in a try block, you must either catch said exception or add this exception to your method's throws clause;
you may declare an unchecked exception in your throws clause (not recommended); if using a method which throws an unchecked exception in a try block, you may catch that exception or add this exception to your method's throws clause (not recommended either).
What is certainly not recommended, unless you really know what you are doing, is to "swallow" any kind of unchecked exception (ie, catch it with an empty block).
Exception is the base checked exception class; Error and RuntimeException are both unchecked exceptions, and so are all their subclasses. You will note that all three classes extend Throwable, and the javadoc for Throwable states that:
For the purposes of compile-time checking of exceptions, Throwable and
any subclass of Throwable that is not also a subclass of either
RuntimeException or Error are regarded as checked exceptions.
Classical examples of (in)famous unchecked exceptions:
OutOfMemoryError (extends Error);
StackOverflowError (extends Error);
NullPointerException (extends RuntimeException);
IllegalArgumentException (extends RuntimeException);
etc etc.
The only real difference between Error and RuntimeException is their estimated severity level, and is a "semantic" difference, not a technical difference: ultimately, both behave the same. Some IDEs (Intellij IDEA comes to mind) will also yell at you if you catch an Error but do not rethrow it.
You certainly can throw objects that extend (not implement) the Error class.
As you said, Error exists for unrecoverable errors. The most extensive use is within the JVM itself which uses subclasses of Error for things it can't recover from and doesn't expect you to be able to recover from - such as running out of memory.
javadoc for error says
An Error is a subclass of Throwable that indicates serious problems
that a reasonable application should not try to catch. Most such
errors are abnormal conditions.
whereas for Exception, the javadoc says
The class Exception and its subclasses are a form of Throwable that
indicates conditions that a reasonable application might want to
catch.
Some Differences
Error is not meant to be caught, even if you catch it you can not recover from it. For example during OutOfMemoryError, if you catch it you will get it again because GC may not be able to free memory in first place. On the other hand Exception can be caught and handled properly.
Error are often fatal in nature and recovery from Error is not possible which is different in case of Exception which may not be fatal in all cases.
Difference between Error and Exception in Java
Unlike Error, Exception is generally divided into two categories e.g. checked and unchecked Exceptions. Checked Exception has special place in Java programming language and require a mandatory try catch finally code block to handle it. On the other hand Unchecked Exception, which are subclass of RuntimeException mostly represent programming errors. Most common example of unchecked exception is NullPointerException in Java.
Similar to unchecked Exception, Error in Java are also unchecked. Compiler will not throw compile time error if it doesn't see Error handled with try catch or finally block. In fact handling Error is not a good Idea because recovery from Error is mostly not possible.
That's all on difference between Error and Exception in Java. key point to remember is that Error are fatal in nature and recovery may not be possible, on the other hand by carefully handling Exception you can make your code more robust and guard against different scenarios.
Look at a few of the subclasses of Error, taking from their respective javadoc:
AnnotationFormatError - Thrown when the annotation parser attempts to
read an annotation from a class file and determines that the
annotation is malformed.
AssertionError - Thrown to indicate that an assertion has failed.
LinkageError - Subclasses of LinkageError indicate that a class has
some dependency on another class; however, the latter class has
incompatibly changed after the compilation of the former class.
VirtualMachineError - Thrown to indicate that the Java Virtual Machine
is broken or has run out of resources necessary for it to continue
operating.
From the Error documentation:
An Error is a subclass of Throwable that indicates serious problems that a reasonable application should not try to catch.
and the Exception documentation:
The class Exception and its subclasses are a form of Throwable that indicates conditions that a reasonable application might want to catch.
I think this makes the distinction clear. Note also that both inherit from throwable and so can both be thrown.

Runtim Exception extends Exception and Custom Exception extends from Exception Why the later one is compile time exception and other is not?

In Java I have a Exception class that extends from Exception, But whenever I throw it, the compiler says that it needs to be caught/ must declare that methods throws Exception.
When I use a RuntimeException that extends from Exception, the compiler does not stop, It takes them as Runtime Exception and we need not handle it.
Is there a way where I can make a MyException extend from Exception and still have it as runtime exception.? or What makes this as possibility in class RuntimeException
private void compileTime() throws MyException{
throw new MyException();
}
private void runTime() {
throw new MyRuntimeException();
}
class MyException extends Exception {
}
class MyRuntimeException extends RuntimeException {
}
RuntimeException are a subset of unchecked exceptions for exceptions from which recovery is possible.
unchecked exceptions are not checked at compile-time which means that the compiler doesn't require methods to catch or to specify (with a throws) them.
The unchecked exceptions classes are the class RuntimeException and
its subclasses, and the class Error and its subclasses. All other
exception classes are checked exception classes.
Please check the Exception Hierarchy through this image :
In short, Any exception that derives from "Exception" is a checked exception, whereas a class that derives from RuntimeException is un-checked. RuntimeExceptions do not need to be explicitly handled by the calling code.
No way. According to specifications, only exceptions extended from RuntimeException class or Error class are considered as unchecked exceptions (JLS 7, p. 11.1.1).
What you are calling a "compile-time" exception is known as a Checked exception. As you say the compiler will require you to include it in your method signature and your callers will need to handle the possibility that it may be thrown.
RuntimeException is explicitly intended for the "unchecked" exception case.
From the docs
A method is not required to declare in its throws clause any
subclasses of RuntimeException that might be thrown during the
execution of the method but not caught.
So just extend RuntimeException if you want an unchecked excption.
RuntimeException doesn't need the try-catch combo or throws in the beginning of method. Simply because it happens in runtime such as you want to refer the 14th element of a 10 element long array or get a NullPointerException because you forgot to set value of something, these cases cannot be predicted since the program would work well with the right structures. Also as others say, this is un-checked.
Exception is different, you have to tell the program what to do with the well known exception cases. That means the complier will force you to handle the exception somehow before it starts to run.

Difference between Unchecked exception or runtime exception

This was an interview question. What is the main difference between unchecked exception and error as both are not caught? They will terminate the program.
As stated by their name, unchecked exceptions are not checked at compile-time which means that the compiler doesn't require methods to catch or to specify (with a throws) them. Classes belonging to this category are detailed in the section 11.2 Compile-Time Checking of Exceptions of the JLS:
The unchecked exceptions classes are the class RuntimeException and its subclasses, and the class Error and its subclasses. All other exception classes are checked exception classes. The Java API defines a number of exception classes, both checked and unchecked. Additional exception classes, both checked and unchecked, may be declared by programmers. See §11.5 for a description of the exception class hierarchy and some of the exception classes defined by the Java API and Java virtual machine.
The following picture illustrates the Exception hierarchy:
The class Error and its subclasses are exceptions from which ordinary programs are not ordinarily expected to recover and, as explained in 11.5 The Exception Hierarchy:
The class Error is a separate
subclass of Throwable, distinct from
Exception in the class hierarchy, to
allow programs to use the idiom:
} catch (Exception e) {
to catch all exceptions from which
recovery may be possible without
catching errors from which recovery is
typically not possible.
To summarize, RuntimeException are a subset of unchecked exceptions for exceptions from which recovery is possible (but unchecked exception is not a synonym of RuntimeException as many are answering here).
The JavaDocs sum these up pretty well.
java.lang.RuntimeException:
RuntimeException is the superclass of those exceptions that can be thrown during the normal operation of the Java Virtual Machine.
A method is not required to declare in its throws clause any subclasses of RuntimeException that might be thrown during the execution of the method but not caught.
java.lang.Error:
An Error is a subclass of Throwable that indicates serious problems that a reasonable application should not try to catch. Most such errors are abnormal conditions. The ThreadDeath error, though a "normal" condition, is also a subclass of Error because most applications should not try to catch it.
A method is not required to declare in its throws clause any subclasses of Error that might be thrown during the execution of the method but not caught, since these errors are abnormal conditions that should never occur.
Note that "unchecked exception" is merely a synonym for a RuntimeException.
Note: a RuntimeException IS an unchecked exception
An unchecked exception would be one that is known to be possible at a point in the execution but is not caught, for example a NullPointerException is always a possibility if you don't check for them and will cause your program to terminate. You could check for it by wrapping code in try-catch, but this is not enforced (unlike a checked exception that will enforce that the exception is handled in some way).
An error is something that can occur at any point during execution and can't really be caught because it is not eplicitly caused by a particular method call etc. For example an OutOfMemoryError or a StackOverflowError. Both of these could occur at any time and will cause your application to terminate. Catching these errors make no sense as they indicate that something has happened that you won't be able to recover from.
Errors indicate fundamental problems that should never occur. If you run into an error s.th. really bad happened.
Unchecked Exceptions (Runtime Exceptions) on the other hand are used whenever an exception could be expected somehow but there is no reasonable way to deal with it then and thus a try catch statement would be just annoying and a waste of space.
Checked Exception:
The classes that extend Throwable class except RuntimeException and Error are known as checked exceptions.
Also known as compile time exception because these type of exceptions are checked at compile time. That means if we ignore these exception (not handled with try/catch or throw the exception) then a compilation error occurred.
They are programmatically recoverable problems which are caused by unexpected conditions outside control of code (e.g. database down, file I/O error, wrong input, etc)
We can avoid them using try/catch block.
Example: IOException, SQLException etc
Unchecked Exception:
The classes that extend RuntimeException are known as unchecked exceptions
Unchecked exceptions are not checked at compile-time rather they are checked at runtime.And thats why they are also called "Runtime Exception"
They are also programmatically recoverable problems but unlike checked exception they are caused by faults in code flow or configuration.
Example: ArithmeticException,NullPointerException, ArrayIndexOutOfBoundsException etc
Since they are programming error, they can be avoided by nicely/wisely coding. For example "dividing by zero" occurs ArithmeticEceeption. We can avoid them by a simple if condition - if(divisor!=0). Similarly we can avoid NullPointerException by simply checking the references - if(object!=null) or using even better techniques
Error:
Error refers irrecoverable situation that are not being handled by try/catch
Example: OutOfMemoryError, VirtualMachineError, AssertionError etc.
Error: These are exceptional conditions that are external to the application, and that the application usually cannot anticipate or recover from.
Runtime exception : These are exceptional conditions that are internal to the application, and that the application usually cannot anticipate or recover from.
You may want to read this :
RuntimeExceptions and Errors like OutOfMemoryError don't need to be catched and can be thrown until they reach main() which will terminate the application.
Other Exceptions cause an compile error if they are not catched or included in the throws list.
Errors and runtime exceptions are collectively known as unchecked exceptions.
runtime exceptions are exceptional conditions that are internal to the application, and that the application usually cannot anticipate or recover from. These usually indicate programming bugs, such as logic errors or improper use of an API
You may want to take a look at this link which explains the Three Kinds of Exceptions.
http://docs.oracle.com/javase/tutorial/essential/exceptions/catchOrDeclare.html
I hope this helps.
Both java.lang.Error and java.lang.Exception are the sub classes of java.lang.Throwable.
java.lang.Error class represents the errors which are mainly caused by the environment in which application is running. For example, OutOfMemoryError occurs when JVM runs out of memory or StackOverflowError occurs when stack overflows.
Where as java.lang.Exception class represents the exceptions which are mainly caused by the application itself. For example, NullPointerException occurs when an application tries to access null object or ClassCastException occurs when an application tries to cast incompatible class types.
All the sub classes of java.lang.Exception (except sub classes of RunTimeException) are checked exceptions. For example, FileNotFoundException, IOException, SQLException, ClassNotFoundException etc…
All the sub classes of java.lang.RuntimeException and java.lang.Error are unchecked exceptions. For example, NullPointerException, ArithmeticException, ClassCastException, ArrayIndexOutOfBoundsException, StackOverflowError, OutOfMemoryError etc…
Source : Error Vs Exceptions, Checked Vs Unchecked Exceptions

Categories