Db4o client doesn't seem to get commit events from other clients - java

I have a system with a db4o server that has two clients. One client is hosted in process, the other is a web server hosting a number of servlets that need to query the database.
In the web server's connection code, I have registered for the commit event, and use it to refresh objects as suggested by the db4o documentation at http://community.versant.com/documentation/reference/db4o-8.0/java/reference/Content/advanced_topics/callbacks/possible_usecases/committed_event_example.htm :
client = Db4oClientServer.openClient (context.getBean ("db4oClientConfiguration", ClientConfiguration.class),
arg0.getServletContext ().getInitParameter ("databasehost"),
Integer.parseInt (arg0.getServletContext ().getInitParameter ("databaseport")),
arg0.getServletContext ().getInitParameter ("databaseuser"),
arg0.getServletContext ().getInitParameter ("databasepassword"));
System.out.println ("DB4O connection established");
EventRegistry events = EventRegistryFactory.forObjectContainer (client);
events.committed ().addListener (new EventListener4<CommitEventArgs> () {
public void onEvent (Event4<CommitEventArgs> commitEvent, CommitEventArgs commitEventArgs)
{
for (Iterator4<?> it = commitEventArgs.updated ().iterator (); it.moveNext ();)
{
LazyObjectReference reference = (LazyObjectReference) it.current ();
System.out.println ("Updated object: " + reference.getClass () + ":" + reference.getInternalID ());
//if (trackedClasses.contains (reference.getClass ()))
{
Object obj = reference.getObject ();
commitEventArgs.objectContainer ().ext ().refresh (obj, 1);
System.out.println (" => updated (" + obj + ")");
}
}
}
});
In the in-process client, the following code is then executed:
try {
PlayerCharacter pc = new PlayerCharacter (player, name);
pc.setBio(bio);
pc.setArchetype(archetype);
player.getCharacters ().add (pc);
database.store (pc);
database.store (player.getCharacters ());
database.store (player);
database.commit ();
con.sendEvent (id, "CHARACTER_CREATED".getBytes (Constants.CHARSET));
}
catch (Exception e)
{
con.sendEvent (id, EventNames.ERROR, e.toString ());
}
The 'CHARACTER_CREATED' event gets sent successfully, so I know that commit isn't throwing an exception, but nothing shows up on the other client. It continues to use the old versions of the objects, and the 'updated object' messages I'm expecting don't show up on the server console.
Any ideas what I'm doing wrong?

Apparently the .committed() event only fires on a client, when the commit is from a other TCP client.
So you would need to turn your internal .openClient() / .openSession() clients to full blown TCP clients to see the events.
The .openClient() / .openSession() object containers are way more light weight and bypass all code which is related to network communication. Apparently also the event distribution across the network.

Related

Vert.x performance drop when starting with -cluster option

I'm wondering if any one experienced the same problem.
We have a Vert.x application and in the end it's purpose is to insert 600 million rows into a Cassandra cluster. We are testing the speed of Vert.x in combination with Cassandra by doing tests in smaller amounts.
If we run the fat jar (build with Shade plugin) without the -cluster option, we are able to insert 10 million records in about a minute. When we add the -cluster option (eventually we will run the Vert.x application in cluster) it takes about 5 minutes for 10 million records to insert.
Does anyone know why?
We know that the Hazelcast config will create some overhead, but never thought it would be 5 times slower. This implies we will need 5 EC2 instances in cluster to get the same result when using 1 EC2 without the cluster option.
As mentioned, everything runs on EC2 instances:
2 Cassandra servers on t2.small
1 Vert.x server on t2.2xlarge
You are actually running into corner cases of the Vert.x Hazelcast Cluster manager.
First of all you are using a worker Verticle to send your messages (30000001). Under the hood Hazelcast is blocking and thus when you send a message from a worker the version 3.3.3 does not take that in account. Recently we added this fix https://github.com/vert-x3/issues/issues/75 (not present in 3.4.0.Beta1 but present in 3.4.0-SNAPSHOTS) that will improve this case.
Second when you send all your messages at the same time, it runs into another corner case that prevents the Hazelcast cluster manager to use a cache of the cluster topology. This topology cache is usually updated after the first message has been sent and sending all the messages in one shot prevents the usage of the ache (short explanation HazelcastAsyncMultiMap#getInProgressCount will be > 0 and prevents the cache to be used), hence paying the penalty of an expensive lookup (hence the cache).
If I use Bertjan's reproducer with 3.4.0-SNAPSHOT + Hazelcast and the following change: send message to destination, wait for reply. Upon reply send all messages then I get a lot of improvements.
Without clustering : 5852 ms
With clustering with HZ 3.3.3 :16745 ms
With clustering with HZ 3.4.0-SNAPSHOT + initial message : 8609 ms
I believe also you should not use a worker verticle to send that many messages and instead send them using an event loop verticle via batches. Perhaps you should explain your use case and we can think about the best way to solve it.
When you're you enable clustering (of any kind) to an application you are making your application more resilient to failures but you're also adding a performance penalty.
For example your current flow (without clustering) is something like:
client ->
vert.x app ->
in memory same process eventbus (negletible) ->
handler -> cassandra
<- vert.x app
<- client
Once you enable clustering:
client ->
vert.x app ->
serialize request ->
network request cluster member ->
deserialize request ->
handler -> cassandra
<- serialize response
<- network reply
<- deserialize response
<- vert.x app
<- client
As you can see there are many encode decode operations required plus several network calls and this all gets added to your total request time.
In order to achive best performance you need to take advantage of locality the closer you are of your data store usually the fastest.
Just to add the code of the project. I guess that would help.
Sender verticle:
public class ProviderVerticle extends AbstractVerticle {
#Override
public void start() throws Exception {
IntStream.range(1, 30000001).parallel().forEach(i -> {
vertx.eventBus().send("clustertest1", Json.encode(new TestCluster1(i, "abc", LocalDateTime.now())));
});
}
#Override
public void stop() throws Exception {
super.stop();
}
}
And the inserter verticle
public class ReceiverVerticle extends AbstractVerticle {
private int messagesReceived = 1;
private Session cassandraSession;
#Override
public void start() throws Exception {
PoolingOptions poolingOptions = new PoolingOptions()
.setCoreConnectionsPerHost(HostDistance.LOCAL, 2)
.setMaxConnectionsPerHost(HostDistance.LOCAL, 3)
.setCoreConnectionsPerHost(HostDistance.REMOTE, 1)
.setMaxConnectionsPerHost(HostDistance.REMOTE, 3)
.setMaxRequestsPerConnection(HostDistance.LOCAL, 20)
.setMaxQueueSize(32768)
.setMaxRequestsPerConnection(HostDistance.REMOTE, 20);
Cluster cluster = Cluster.builder()
.withPoolingOptions(poolingOptions)
.addContactPoints(ClusterSetup.SEEDS)
.build();
System.out.println("Connecting session");
cassandraSession = cluster.connect("kiespees");
System.out.println("Session connected:\n\tcluster [" + cassandraSession.getCluster().getClusterName() + "]");
System.out.println("Connected hosts: ");
cassandraSession.getState().getConnectedHosts().forEach(host -> System.out.println(host.getAddress()));
PreparedStatement prepared = cassandraSession.prepare(
"insert into clustertest1 (id, value, created) " +
"values (:id, :value, :created)");
PreparedStatement preparedTimer = cassandraSession.prepare(
"insert into timer (name, created_on, amount) " +
"values (:name, :createdOn, :amount)");
BoundStatement timerStart = preparedTimer.bind()
.setString("name", "clusterteststart")
.setInt("amount", 0)
.setTimestamp("createdOn", new Timestamp(new Date().getTime()));
cassandraSession.executeAsync(timerStart);
EventBus bus = vertx.eventBus();
System.out.println("Bus info: " + bus.toString());
MessageConsumer<String> cons = bus.consumer("clustertest1");
System.out.println("Consumer info: " + cons.address());
System.out.println("Waiting for messages");
cons.handler(message -> {
TestCluster1 tc = Json.decodeValue(message.body(), TestCluster1.class);
if (messagesReceived % 100000 == 0)
System.out.println("Message received: " + messagesReceived);
BoundStatement boundRecord = prepared.bind()
.setInt("id", tc.getId())
.setString("value", tc.getValue())
.setTimestamp("created", new Timestamp(new Date().getTime()));
cassandraSession.executeAsync(boundRecord);
if (messagesReceived % 100000 == 0) {
BoundStatement timerStop = preparedTimer.bind()
.setString("name", "clusterteststop")
.setInt("amount", messagesReceived)
.setTimestamp("createdOn", new Timestamp(new Date().getTime()));
cassandraSession.executeAsync(timerStop);
}
messagesReceived++;
//message.reply("OK");
});
}
#Override
public void stop() throws Exception {
super.stop();
cassandraSession.close();
}
}

SSH Server Identification never received - Handshake Deadlock [SSHJ]

We're having some trouble trying to implement a Pool of SftpConnections for our application.
We're currently using SSHJ (Schmizz) as the transport library, and facing an issue we simply cannot simulate in our development environment (but the error keeps showing randomly in production, sometimes after three days, sometimes after just 10 minutes).
The problem is, when trying to send a file via SFTP, the thread gets locked in the init method from schmizz' TransportImpl class:
#Override
public void init(String remoteHost, int remotePort, InputStream in, OutputStream out)
throws TransportException {
connInfo = new ConnInfo(remoteHost, remotePort, in, out);
try {
if (config.isWaitForServerIdentBeforeSendingClientIdent()) {
receiveServerIdent();
sendClientIdent();
} else {
sendClientIdent();
receiveServerIdent();
}
log.info("Server identity string: {}", serverID);
} catch (IOException e) {
throw new TransportException(e);
}
reader.start();
}
isWaitForServerIdentBeforeSendingClientIdent is FALSE for us, so first of all the client (we) send our identification, as appears in logs:
"Client identity String: blabla"
Then it's turn for the receiveServerIdent:
private void receiveServerIdent() throws IOException
{
final Buffer.PlainBuffer buf = new Buffer.PlainBuffer();
while ((serverID = readIdentification(buf)).isEmpty()) {
int b = connInfo.in.read();
if (b == -1)
throw new TransportException("Server closed connection during identification exchange");
buf.putByte((byte) b);
}
}
The thread never gets the control back, as the server never replies with its identity. Seems like the code is stuck in this While loop. No timeouts, or SSH exceptions are thrown, my client just keeps waiting forever, and the thread gets deadlocked.
This is the readIdentification method's impl:
private String readIdentification(Buffer.PlainBuffer buffer)
throws IOException {
String ident = new IdentificationStringParser(buffer, loggerFactory).parseIdentificationString();
if (ident.isEmpty()) {
return ident;
}
if (!ident.startsWith("SSH-2.0-") && !ident.startsWith("SSH-1.99-"))
throw new TransportException(DisconnectReason.PROTOCOL_VERSION_NOT_SUPPORTED,
"Server does not support SSHv2, identified as: " + ident);
return ident;
}
Seems like ConnectionInfo's inputstream never gets data to read, as if the server closed the connection (even if, as said earlier, no exception is thrown).
I've tried to simulate this error by saturating the negotiation, closing sockets while connecting, using conntrack to kill established connections while the handshake is being made, but with no luck at all, so any help would be HIGHLY appreciated.
: )
I bet following code creates a problem:
String ident = new IdentificationStringParser(buffer, loggerFactory).parseIdentificationString();
if (ident.isEmpty()) {
return ident;
}
If the IdentificationStringParser.parseIdentificationString() returns empty string, it will be returned to the caller method. The caller method will keep calling the while ((serverID = readIdentification(buf)).isEmpty()) since the string is always empty. The only way to break the loop would be if call to int b = connInfo.in.read(); returns -1... but if server keeps sending the data (or resending the data) this condition is never met.
If this is the case I would add some kind of artificial way to detect this like:
private String readIdentification(Buffer.PlainBuffer buffer, AtomicInteger numberOfAttempts)
throws IOException {
String ident = new IdentificationStringParser(buffer, loggerFactory).parseIdentificationString();
numberOfAttempts.incrementAndGet();
if (ident.isEmpty() && numberOfAttempts.intValue() < 1000) { // 1000
return ident;
} else if (numberOfAttempts.intValue() >= 1000) {
throw new TransportException("To many attempts to read the server ident").
}
if (!ident.startsWith("SSH-2.0-") && !ident.startsWith("SSH-1.99-"))
throw new TransportException(DisconnectReason.PROTOCOL_VERSION_NOT_SUPPORTED,
"Server does not support SSHv2, identified as: " + ident);
return ident;
}
This way you would at least confirm that this is the case and can dig further why .parseIdentificationString() returns empty string.
Faced a similar issue where we would see:
INFO [net.schmizz.sshj.transport.TransportImpl : pool-6-thread-2] - Client identity string: blablabla
INFO [net.schmizz.sshj.transport.TransportImpl : pool-6-thread-2] - Server identity string: blablabla
But on some occasions, there were no server response.
Our service would typically wake up and transfer several files simultaneously, one file per connection / thread.
The issue was in the sshd server config, we increased maxStartups from default value 10
(we noticed the problems started shortly after batch sizes increased to above 10)
Default in /etc/ssh/sshd_config:
MaxStartups 10:30:100
Changed to:
MaxStartups 30:30:100
MaxStartups
Specifies the maximum number of concurrent unauthenticated connections to the SSH daemon. Additional connections will be dropped until authentication succeeds or the LoginGraceTime expires for a connection. The default is 10:30:100. Alternatively, random early drop can be enabled by specifying the three colon separated values start:rate:full (e.g. "10:30:60"). sshd will refuse connection attempts with a probability of rate/100 (30%) if there are currently start (10) unauthenticated connections. The probability increases linearly and all connection attempts are refused if the number of unauthenticated connections reaches full (60).
If you cannot control the server, you might have to find a way to limit your concurrent connection attempts in your client code instead.

azure iothub device status

getConnectionState() as connected /disconnected depending on the device .if it is sending message i should see connected and if it not sending i should get disconnected .But each time i run the below java Program i am getting status as disconnected irrespective of device is sending messages or not
RegistryManager registryManager = RegistryManager.createFromConnectionString(connectionString);
System.out.println(registryManager.getDevices(new Integer(1000)));
while(true){
ArrayList<Device> deviceslist=registryManager.getDevices(new Integer(1000));
for(Device device:deviceslist)
{
/*System.out.println(device.getDeviceId());
System.out.println(device.getPrimaryKey());
System.out.println(device.getSecondaryKey());*/
System.out.println(device.getDeviceId());
System.out.println(device.getConnectionState());
/*System.out.println(device.getConnectionStateUpdatedTime());
System.out.println(device.getLastActivityTime());
System.out.println(device.getStatusReason());
System.out.println(device.getStatusUpdatedTime());
System.out.println(device.getSymmetricKey());
System.out.println(device.geteTag());
*/ }
}
I definitely am seeing otherwise.
I'm creating an simple C# console application using the code below,
static async void QueryDevices()
{
RegistryManager manager = RegistryManager.CreateFromConnectionString(connectionString);
while (true)
{
var devices = await manager.GetDevicesAsync(100);
{
foreach (var item in devices)
{
Console.WriteLine(DateTime.Now + ": " + item.Id + ", " + item.ConnectionState);
System.Threading.Thread.Sleep(100);
}
}
}
}
The git here is to always query the whole device list, because the ConnectionState property somehow looks like "static" memebers of the single device client instance, which is not apt-to change even when the actual state changes.
And my output is like below, the "connected" state is when I'm using an java client sample to send message to the IoT Hub.

Thread VS RabbitMQ Worker resource consumption

I am using JAVA ExecutorService threads to send amazon emails, this helps me to make concurrent connection with AmazonSES via API and sends mails at lightning speed. So amazon accepts some number of connection in a sec, so for me its 50 requests in a second. So I execute 50 threads in a second and send around 1million emails daily.
This is working pretty good, but now the number of mails is going to be increased. And I don't want to invest more into RAM and processors.
One of my friend suggested me to use RabbitMQ Workers instead of threads, so instead of 50 threads, I ll be having 50 workers which will do that job.
So before changing some code to test the resource management, I just want to know will there be any huge difference in consumption? So currently when I execute my threads, JAVA consumes 20-30% of memory. So if I used workers will it be low or high?
Or is their any alternative option to this?
Here is my thread email sending function:
#Override
public void run() {
Destination destination = new Destination().withToAddresses(new String[] { this.TO });
Content subject = new Content().withData(SUBJECT);
Content textBody = new Content().withData(BODY);
Body body = new Body().withHtml(textBody);
Message message = new Message().withSubject(subject).withBody(body);
SendEmailRequest request = new SendEmailRequest().withSource(FROM).withDestination(destination).withMessage(message);
Connection connection = new Connection();
java.util.Date dt = new java.util.Date();
java.text.SimpleDateFormat sdf = new java.text.SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String insert = "";
try {
System.out.println("Attempting to send an email to " + this.TO);
ctr++;
client.sendEmail(request);
insert = "INSERT INTO email_histories (campaign_id,contact_id,group_id,is_opened,mail_sent_at,mail_opened_at,ip_address,created_at,updated_at,is_sent) VALUES (" + this.campaign_id + ", " + this.contact_id + ", " + this.group_id + ", false, '" + sdf.format(dt) + "', null, null, '" + sdf.format(dt) + "', '" + sdf.format(dt) + "', true);";
connection.insert(insert);
System.out.println("Email sent! to " + this.TO);
} catch (Exception ex) {
System.out.println("The email was not sent.");
System.out.println("Error message: " + ex.getMessage());
}
}
I have no experience with RabbitMQ, so I'll have to leave that for others to answer.
Or is their any alternative option to this?
Instead of using one thread per mail, move that code inside a runable. Add a shared Semaphore with the number of permits = the number of mails you want to send per second. Take one permit per mail, refill permits every second from another thread (i.e. a separate SchedledExecutorService or a Timer). Then adjust the Executor thread pool size to whatever your server can handle.
From a RabbitMQ perspective there is a small amount of memory and network resource consumed, although pretty constant for each connection. If you use a pool of worker threads to read off of the RabbitMQ queue or queues it is possible that it will save you some resources because you are not garbage collecting the individual threads. As far as alternatives are concerned I would use a Thread Pool in any case. Although perhaps too heavyweight for your use, Spring Framework has a very good thread pool that I have used in the past.

Turning onMessage() method into an atomic action

I've encounter the problem that if my method below fails or it's an exception I still consume the msg. I would want the functionality to do a rollback during the catch and place the msg back on the queue/topic.
public void onMessage(Message message)
{
String messageId = null;
Date messagePublished = null;
try
{
messageId = message.getJMSMessageID();
messagePublished = new Date(message.getJMSTimestamp());
LOGGER.info("JMS Message id =" + messageId + " JMS Timestamp= " + messagePublished);
process(message);
LOGGER.info(" returning from onMessage() successfully =" + messageId + " JMS Timestamp= " + messagePublished);
}
catch(Throwable t)
{
LOGGER.error("Exception:",t);
LOGGER.error(t.getStackTrace() + "\n Exception is unrecoverable.");
throw new RuntimeException("Failed to handle message.",t);
}
}
You can look at the different acknowledge modes that exist within JMS for this. See this article http://www.javaworld.com/javaworld/jw-02-2002/jw-0315-jms.html.
The appropriate mode for you would be Client mode.
So basically, the client needs to acknowledge when they are happy they have processed the message.
You could call the acknowledge after the call to process(message), if an exception occurs in the proccess(message) method, the message will not have been dequeued as you didnt acknowledge it. We used this approach before with Oracle AQ and it works very well.
This approach means you dont have to worry about transactions for the messages on the queue (Database transactions are another story). The only thing you need to ensure is that your app can handle a call to process(message) with potential duplicate messages
you should be able to just make your onMessage method transacted.

Categories