Observer design -- how to access method.invoke scope? - java

i currently have a Java Observer/Observable setup in which i switch on some field within the Object parameter of Observer.update (e.g. event id) to determine how to handle an Observable notification.
this creates verbose code like:
public void update (Observable o, Object arg) {
if (arg instanceof Event) {
switch (((Event)arg).getID()) {
case EVENT_TYPE_A:
// do stuff...
break;
case EVENT_TYPE_B:
// do stuff...
break;
case EVENT_TYPE_C:
// do stuff...
break;
}
}
}
coming from an ActionScript background, this feels unnecessarily verbose to me...instead of passing an instance of an Observer, i'd prefer to pass a callback method to be called directly by the Observable (more specifically, by a subclass). however, i'm not clear how to determine the object on which the method should be invoked (the class instance that 'owns' the method).
i could pass a reference to the instance enclosing the method, but this smells like bad OOP.
am i barking up the wrong tree? or is there a clean way to achieve this?

This may be a little far out in left-field, but since Java 5 and up have generics, both the traditional observer and listener patterns seem a little bit dated. That is to say, types are the lingua-fraca of java these days. Events with integer IDs exist principally because switch statements against constants are extremely efficient - at the expense of readability and often requiring casts to do anything useful (you may know that if the ID = 23, the Object must be a MouseEvent, but it is nicer and safer if you let the compiler and runtime type information take care of this for you). On a modern machine in a modern JVM, the efficiency may not be worth it.
So, if you are not married to IDs and the traditional observer pattern, you might consider something like this:
public abstract class Observer<T> {
private final Class<T> type;
protected Observer(Class<T> type) {
this.type = type;
}
//implement this method; if it returns false, the event (object)
//is "consumed" and no other observers should be called
public abstract boolean onEvent(T instance);
protected final boolean matches(Object obj) {
return type.isInstance(obj);
}
Boolean maybeDispatch(Object o) {
if (matches(o)) {
return onEvent(type.cast(o));
}
return null;
}
}
This gets us (literally) a generic Observer of events; we switch on the type of the object passed in like this:
public class Bus {
private final List<Observer<?>> observers = new ArrayList<Observer<?>>();
public void registerObserver(Observer<?> observer) {
observers.add(observer);
}
public <T> void onEvent(T t) {
Boolean keepGoing;
for (Observer<?> obs : observers) {
keepGoing = obs.maybeDispatch(t);
if (keepGoing != null && !keepGoing.booleanValue()) {
break;
}
}
}
}
The resulting code is (marginally) less efficient, but writing a subclass of such an "observer" is infinitely more readable. It does not look much like the traditional observer pattern, but is functionally equivalent.
If you still need an additional "event" parameter, you can just do similar logic to parameterize on two types.

A cleaner implementation would involve removing the logic of whether the event can be handled by the observer/observable, to the actual observer/observable itself. It appears as if ActionScript has left you with a funny idea about the Observer pattern. Observe (no-pun-intended):
public interface Observer{
public void update( Event arg );
}
public class Event{
public int ID;
}
public Button implements Observer{
public void update ( Event arg ){
switch (arg.ID){
case 1: //Buttonsy handle events of type 1
//do something useful;
break;
default:
System.out.println("Buttons don't handle events of ID: " + arg.ID);
break;
}
}
}
public ProgressBar implements Observer{
public void update ( Event arg ){
switch (arg.ID){
case 2: //ProgressBars handle events of type 2 and 3
//do something useful;
break;
case 3:
//do something else useful;
break;
default:
System.out.println("Progress bars don't handle events of ID: " + arg.ID);
break;
}
}
}
public class Subject{
private ArrayList<Observer> allUIControls;
public registerControl( Observer control ){
allUIControls.add( control );
}
public void updateControls ( Event arg ) {
foreach ( Observer control in allUIControls ){
//pass the event to each UI control, and let the EVENT decide if it can understand the Event.ID
//its not the job of Subject to decide if the Observer is fit to handle the event. THIS IS NOT THE OBSERVER pattern.
control.update( arg );
}
}
}

Related

How eliminate switch in this specific example

I have controller method that get data from request and based on subject variable from request decide to call a function. (for project need I cannot use seperate controller method for each subject variable)
For now I used switch but I think it breaks Open Closed Principle (because every time new type of subject added I have to add new case to switch) and not good design, How can I refactor this code?
Subject subject = ... //(type of enum)
JSONObject data = request.getData("data");
switch(subject) {
case SEND_VERIFY:
send_foo1(data.getString("foo1_1"), data.getString("foo1_2"));
break;
case do_foo2:
foo2(data.getInt("foo2_b"), data.getInt("foo2_cc"));
break;
case do_foo3:
do_foo3_for(data.getString("foo3"));
break;
// some more cases
}
While I am not sure about which OO principle this snippet violates, there is indeed a more roust way to achieve the logic: tie the processing for each enum value to the enum class.
You will need to generalize the processing into an interface:
public interface SubjectProcessor
{
void process(JSONObject data);
}
and create concrete implementations for each enum value:
public class SendVerifySubjectProcessor implements SubjectProcessor
{
#Override
public void process(JSONObject data) {
String foo1 = data.getString("foo1_1");
String foo2 = data.getString("foo1_2");
...
}
}
once you have that class hierarchy tree, you can associate each enum value to a concrete processor
public enum Subject
{
SEND_VERIFY(new SendVerifySubjectProcessor()),
do_foo2(new Foo2SubjectProcessor()),
...
private SubjectProcessor processor
Subject(SubjectProcessor processor) {
this.processor = processor;
}
public void process(JSONObject data) {
this.processor.process(data);
}
}
This eliminates the need for the switch statement in the controller:
Subject subject = ... //(type of enum)
JSONObject data = request.getData("data");
subject.process(data);
EDIT:
Following the good comment, You can utilize the java.util.function.Consumer functional interface instead of the custom SubjectProcessor one. You can decide whether to write concrete classes or use the lambda expr construct.
public class SendVerifySubjectProcessor implements Consumer<JSONObject>
{
#Override
public void accept(JSONObject data) {
String foo1 = data.getString("foo1_1");
String foo2 = data.getString("foo1_2");
...
}
}
OR
public enum Subject
{
SEND_VERIFY(data -> {
String foo1 = data.getString("foo1_1");
String foo2 = data.getString("foo1_2");
...
}),
...
private Consumer<Subject> processor
Subject(Consumer<Subject> processor) {
this.processor = processor;
}
public void process(JSONObject data) {
this.processor.accept(data);
}
}
// SubjectsMapping.java
Map<Subject, Consumer<JSONObject>> tasks = new HashMap<>();
tasks.put(SEND_VERIFY,
data -> send_foo1(data.getString("foo1_1"), data.getString("foo1_2")));
tasks.put(do_foo2,
data -> foo2(data.getInt("foo2_b"), data.getInt("foo2_cc")));
tasks.put(do_foo3, data -> do_foo3_for(data.getString("foo3")));
// In your controller class where currently `switch` code written
if (tasks.containsKey(subject)) {
tasks.get(subject).accept(data);
} else {
throw new IllegalArgumentException("No suitable task");
}
You can maintain Map<Subject, Consumer<JSONObject>> tasks configuration in separate class rather than mixing with if (tasks.containsKey(subject)) code. When you need another feature you can configure one entry in this map.
Answers of others seems to be great, as an addition I would suggest using EnumMap for storing enums as keys as it might be more efficient than the standard Map. I think it's also worth mentioning that the Strategy Pattern is used here to achieve calling specific actions for each key from Map without the need of building long switch statements.

How to process Websocket messages from client in Java?

I am developing a client-server application in Java using Websocket. Currently, all the client messages are processed using switch-case as shown below.
#OnMessage
public String onMessage(String unscrambledWord, Session session) {
switch (unscrambledWord) {
case "start":
logger.info("Starting the game by sending first word");
String scrambledWord = WordRepository.getInstance().getRandomWord().getScrambledWord();
session.getUserProperties().put("scrambledWord", scrambledWord);
return scrambledWord;
case "quit":
logger.info("Quitting the game");
try {
session.close(new CloseReason(CloseCodes.NORMAL_CLOSURE, "Game finished"));
} catch (IOException e) {
throw new RuntimeException(e);
}
}
String scrambledWord = (String) session.getUserProperties().get("scrambledWord");
return checkLastWordAndSendANewWord(scrambledWord, unscrambledWord, session);
}
The server has to process more than 50 different requests from client and that results in more than 50 case statements. And in future, I expect it to grow. Is there any better way to process Websocket messages from client? Or, is this how it is usually done?
I read somewhere about the use of hashtable to avoid long switch-case scenario by mapping to function pointers. Is this possible in Java? Or, is there any better solutions?
Thanks.
After a bit of testing and study, I found two alternatives to avoid long switch case scenario.
Anonymous class method (Strategy pattern)
Reflection with Annotations
Using Anonymous Class
Anonymous class method is the norm and following code shows how to implement it. I used Runnable in this example. If more control is required, create a custom interface.
public class ClientMessageHandler {
private final HashMap<String, Runnable> taskList = new HashMap<>();
ClientMessageHandler() {
this.populateTaskList();
}
private void populateTaskList() {
// Populate the map with client request as key
// and the task performing objects as value
taskList.put("action1", new Runnable() {
#Override
public void run() {
// define the action to perform.
}
});
//Populate map with all the tasks
}
public void onMessageReceived(JSONObject clientRequest) throws JSONException {
Runnable taskToExecute = taskList.get(clientRequest.getString("task"));
if (taskToExecute == null)
return;
taskToExecute.run();
}
}
Major drawback of this method is object creation. Say, we have 100 different tasks to perform. This Anonymous class approach will result in creating 100 objects for a single client. Too much object creation is not affordable for my application, where there will be more than 5,000 active concurrent connections. Have a look at this article http://blogs.microsoft.co.il/gilf/2009/11/22/applying-strategy-pattern-instead-of-using-switch-statements/
Reflection with Annotation
I really like this approach. I created a custom annotation to represent the tasks performed by methods. There is no overhead of object creation, like in Strategy pattern method, as tasks are performed by a single class.
Annotation
#Retention(RetentionPolicy.RUNTIME)
#Target(ElementType.METHOD)
public #interface TaskAnnotation {
public String value();
}
The code given below maps the client request keys to the methods which process the task. Here, map is instantiated and populated only once.
public static final HashMap<String, Method> taskList = new HashMap<>();
public static void main(String[] args) throws Exception {
// Retrieves declared methods from ClientMessageHandler class
Method[] classMethods = ClientMessageHandler.class.getDeclaredMethods();
for (Method method : classMethods) {
// We will iterate through the declared methods and look for
// the methods annotated with our TaskAnnotation
TaskAnnotation annot = method.getAnnotation(TaskAnnotation.class);
if (annot != null) {
// if a method with TaskAnnotation is found, its annotation
// value is mapped to that method.
taskList.put(annot.value(), method);
}
}
// Start server
}
Now finally, our ClientMessageHandler class looks like the following
public class ClientMessageHandler {
public void onMessageReceived(JSONObject clientRequest) throws JSONException {
// Retrieve the Method corresponding to the task from map
Method method = taskList.get(clientRequest.getString("task"));
if (method == null)
return;
try {
// Invoke the Method for this object, if Method corresponding
// to client request is found
method.invoke(this);
} catch (IllegalAccessException | IllegalArgumentException
| InvocationTargetException e) {
logger.error(e);
}
}
#TaskAnnotation("task1")
public void processTaskOne() {
}
#TaskAnnotation("task2")
public void processTaskTwo() {
}
// Methods for different tasks, annotated with the corresponding
// clientRequest code
}
Major drawback of this approach is the performance hit. This approach is slow compared to Direct Method calling approach. Moreover, many articles are suggesting to stay away from Reflection, unless we are dealing with dynamic programming.
Read these answers to know more about reflection What is reflection and why is it useful?
Reflection performance related articles
Faster alternatives to Java's reflection
https://dzone.com/articles/the-performance-cost-of-reflection
FINAL RESULT
I continue to use switch statements in my application to avoid any performance hit.
As mentioned in the comments, one of websockets drawback is that you'll to specify the communication protocol yourself. AFAIK, the huge switch is the best option. To improve code readability and maintenance, I'll suggest to use encoders and decoders. Then, your problem becomes: how should I design my messages?
Your game looks like Scrabble. I don't know how to play Scrabble so let's take the example of card game with money. Let's assume you have three types of actions:
Global action (join table, leave table ...)
Money action (place bet, split bet, ...)
Card action (draw card, etc)
Then your messages can look like
public class AbstractAction{
// not relevant for global action but let's put that aside for the example
public abstract void endTurn();
}
public class GlobalAction{
// ...
}
public class MoneyAction{
enum Action{
PLACE_BET, PLACE_MAX_BET, SPLIT_BET, ...;
}
private MoneyAction.Action action;
// ...
}
public class CardAction{
// ...
}
Once your decoder and encoders are properly defined, your switch would be easier to read and easier to maintain. In my project, the code would look like this:
#ServerEndPoint(value = ..., encoders = {...}, decoders = {...})
public class ServerEndPoint{
#OnOpen
public void onOpen(Session session){
// ...
}
#OnClose
public void onClose(Session session){
// ...
}
#OnMessage
public void onMessage(Session session, AbstractAction action){
// I'm checking the class here but you
// can use different check such as a
// specific attribute
if(action instanceof GlobalAction){
// do some stuff
}
else if (action instanceof CardAction){
// do some stuff
}
else if (action instance of MoneyAction){
MoneyAction moneyAction = (MoneyAction) action;
switch(moneyAction.getAction()){
case PLACE_BET:
double betValue = moneyAction.getValue();
// do some stuff here
break;
case SPLIT_BET:
doSomeVeryComplexStuff(moneyAction);
break;
}
}
}
private void doSomeVeryComplexStuff(MoneyAction moneyAction){
// ... do something very complex ...
}
}
I prefer this approach because:
The messages design can leverage your entities design (if you are using JPA behind)
As messages are not plain text anymore but objects, enumerations can be used and enumerations are very powerful in this kind of switch-case situation. With the same logic but in a lesser extend, class abstraction can be useful as well
The ServerEndPoint class only handles communication. The business logic is handled out of this class, either directly in Messages classes or in some EJB. Because of this split, code maintenance is much easier
Bonus: #OnMessage method can be read as a summary of the protocol but details should not be displayed here. Each case must contain few lines only.
I prefer avoid using Reflection: it'll ruin your code readability, in the specific scenario of websocket
To go further beyond code readability, maintenance and efficiency, you can use a SessionHandler to intercept some CDI event if this can improve your code. I gave an example in this answer. If you need a more advanced example, Oracle provides a great tutorial about it. It might help you to improve your code.

How to create some sort of event framework in java?

I don't have a GUI (my classes are part of a Minecraft Mod). I wanted to be able to mimic C# event framework: A class declares events and lets others subscribe to them.
My first approach was to create a class called EventArgs and then do something like this:
public class EventArgs
{
public boolean handled;
}
#FunctionalInterface
public interface IEventHandler<TEvtArgs extends EventArgs>
{
public void handle(Object source, TEvtArgs args);
}
public class Event<TEvtArgs extends EventArgs>
{
private final Object owner;
private final LinkedList<IEventHandler<TEvtArgs>> handlers = new LinkedList<>();
public Event(Object owner)
{
this.owner = owner;
}
public void subscribe(IEventHandler<TEvtArgs> handler)
{
handlers.add(handler);
}
public void unsubscribe(IEventHandler<TEvtArgs> handler)
{
while(handlers.remove(handler));
}
public void raise(TEvtArgs args)
{
for(IEventHandler<TEvtArgs> handler : handlers)
{
handler.handle(owner, args);
if(args.handled)
break;
}
}
}
Then a class would do something like this:
public class PropertyChangedEvtArgs extends EventArgs
{
public final Object oldValue;
public final Object newValue;
public PropertyChangedEvtArgs(final Object oldValue, final Object newValue)
{
this.oldValue = oldValue;
this.newValue = newValue;
}
}
public class SomeEventPublisher
{
private int property = 0;
private final Random rnd = new Random();
public final Event<PropertyChangedEvtArgs> PropertyChanged = new Event<>(this);
public void raiseEventOrNot(int value)
{
if(rnd.nextBoolean())//just to represent the fact that the event is not always raised
{
int old = property;
property = value;
PropertyChanged.raise(new PropertyChangedEvtArgs("old(" + old + ")", "new(" + value + ")"));
}
}
}
public class SomeSubscriber
{
private final SomeEventPublisher eventPublisher = new SomeEventPublisher();
public SomeSubscriber()
{
eventPublisher.PropertyChanged.subscribe(this::handlePropertyAChanges);
}
private void handlePropertyAChanges(Object source, PropertyChangedEvtArgs args)
{
System.out.println("old:" + args.oldValue);
System.out.println("new:" + args.newValue + "\n");
}
public void someMethod(int i)
{
eventPublisher.raiseEventOrNot(i);
}
}
public class Main
{
private static final SomeSubscriber subscriber = new SomeSubscriber();
public static void main(String[] args)
{
for(int i = 0; i < 10; ++i)
{
subscriber.someMethod(i);
}
}
}
The biggest problem with this naïve approach is that it breaks proper encapsullation by exposing raise as public. I can't see a way around it, and maybe my whole pattern is wrong. I would like some ideas.
There's also a related problem: I would like the events to be raised immediately after the method raising them returns. Is there a way to synchronize this using threads or some other construct? The caller code, of course, can't be involved in the task of synchronization. It has to be completely transparent to it.
The best thing to do here is to avoid implementing your own event framework in the first place, and instead rely on some existing library. Out of the box Java provides EventListener, and at a minimum you can follow the patterns documented there. Even for non-GUI applications most of this advice applies.
Going beyond the JDK Guava provides several possible options, depending on your exact use case.
The most likely candidate is EventBus, which:
allows publish-subscribe-style communication between components without requiring the components to explicitly register with one another (and thus be aware of each other).
Or ListenableFuture (and ListeningExecutorService) which:
allows you to register callbacks to be executed once [a task submitted to an Executor] is complete, or if the computation is already complete, immediately. This simple addition makes it possible to efficiently support many operations that the basic Future interface cannot support.
Or the Service API which:
represents an object with an operational state, with methods to start and stop. For example, webservers, RPC servers, and timers can implement the Service interface. Managing the state of services like these, which require proper startup and shutdown management, can be nontrivial, especially if multiple threads or scheduling is involved.
This API similarly lets you register listeners to respond to state changes in your services.
Even if none of these options directly work for your use case, take a look at Guava's source code for examples of event-driven behavior and listeners you can try to emulate.

creating objects and polymorphism

I want to avoid using tagged classes and big if-else blocks or switch statement and use polymorphism with a class hierarchy instead, which I believe is better practice.
For example, something like the below, where the choice of executed method is dependent only one one field of an object of type Actor.
switch(actor.getTagField())
{
case 1: actor.act1(); break;
case 2: actor.act2(); break;
[...]
}
would become
actor.act();
and the act method would be overridden in subclasses of Actor.
However, the most obvious way to decide at runtime which subclass to instantiate looks awfully similar to the original:
Actor newActor(int type)
{
switch(type)
{
case 1: return new Actor1();
case 2: return new Actor2();
[...]
}
}
so it seems like nothing has really been gained; the logic has just been moved.
What is a better way to do this? The only way I can come up with involved implementing a factory class for each subclass of Actor, but this seems rather cumbersome for such a simple problem.
Am I overthinking this? It just seems like there's no point making the original change if I just do pretty much the same thing elsewhere.
Question is "if" you need a factory. The factory is meant to manage the creation of instances an not so much the behavior of related instances.
Otherwise, you're just looking at basic inheritance. Something like..
class Actor{
public void act(){
System.out.println("I act..");
}
}
class StuntActor extends Actor {
public void act(){
System.out.println("I do fancy stunts..");
}
}
class VoiceActor extends Actor {
public void act(){
System.out.println("I make funny noises..");
}
}
To Use, you can just instantiate the type of actor you need directly.
Actor fred = new Actor();
Actor tom = new VoiceActor();
Actor sally = new StuntActor();
fred.act();
tom.act();
sally.act();
Output:
I act..
I make funny noises..
I do fancy stunts..
EDIT:
If you need to centralize the creation of the Actors..aka vis a Factory, you will not be able to get away from some kind of switching logic--in which case..i'll typically use an enumeration for readability:
public class Actor{
public enum Type{ REGULAR, VOICE, STUNT }
public static Actor Create(Actor.Type type){
switch(type) {
case VOICE:
return new VoiceActor();
case STUNT:
return new StuntActor();
case REGULAR:
default:
return new Actor();
}
}
public void act(){
System.out.println("I act..");
}
}
Usage:
Actor some_actor = Actor.Create(Actor.Type.VOICE);
some_actor.act();
Output:
I make funny noises..
Switch statements aren't pure evil. It's really duplication that you're looking to eliminate with better design. Often times you'll find the same switch statement show up in different (far away) places in your code - not necessarily doing the same thing, but switching on the same data. By introducing polymorphism, you pull those switches together as different methods of the same object.
This does two things, first it reduces several switches to one switch inside of a factory and it pulls together spread out logic that probably depends on similar data. That data will turn into member variables in your objects.
It's also worth noting that you don't always end up with a switch statement under the hood of your factory. Maybe you could scan the classpath at startup and build a HashMap of types that implement an interface. For example, consider an implementation of a socket protocol like SMTP. You could have objects named HeloCommand, MailFromCommand, etc... and find the right object to handle the message by matching the socket command to the class name.
I believe that you can do it with Abstract factory pattern...
This is a example:
abstract class Computer {
public abstract Parts getRAM();
public abstract Parts getProcessor();
public abstract Parts getMonitor();
}
class Parts {
public String specification;
public Parts(String specification) {
this.specification = specification;
}
public String getSpecification() {
return specification;
}
}
We have two class that extends Computer
class PC extends Computer {
public Parts getRAM() {
return new Parts("512 MB");
}
public Parts getProcessor() {
return new Parts("Celeron");
}
public Parts getMonitor() {
return new Parts("15 inches");
}
}
class Workstation extends Computer {
public Parts getRAM() {
return new Parts("1 GB");
}
public Parts getProcessor() {
return new Parts("Intel P 3");
}
public Parts getMonitor() {
return new Parts("19 inches");
}
}
And finally we have,
public class ComputerType {
private Computer comp;
public static void main(String[] args) {
ComputerType type = new ComputerType();
Computer computer = type.getComputer("Workstation");
System.out.println("Monitor: "+computer.getMonitor().getSpecification());
System.out.println("RAM: "+computer.getRAM().getSpecification());
System.out.println("Processor: "+computer.getProcessor().getSpecification());
}
public Computer getComputer(String computerType) {
if (computerType.equals("PC"))
comp = new PC();
else if(computerType.equals("Workstation"))
comp = new Workstation();
return comp;
}
}

Letting the code try different things until it succeeds, neatly

This is the second time I found myself writing this kind of code, and decided that there must be a more readable way to accomplish this:
My code tries to figure something out, that's not exactly well defined, or there are many ways to accomplish it. I want my code to try out several ways to figure it out, until it succeeds, or it runs out of strategies. But I haven't found a way to make this neat and readable.
My particular case: I need to find a particular type of method from an interface. It can be annotated for explicitness, but it can also be the only suitable method around (per its arguments).
So, my code currently reads like so:
Method candidateMethod = getMethodByAnnotation(clazz);
if (candidateMethod == null) {
candidateMethod = getMethodByBeingOnlyMethod(clazz);
}
if (candidateMethod == null) {
candidateMethod = getMethodByBeingOnlySuitableMethod(clazz);
}
if (candidateMethod == null) {
throw new NoSuitableMethodFoundException(clazz);
}
There must be a better way…
Edit: The methods return a method if found, null otherwise. I could switch that to try/catch logic, but that hardly makes it more readable.
Edit2: Unfortunately, I can accept only one answer :(
To me it is readable and understandable. I'd simply extract the ugly part of the code to a separate method (following some basic principles from "Robert C.Martin: Clean Code") and add some javadoc (and apologies, if necessary) like that:
//...
try {
Method method = MethodFinder.findMethodIn(clazz);
catch (NoSuitableMethodException oops) {
// handle exception
}
and later on in MethodFinder.java
/**
* Will find the most suitable method in the given class or throw an exception if
* no such method exists (...)
*/
public static Method findMethodIn(Class<?> clazz) throws NoSuitableMethodException {
// all your effort to get a method is hidden here,
// protected with unit tests and no need for anyone to read it
// in order to understand the 'main' part of the algorithm.
}
I think for a small set of methods what you're doing is fine.
For a larger set, I might be inclined to build a Chain of Responsibility, which captures the base concept of trying a sequence of things until one works.
I don't think that this is such a bad way of doing it. It is a bit verbose, but it clearly conveys what you are doing, and is easy to change.
Still, if you want to make it more concise, you can wrap the methods getMethod* into a class which implements an interface ("IMethodFinder") or similar:
public interface IMethodFinder{
public Method findMethod(...);
}
Then you can create instances of you class, put them into a collection and loop over it:
...
Method candidateMethod;
findLoop:
for (IMethodFinder mf: myMethodFinders){
candidateMethod = mf.findMethod(clazz);
if (candidateMethod!=null){
break findLoop;
}
}
if (candidateMethod!=null){
// method found
} else {
// not found :-(
}
While arguably somewhat more complicated, this will be easier to handle if you e.g. need to do more work between calling the findMethods* methods (such as more verification that the method is appropriate), or if the list of ways to find methods is configurable at runtime...
Still, your approach is probably OK as well.
I'm sorry to say, but the method you use seems to be the widely accepted one. I see a lot of code like that in the code base of large libraries like Spring, Maven etc.
However, an alternative would be to introduce a helper interface that can convert from a given input to a given output. Something like this:
public interface Converter<I, O> {
boolean canConvert(I input);
O convert(I input);
}
and a helper method
public static <I, O> O getDataFromConverters(
final I input,
final Converter<I, O>... converters
){
O result = null;
for(final Converter<I, O> converter : converters){
if(converter.canConvert(input)){
result = converter.convert(input);
break;
}
}
return result;
}
So then you could write reusable converters that implement your logic. Each of the converters would have to implement the canConvert(input) method to decide whether it's conversion routines will be used.
Actually: what your request reminds me of is the Try.these(a,b,c) method in Prototype (Javascript).
Usage example for your case:
Let's say you have some beans that have validation methods. There are several strategies to find these validation methods. First we'll check whether this annotation is present on the type:
// retention, target etc. stripped
public #interface ValidationMethod {
String value();
}
Then we'll check whether there's a method called "validate". To make things easier I assume, that all methods define a single parameter of type Object. You may choose a different pattern. Anyway, here's sample code:
// converter using the annotation
public static final class ValidationMethodAnnotationConverter implements
Converter<Class<?>, Method>{
#Override
public boolean canConvert(final Class<?> input){
return input.isAnnotationPresent(ValidationMethod.class);
}
#Override
public Method convert(final Class<?> input){
final String methodName =
input.getAnnotation(ValidationMethod.class).value();
try{
return input.getDeclaredMethod(methodName, Object.class);
} catch(final Exception e){
throw new IllegalStateException(e);
}
}
}
// converter using the method name convention
public static class MethodNameConventionConverter implements
Converter<Class<?>, Method>{
private static final String METHOD_NAME = "validate";
#Override
public boolean canConvert(final Class<?> input){
return findMethod(input) != null;
}
private Method findMethod(final Class<?> input){
try{
return input.getDeclaredMethod(METHOD_NAME, Object.class);
} catch(final SecurityException e){
throw new IllegalStateException(e);
} catch(final NoSuchMethodException e){
return null;
}
}
#Override
public Method convert(final Class<?> input){
return findMethod(input);
}
}
// find the validation method on a class using the two above converters
public static Method findValidationMethod(final Class<?> beanClass){
return getDataFromConverters(beanClass,
new ValidationMethodAnnotationConverter(),
new MethodNameConventionConverter()
);
}
// example bean class with validation method found by annotation
#ValidationMethod("doValidate")
public class BeanA{
public void doValidate(final Object input){
}
}
// example bean class with validation method found by convention
public class BeanB{
public void validate(final Object input){
}
}
You may use Decorator Design Pattern to accomplish different ways of finding out how to find something.
public interface FindMethod
{
public Method get(Class clazz);
}
public class FindMethodByAnnotation implements FindMethod
{
private final FindMethod findMethod;
public FindMethodByAnnotation(FindMethod findMethod)
{
this.findMethod = findMethod;
}
private Method findByAnnotation(Class clazz)
{
return getMethodByAnnotation(clazz);
}
public Method get(Class clazz)
{
Method r = null == findMethod ? null : findMethod.get(clazz);
return r == null ? findByAnnotation(clazz) : r;
}
}
public class FindMethodByOnlyMethod implements FindMethod
{
private final FindMethod findMethod;
public FindMethodByOnlyMethod(FindMethod findMethod)
{
this.findMethod = findMethod;
}
private Method findByOnlyMethod(Class clazz)
{
return getMethodOnlyMethod(clazz);
}
public Method get(Class clazz)
{
Method r = null == findMethod ? null : findMethod.get(clazz);
return r == null ? findByOnlyMethod(clazz) : r;
}
}
Usage is quite simple
FindMethod finder = new FindMethodByOnlyMethod(new FindMethodByAnnotation(null));
finder.get(clazz);
... I could switch that to try/catch logic, but that hardly makes it more readable.
Changing the signature of the get... methods so you can use try / catch would be a really bad idea. Exceptions are expensive and should only be used for "exceptional" conditions. And as you say, the code would be less readable.
What is bothering you is the repeating pattern used for flow control--and it should bother you--but there isn't too much to be done about it in Java.
I get really annoyed at repeated code & patterns like this, so for me it would probably be worth it to extract the repeated copy & paste control code and put it in it's own method:
public Method findMethod(Class clazz)
int i=0;
Method candidateMethod = null;
while(candidateMethod == null) {
switch(i++) {
case 0:
candidateMethod = getMethodByAnnotation(clazz);
break;
case 1:
candidateMethod = getMethodByBeingOnlyMethod(clazz);
break;
case 2:
candidateMethod = getMethodByBeingOnlySuitableMethod(clazz);
break;
default:
throw new NoSuitableMethodFoundException(clazz);
}
return clazz;
}
Which has the disadvantage of being unconventional and possibly more verbose, but the advantage of not having as much repeated code (less typos) and reads easier because of there being a little less clutter in the "Meat".
Besides, once the logic has been extracted into it's own class, verbose doesn't matter at all, it's clarity for reading/editing and for me this gives that (once you understand what the while loop is doing)
I do have this nasty desire to do this:
case 0: candidateMethod = getMethodByAnnotation(clazz); break;
case 1: candidateMethod = getMethodByBeingOnlyMethod(clazz); break;
case 2: candidateMethod = getMethodByBeingOnlySuitableMethod(clazz); break;
default: throw new NoSuitableMethodFoundException(clazz);
To highlight what's actually being done (in order), but in Java this is completely unacceptable--you'd actually find it common or preferred in some other languages.
PS. This would be downright elegant (damn I hate that word) in groovy:
actualMethod = getMethodByAnnotation(clazz) ?:
getMethodByBeingOnlyMethod(clazz) ?:
getMethodByBeingOnlySuitableMethod(clazz) ?:
throw new NoSuitableMethodFoundException(clazz) ;
The elvis operator rules. Note, the last line may not actually work, but it would be a trivial patch if it doesn't.

Categories