As java doc states it:
char: The char data type is a single 16-bit Unicode character. It has a minimum value of '\u0000' (or 0) and a maximum value of '\uffff' (or 65,535 inclusive).
But when I have a String (just containing ASCII-signs) and convert it to a byte array, every sign of the String is stored in one byte, which is less than the 16 bit as java docs states it. How does it work? I could imagine that the java compiler/interpreter uses just one byte per char for an ASCII sign for performance issues.
Furthermore, what happens if I've got a String with just ASCII signs and one UTF-16 sign and convert it to a byte array. Every sign of the String uses 2 bytes now?
Converting characters to bytes and vice versa is done using a character encoding.
The character encoding determines how characters are represented by bytes. For example, ASCII is a character encoding which uses 7 bits per character. Obviously, it can only represent 128 characters, way less than the 65,536 characters that exist in Java.
Other character encodings are UTF-8 and UTF-16. In fact, a Java char is really an UTF-16 character - if you directly cast it to an int, you would get the UTF-16 code for the character.
Here's a longer tutorial to character encodings: What Every Programmer Absolutely, Positively Needs To Know About Encodings And Character Sets To Work With Text.
If you call getBytes() on a String, it will use the default character encoding of the system to convert the characters in the string to bytes. It's better to use the version of getBytes() that takes a character set name as an argument, so that you know what character set is used. For example:
byte[] bytes = str.getBytes("UTF-8");
The internal format of a String uses 16 bits per character. When you convert it to a byte array, you use a certain character encoding which is either specified explicitly or the default platform encoding. The encoding may use fewer bits per character.
For example the ASCII encoding will store each character in a byte but it can only represent 128 different characters.
Another often used encoding is UTF-8 which uses a variable number of bytes per character. The first 128 characters (corresponding to the characters available in ASCII) can be stored in one byte each. Characters with order numbers 128 or higher need two or more bytes.
getBytes()
Encodes this String into a sequence of bytes using the platform's default charset, storing the result into a new byte array.
Your platform's default charset is probably UTF8. Hence, getBytes() will use one byte per character for characters which fit comfortably into that size.
String.getBytes() "encodes this String into a sequence of bytes using the platform's default charset, storing the result into a new byte array". The platform's default charset (Charset.defaultCharset()) is probably UTF-8.
As for the second question, strings aren't actually required to use UTF-16. The way a JVM stores strings internally is irrelevant. The few occurrences of UTF-16 in the JVM spec apply only to chars.
Related
I been doing some coding with String in Java8,Java 11 but this question is based on Java 8. I have this little snippet.
final char e = (char)200;//È
I just thought that the characters between 0.255[Ascii+extended Ascii] would always fit in a byte just because 2^8=256 but this seems not to be true i have try on the website https://mothereff.in/byte-counter and states that the character is taking 2 bytes can somebody please explain to me.
Another question in a lot of post states that Java is UTF-16 but in my machine running Windows 7 is returning UTF-8 in this snippet.
String csn = Charset.defaultCharset().name();
Is this platform depent?
Other questions i have try this snippet.
final List<Charset>charsets = Arrays.asList(StandardCharsets.ISO_8859_1,StandardCharsets.US_ASCII,StandardCharsets.UTF_16,StandardCharsets.UTF_8);
charsets.forEach(a->print(a,"È"));
System.out.println("getBytes");
System.out.println(Arrays.toString("È".getBytes()));
charsets.forEach(a->System.out.println(a+" "+Arrays.toString(sb.toString().getBytes(a))));
private void print(final Charset set,final CharSequence sb){
byte[] array = new byte[4];
set.newEncoder()
.encode(CharBuffer.wrap(sb), ByteBuffer.wrap(array), true);
final String buildedString = new String(array,set);
System.out.println(set+" "+Arrays.toString(array)+" "+buildedString+"<<>>"+buildedString.length());
}
And prints
run:
ISO-8859-1 [-56, 0, 0, 0] È//PERFECT USING 1 BYTE WHICH IS -56
US-ASCII [0, 0, 0, 0] //DONT GET IT SEE THIS ITEM FOR LATER
UTF-16 [-2, -1, 0, -56] È<<>>1 //WHAT IS -2,-1 BYTE USED FOR? I HAVE TRY WITH OTHER EXAMPLES AND THEY ALWAYS APPEAR AM I LOSING TWO BYTES HERE??
UTF-8 [-61, -120, 0, 0] 2 È //SEEMS TO MY CHARACTER NEEDS TWO BYTES?? I THOUGHT THAT CODE=200 WOULD REQUIRE ONLY ONE
getBytes
[-61, -120]//OK MY UTF-8 REPRESENTATION
ISO-8859-1 [-56]//OK
US-ASCII [63]//OK BUT WHY WHEN I ENCODE IN ASCCI DOESNT GET ANY BYTE ENCODED?
UTF-16 [-2, -1, 0, -56]//AGAIN WHAT ARE -2,-1 IN THE LEADING BYTES?
UTF-8 [-61, -120]//OK
I have try
System.out.println(new String(new byte[]{-1,-2},"UTF-16"));//SIMPLE "" I AM WASTING THIS 2 BYTES??
In resume.
Why UTF-16 always has two leading bytes are they wasted? new byte[]{-1,-2}
Why when i encode "È" i dont get any bytes in ASCCI Charset but when i do È.getBytes(StandardCharsets.US_ASCII) i get {63}?
Java uses UTF-16 but in my case UTF-8 is platform depend??
Sorry if this post is confussing
Environment
Windows 7 64 Bits Netbeans 8.2 with Java 1.8.0_121
First question
For your first question: those bytes are the BOM code and they specify the byte order (whether the least or most significant comes first) of multibyte encoding such as UTF-16.
Second question
Every ASCII character can be encoded as a single byte in UTF-8. But ASCII is not an 8-bit encoding, it uses 7 bits for every character. And in fact, all Unicode character with code points >= 128 require at least two bytes. (The reason is that you need a way to distinguish between 200 and a multibyte code point whose first byte happens to be 200. UTF-8 solves this by using the bytes >= 128 to represent multibyte codepoints.)
'È' is not an ASCII character, so it cannot be represented in ASCII. This explains the second output: 63 is ASCII for the character '?'. And indeed, the Javadoc for the getBytes(Charset) method specifies that unmappable input is mapped to "the default replacement byte array", in this case '?'. On the other hand, to obtain the first ASCII byte array you used the CharsetEncoder directly, which is a more low-level API and does not perform such automatic replacements. (When you would have checked the result of the encode method, you would have found it to have returned a CoderResult instance representing an error.)
Third question
Java 8 Strings use UTF-16 internally, but when communicating with other software, different encodings may be expected, such as UTF-8. The Charset.defaultCharset() method returns the default character set of the virtual machine, which depends on the locale and character set of the operating system, not on the encoding used internally by Java strings.
Let's back up a bit…
Java's text datatypes use the UTF-16 character encoding of the Unicode character set. (As do, VB4/5/6/A/Script, JavaScript, .NET, ….) You can see this in the various operations you do with the string API: indexing, length, ….
Libraries support converting between the text datatypes and byte arrays using various encodings. Some of them are categorized as "Extended ASCII", but stating that is a very poor substitute for naming the character encoding actually being used.
Some operating systems allow the user to designate a default character encoding. (Most users don't know or care, though.) Java attempts to pick this up. It is only useful when the program understands that input from the user is that character encoding or that output should be. This century, users dealing in text files prefer to use a specific encoding, communicate them unchanged across systems, don't appreciate lossy conversions and therefore don't have any use for this concept. From a program's point of view, it is never what you want unless it is exactly what you want.
Where a conversion would be lossy, you have the choice of a replacement character (such a '?'), omitting it, or throwing an exception.
A character encoding is a map between a codepoint (integer) of a character set and one or more code units, according to the definition of the encoding. A code unit is a fixed size and the number of code units needed for a codepoint, might vary by codepoint.
In libraries, it is not generally useful to have an array of code units so they take the further step of converting to/from an array of bytes. byte values do range from -128 to 127, however, that's the Java interpretation as two's complement 8-bit integers. As the bytes are understood to be encoding text, the values would be interpret according to the rules of the character encoding.
Because some Unicode encodings, have code units more than one byte long, byte order becomes important. So, at the byte array level, there is UTF-16 Big Endian and UTF-16 Little Endian. When communicating a text file or stream, you would send the bytes and well as having a shared knowledge of the encoding. This "metadata" is required for understanding. So, UTF-16BE or UTF-16LE, for example. To make that a bit easier, Unicode allows some metadata beginning of the file or stream to indicate the byte order. It is called the byte-order mark (BOM) So, the external metadata can share the encoding (say, UTF-16), while the internal metadata shares the byte order. Unicode allows the BOM to be present even when byte order is not relevant, such as UTF-8. So, if the understanding is that the bytes are text encoded with any Unicode encoding and a BOM is present, then it's a very simple matter to figure out which Unicode encoding it is and what the byte order is, if relavent.
1) You are seeing the BOM in some of your Unicode encoding outputs.
2) È is not in the ASCII character set. What would want to happen in this case? I often prefer an exception.
3) The system you were using, for your account, at the time of your tests, may have had UTF-8 as the default character encoding, Is that important to the way you want and have encoded your text files on that system?
My goal is to conserve space in my data store, which only accepts Strings.
Because a String in Java is a 16-bit array, I figure that in theory I should be able to convert my 8-byte long into a 4-char String, as both are represented by 8 bytes. (To be clear, I am not interested in making my long integer human-readable in base 10, I want to store it in as short of a String as possible.)
However, almost all the literature I have found on this is about converting to the 8-bit byte type, not the type char.
I could encode as UTF8. I am concerned this would mean I double the length of String, as each 8-bit byte is stored as a 16-bit char. This would defeat my whole purpose for compacting my data into a 64-bit medium in the first place.
private static final Charset UTF8_CHARSET = Charset.forName("UTF-8");
new String(ByteBuffer.allocate(8).putLong(value).array(), UTF8_CHARSET);
Is my concern correct that I would be wasting space, and if so, is there a way to not waste space?
char != int
Q: Are there any byte sequences that are not generated by a UTF? How
should I interpret them?
A: None of the UTFs can generate every arbitrary byte sequence. For
example, in UTF-8 every byte of the form 110xxxxx2 must be followed
with a byte of the form 10xxxxxx2. A sequence such as <110xxxxx2
0xxxxxxx2> is illegal, and must never be generated. When faced with
this illegal byte sequence while transforming or interpreting, a UTF-8
conformant process must treat the first byte 110xxxxx2 as an illegal
termination error: for example, either signaling an error, filtering
the byte out, or representing the byte with a marker such as FFFD
(REPLACEMENT CHARACTER). In the latter two cases, it will continue
processing at the second byte 0xxxxxxx2.
A conformant process must not interpret illegal or ill-formed byte
sequences as characters, however, it may take error recovery actions.
No conformant process may use irregular byte sequences to encode
out-of-band information.
String != byte[] && char != int
Internally String objects are Unicode and encoded as UTF-16 no matter what their source is.
How is text represented in the Java platform?
The Java programming language is based on the Unicode character set,
and several libraries implement the Unicode standard. The primitive
data type char in the Java programming language is an unsigned 16-bit
integer that can represent a Unicode code point in the range U+0000 to
U+FFFF, or the code units of UTF-16. The various types and classes in
the Java platform that represent character sequences - char[],
implementations of java.lang.CharSequence (such as the String class),
and implementations of java.text.CharacterIterator - are UTF-16
sequences.
String is internally represented by UTF-16
The character encodings like UTF-8 are only for interpreting or converting to/from a byte[].
Even if you write a custom CharsetProvider all that will do is encode/decode a byte[] externally, this will absolutely not change the fact that a String is internally represented by UTF-16, so what you want to do is kind of pointless.
Can't be done
Character is actually a 32 bit number, the Charset is just an encoding of that 32 bit number. UTF-8 can be 1, 2, 3 or 4 bytes for example, and UTF-16 is 2,4 bytes with a bit specifying if the next byte(s) is part of the same character or not.
I have a problem with encoding and decoding specific byte values. I'm implementing an application, where I need to get String data, make some bit manipulation on it and return another String.
I'm currently getting byte[] values by String.getbytes(), doing proper manipulation and then returning String by constructor String(byte[] data). The issue is, when some of bytes have specific values e.g. -120, -127, etc., the coding in the constructor returns ? character, that is byte value 63. As far as I know, these values are ones, that can't be printed on Windows, concerning the fact, that -120 in Java is 10001000, that is \b character according to ASCII table
Is there any charset, that I could use to properly code and decode every byte value (from -128 to 127)?
EDIT: I shall also say, that ISO-8859-1 charset works pretty fine, but does not code language specific characters, such as ąęćśńźżół
You seem to have some confusion regarding encodings, not specific to Java, so I'll try to help clear some of that up.
There do not exist any charsets nor encodings which use the code points from -128 to 0. If you treat the byte as an unsigned integer, then you get the range 0-255 which is valid for all the cp-* and isoo-8859-* charsets.
ASCII characters are in the range 0-127 and so appear valid whether you treat the int as signed or unsigned.
UTF-8 characters are either in the range 0-127 or double-byte characters with the first byte in the range 128-255.
You mention some Polish characters, so instead of ISO-8859-1 you should encode as ISO-8859-2 or (preferably) UTF-8.
Title is pretty self-explanatory. In a lot of the JRE javadocs I see the phrases "stream of bytes" and "stream of characters" all over the place.
But aren't they the same thing? Or are they slightly different (e.g. interpreted differently) in Java-land? Thanks in advance.
In Java, a byte is not the same thing as a char. Therefore a byte stream is different from a character stream. Bytes are intended for arbitrary binary data; characters are specifically for data representing the building blocks of strings.
but if a char is only 1 byte in width
Except that it's not.
As per the JLS §4.2.1 a char is a number in the range:
from '\u0000' to '\uffff' inclusive, that is, from 0 to 65535
But a byte is a number in the range
from -128 to 127, inclusive
Stream of byte is just plain byte, like how you would see it when you open a file in HEX Editor.
Character is different from just plain byte. ASCII encoding uses exactly 1 byte per character, but that is not true for many other encoding. For example, UTF-8 encoding may use from 1 to 4 bytes to encode a single character. Stream of character is designed to abstract away the underlying encoding, and produce char of one type of encoding (in Java, char and String uses UTF-16 encoding).
As a rule of thumb:
When you are dealing with text, you must use stream of character to decode the byte into character with the appropriate encoding.
When you are dealing with binary data or mixed of binary and text, you must use stream of byte, since it doesn't make sense otherwise. If a sequence of byte represents a String in certain encoding, then you can always pick those bytes out and use String(byte[] bytes, Charset charset) constructor to get back the String.
They are different. char is a 2-byte datatype in Java: byte is a 1-byte datatype.
Edit: char is also an unsigned type, while byte is not.
Generally it is better off to talk about streams in terms of their sizes, rather than what they carry. Stream of bytes is more intuitive than streams of chars, because streams of chars make us have to double check that a char is indeed a byte, not a unicode char, or anything fancy.
A char is a representation, which can be represented by a byte, but a byte is always going to be a byte. All world will burn when bytes will stop being 8 bits.
I used RandomAccessFile to read a byte from a text file.
public static void readFile(RandomAccessFile fr) {
byte[] cbuff = new byte[1];
fr.read(cbuff,0,1);
System.out.println(new String(cbuff));
}
Why am I seeing one full character being read by this?
A char represents a character in Java (*). It is 2 bytes large (or 16 bits).
That doesn't necessarily mean that every representation of a character is 2 bytes long. In fact many character encodings only reserve 1 byte for every character (or use 1 byte for the most common characters).
When you call the String(byte[]) constructor you ask Java to convert the byte[] to a String using the platform's default charset(**). Since the platform default charset is usually a 1-byte encoding such as ISO-8859-1 or a variable-length encoding such as UTF-8, it can easily convert that 1 byte to a single character.
If you run that code on a platform that uses UTF-16 (or UTF-32 or UCS-2 or UCS-4 or ...) as the platform default encoding, then you will not get a valid result (you'll get a String containing the Unicode Replacement Character instead).
That's one of the reasons why you should not depend on the platform default encoding: when converting between byte[] and char[]/String or between InputStream and Reader or between OutputStream and Writer, you should always specify which encoding you want to use. If you don't, then your code will be platform-dependent.
(*) that's not entirely true: a char represents a UTF-16 code unit. Either one or two UTF-16 code units represent a Unicode code point. A Unicode code point usually represents a character, but sometimes multiple Unicode code points are used to make up a single character. But the approximation above is close enough to discuss the topic at hand.
(**) Note that on Android the default character set is always UTF-8 and starting with Java 18 the Java platform itself also switched to this default (but it can still be configured to act the legacy way)
Java stores all it's "chars" internally as two bytes. However, when they become strings etc, the number of bytes will depend on your encoding.
Some characters (ASCII) are single byte, but many others are multi-byte.
Java supports Unicode, thus according to:
Java Character Docs
The max value supported is "\uFFFF" (hex FFFF, dec 65535), or 11111111 11111111 binary (two bytes).
The constructor String(byte[] bytes) takes the bytes from the buffer and encodes them to characters.
It uses the platform default charset to encode bytes to characters. If you know, your file contains text, that is encoded in a different charset, you can use the String(byte[] bytes, String charsetName) to use the correct encoding (from bytes to characters).
In ASCII text file each character is just one byte
Looks like your file contains ASCII characters, which are encoded in just 1 byte. If text file was containing non-ASCII character, e.g. 2-byte UTF-8, then you get just the first byte, not whole character.
There are some great answers here but I wanted to point out the jvm is free to store a char value in any size space >= 2 bytes.
On many architectures there is a penalty for performing unaligned memory access so a char might easily be padded to 4 bytes. A volatile char might even be padded to the size of the CPU cache line to prevent false sharing. https://en.wikipedia.org/wiki/False_sharing
It might be non-intuitive to new Java programmers that a character array or a string is NOT simply multiple characters. You should learn and think about strings and arrays distinctly from "multiple characters".
I also want to point out that java characters are often misused. People don't realize they are writing code that won't properly handle codepoints over 16 bits in length.
Java allocates 2 of 2 bytes for character as it follows UTF-16. It occupies minimum 2 bytes while storing a character, and maximum of 4 bytes. There is no 1 byte or 3 bytes of storage for character.
The Java char is 2 bytes. But the file encoding may be different.
So first you should know what encoding your file uses. For example, the file could be UTF-8 or ASCII encoded, then you will retrieve the right chars by reading one byte at a time.
If the encoding of the file is UTF-16, it may still show you the correct char if your UTF-16 is little endian. For example, the little endian UTF-16 for A is [65, 0]. Then when you read the first byte, it returns 65. After padding with 0 for the second byte, you will get A.