I am working with Java rabbitmq API. This how my app looks like:
Publisher A sends jobs to Q1, then many consumers B do the job and create new job and send it to Q2, where many consumer C do the job.
I want to make sure that no duplicated jobs are sent to Q2, how can I achieve this?
Take in mind two scenarios:
B crash after sending job to Q2 but before sending acknowledgment to Q1 that he completed the job
B crash after sending acknowledgment to Q1 but before sending job to Q2
I want to make sure that no duplicated jobs are sent to Q2, how can I achieve this?
you can't. not even on Q1.
the nature of distributed systems and the CAP theorem (https://en.wikipedia.org/wiki/CAP_theorem) says this is impossible, even if the goal is accomplished the vast majority of the time.
in light of that, what you need do is plan for how you will handle the times when a duplicate message is accidentally created.
the most common method is some sort of idempotence (https://en.wikipedia.org/wiki/Idempotence) - a way to guarantee that the same message will only be processed once. or, maybe more accurately, a way to say that the same message can be processed an unlimited number of times, but will only cause change / have an effect on the system once.
in general, though, your situation with multiple queues and consumers that need to process things in order is calling for a "Saga" or "Process Manager" - a long running, asynchronous workflow.
You can read up on this idea of a "Process Manager" in the Enterprise Integration Patterns book, and there are a lot of good libraries around that will implement the details for you.
http://www.enterpriseintegrationpatterns.com/patterns/messaging/ProcessManager.html
http://kellabyte.com/2012/05/30/clarifying-the-saga-pattern/
Related
I need a solution for the following scenario which is similar to a queue:
I want to write messages to a queue continuously. My message is very big, containing a lot of data so I do want to make as few requests as possible.
So my queue will contain a lot of messages at some point.
My Consumer will read from the queue every 1 hour. (not whenever a new message is written) and it will read all the messages from the queue.
The problem is that I need a way to read ALL the messages from the queue using only one call (I also want the consumer to make as few requests to the queue as possible).
A close solution would be ActiveMQ but the problem is that you can only read one message at a time and I need to read them all in one request.
So my question is.. Would there be other ways of doing this more efficiently? The actual thing that I need is to persist in some way messages created continuously by some application and then consume them (also delete them) by the same application all at once, every 1 hour.
The reason I thought a queue would be fit is because as the messages are consumed they are also deleted but I need to consume them all at once.
I think there's some important things to keep in mind as you're searching for a solution:
In what way do you need to be "more efficient" (e.g. time, monetary cost, computing resources, etc.)?
It's incredibly hard to prove that there are, in fact, no other "more efficient" ways to solve a particular problem, as that would require one to test all possible solutions. What you really need to know is, given your specific use-case, what solution is good enough. This, of course, requires knowing specifically what kind of performance numbers you need and the constraints on acquiring those numbers (e.g. time, monetary cost, computing resources, etc.).
Modern message broker clients (e.g. those shipped with either ActiveMQ 5.x or ActiveMQ Artemis) don't make a network round-trip for every message they consume as that would be extremely inefficient. Rather, they fetch blocks of messages in configurable sizes (e.g. prefetchSize for ActiveMQ 5.x, and consumerWindowSize for ActiveMQ Artemis). Those messages are stored locally in a buffer of sorts and fed to the client application when the relevant API calls are made to receive a message.
Making "as few requests as possible" is rarely a way to increase performance. Modern message brokers scale well with concurrent consumers. Consuming all the messages with a single consumer drastically limits the message throughput as compared to spinning up multiple threads which each have their own consumer. Rather than limiting the number of consumer requests you should almost certainly be maximizing them until you reach a point of diminishing returns.
I have a piece of middleware that sits between two JMS queues. From one it reads, processes some data into the database, and writes to the other.
Here is a small diagram to depict the design:
With that in mind, I have some interesting logic that I would like to integrate into the service.
Scenario 1: Say the middleware service receives a message from Queue 1, and hits the database to store portions of that message. If all goes well, it constructs a new message with some data, and writes it to Queue 2.
Scenario 2: Say that the database complains about something, when the service attempts to perform some logic after getting a message from Queue 1.In this case, instead of writing a message to Queue 2, I would re-try to perform the database functionality in incremental timeouts. i.e Try again in 5 sec., then 30 sec, then 1 minute if still down. The catch of course, is to be able to read other messages independently of this re-try. i.e Re-try to process this one request, while listening for other requests.
With that in mind, what is both the correct and most modern way to construct a future proof solution?
After reading some posts on the net, it seems that I have several options.
One, I could spin off a new thread once a new message is received, so that I can both perform the "re-try" functionality and listen to new requests.
Two, I could possibly send the message back to the Queue, with a delay. i.e If the process failed to execute in the db, write the message to the JMS queue by adding some amount of delay to it.
I am more fond of the first solution, however, I wanted to get the opinion of the community if there is a newer/better way to solve for this functionality in java 7. Is there something built into JMS to support this sort of "send message back for reprocessing at a specific time"?
JMS 2.0 specification describes the concept of delayed delivery of messages. See "What's new" section of https://java.net/projects/jms-spec/pages/JMS20FinalReleaseMany JMS providers have implemented the delayed delivery feature.
But I wonder how the delayed delivery will help your scenario. Since the database writes have issues, subsequent messages processing and attempt to write to database might end up in same situation. I guess it might be better to sort out issues with database updates and then pickup messages from queue.
I have to write heavy load system, with pretty easy task to do. So i decided to split this tasks into multiple workers in different locations (or clouds). To communicate i want to use rabbitmq queue.
In my system there will be two kinds of software nodes: schedulers and workers. Schedulers will take user input from queue_input, split it into smaller task and put this smaller task into workers_queue. Workers reads this queue and 'do the thing'. I used round-robbin load balancing here - and all works pretty well, as long, as some worker crashed. Then i loose information about task completion (it's not allowed to do single operation twice, each task contains a pack of 50 iterations of doing worker-code with diffirent data).
I consider something like technical_queue - another channel to scheduler-worker communication, and I wonder, how to design it in a good way. I used tutorials from rabbitmq page, so my worker thread looks like :
while(true) {
message = consume(QUEUE,...);
handle(message); //do 50 simple tasks in loop for data in message
}
How can i handle second queue? Another thread we some while(true) {} loop?, or is there a better sollution to this? Maybe should I reuse existing queue with topic exchange? (but i wanted to have independent way of communication, while handling the task, which may take some time.
You should probably take a look at spring-amqp (doc). I hate to tell you to add a layer but that spring library takes care of the threading issues and management of threads with its SimpleMessageListenerContainer. Each container goes to a queue and you can specify # of threads (ie workers) per queue.
Alternatively you can make your own using an ExecutorService but you will probably end up rewriting what SimpleMessageListenerContainer does. Also you just could execute (via OS or batch scripts) more processes and that will add more consumers to each queue.
As far as queue topology is concerned it is entirely dependent on business logic/concerns and generally less on performance needs. More often you had more queues for business reasons and more workers for performance reasons but if a queue gets backed up with the same type of message considering giving that type of message its own queue. What your describing sounds like two queues with multiple consumer on your worker queue.
Other than the threading issue and queue topology I'm not entirely sure what else you are asking.
I would recommend you create a second queue consumer
consumer1 -> queue_process
consumer2 -> queue_process
Both consumers should make listening to the same queue.
Greetings I hope will help
I am currently developing a system that uses allot of async processing. The transfer of information is done using Queues. So one process will put info in the Queue (and terminate) and another will pick it up and process it. My implementation leaves me facing a number of challenges and I am interested in what everyone's approach is to these problems (in terms of architecture as well as libraries).
Let me paint the picture. Lets say you have three processes:
Process A -----> Process B
|
Process C <-----------|
So Process A puts a message in a queue and ends, Process B picks up the message, processes it and puts it in a "return" queue. Process C picks up the message and processes it.
How does one handle Process B not listening or processing messages off the Queue? Is there some JMS type method that prevents a Producer from submitting a message when the Consumer is not active? So Process A will submit but throw an exception.
Lets say Process C has to get a reply with in X minutes, but Process B has stopped (for any reason), is there some mechanism that enforces a timeout on a Queue? So guaranteed reply within X minutes which would kick off Process C.
Can all of these matters be handled using a dead letter Queue of some sort? Should I maybe be doing this all manually with timers and check. I have mentioned JMS but I am open to anything, in fact I am using Hazelcast for the Queues.
Please note this is more of a architectural question, in terms of available java technologies and methods, and I do feel this is a proper question.
Any suggestions will be greatly appreciated.
Thanks
IMHO, The simplest solution is to use an ExecutorService, or a solution based on an executor service. This supports a queue of work, scheduled tasks (for timeouts).
It can also work in a single process. (I believe Hazelcast supports distributed ExecutorService)
It seems to me that the type of questions you're asking are "smells" that queues and async processing may not be the best tools for your situation.
1) That defeats a purpose of a queue. Sounds like you need a synchronous request-response process.
2) Process C is not getting a reply generally speaking. It's getting a message from a queue. If there is a message in the queue and the Process C is ready then it will get it. Process C could decide that the message is stale once it gets it, for example.
I think your first question has already been answered adequately by the other posters.
On your second question, what you are trying to do may be possible depending on the messaging engine used by your application. I know this works with IBM MQ. I have seen this being done using the WebSphere MQ Classes for Java but not JMS. The way it works is that when Process A puts a message on a queue, it specifies the time it will wait for a response message. If Process A fails to receive a response message within the specified time, the system throws an appropriate exception.
I do not think there is a standard way in JMS to handle request/response timeouts the way you want so you may have to use platform specific classes like WebSphere MQ Classes for Java.
Well, kind of the point of queues is to keep things pretty isolated.
If you're not stuck on any particular tech, you could use a database for your queues.
But first, a simple mechanism to ensure two processes are coordinated is to use a socket. If practical, simply have process B create an open socket listener on some well know port, and process A will connect to that socket, and monitor it. If process B ever goes away, process A can tell because their socket gets shutdown, and it can use that as an alert of problems with process B.
For the B -> C problem, have a db table:
create table queue (
id integer,
payload varchar(100), // or whatever you can use to indicate a payload
status varchar(1),
updated timestamp
)
Then, Process A puts its entry on the queue, with the current time and a status of "B". B, listens on the queue:
select * from queue where status = 'B' order by updated
When B is done, it updates the queue to set the status to "C".
Meanwhile, "C" is polling the DB with:
select * from queue where status = 'C'
or (status = 'B' and updated < (now - threshold) order by updated
(with the threshold being however long you want things to rot on the queue).
Finally, C updates the queue row to 'D' for done, or deletes it, or whatever you like.
The dark side is there is a bit of a race condition here where C might try and grab an entry while B is just starting up. You can probably get through that with a strict isolation level, and some locking. Something as simply as:
select * from queue where status = 'C'
or (status = 'B' and updated < (now - threshold) order by updated
FOR UPDATE
Also use FOR UPDATE for B's select. This way whoever win the select race will get an exclusive lock on the row.
This will get you pretty far down the road in terms of actual functionality.
You are expecting the semantics of synchronous processing with async (messaging) setup which is not possible. I have worked on WebSphere MQ and normally when the consumer dies, the messages are kept in the queue forever (unless you set the expiry). Once the queue reaches its depth, the subsequent messages are moved to the dead letter queue.
I've used a similar approach to create a queuing and processing system for video transcoding jobs. Basically the way it worked was:
Process A posts a "schedule" message to Arbiter Q, which adds the job into its "waiting" queue.
Process B requests the next job from Arbiter Q, which removes the next item in its "waiting" queue (subject to some custom scheduling logic to ensure that a single user couldn't flood transcode requests and prevent other users from being able to transcode videos) and inserts it into its "processing" set before returning the job back to Process B. The job is timestamped when it goes into the "processing" set.
Process B completes the job and posts a "complete" message to Arbiter Q, which removes the job from the "processing" set and then modifies some state so that Process C knows the job completed.
Arbiter Q periodically inspects the jobs in its "processing" set, and times out any that have been running for an unusually long amount of time. Process A is then free to attempt to queue up the same job again, if it wants.
This was implemented using JMX (JMS would have been much more appropriate, but I digress). Process A was simply the servlet thread which responded to a user-initiated transcode request. Arbiter Q was an MBean singleton (persisted/replicated across all the nodes in a cluster of servers) that received "schedule" and "complete" messages. Its internally managed "queues" were simply List instances, and when a job completed it modified a value in the application's database to refer to the URL of the transcoded video file. Process B was the transcoding thread. Its job was simply to request a job, transcode it, and then report back when it finished. Over and over again until the end of time. Process C was another user/servlet thread. It would see that the URL was available, and present the download link to the user.
In such a case, if Process B were to die then the jobs would sit in the "waiting" queue forever. In practice, however, that never happened. If your Process B is not running/doing what it is supposed to do then I think that suggests a problem in your deployment/configuration/implementation of Process B more than it does a problem in your overall approach.
I have a problem which I believe is the classic master/worker pattern, and I'm seeking advice on implementation. Here's what I currently am thinking about the problem:
There's a global "queue" of some sort, and it is a central place where "the work to be done" is kept. Presumably this queue will be managed by a kind of "master" object. Threads will be spawned to go find work to do, and when they find work to do, they'll tell the master thing (whatever that is) to "add this to the queue of work to be done".
The master, perhaps on an interval, will spawn other threads that actually perform the work to be done. Once a thread completes its work, I'd like it to notify the master that the work is finished. Then, the master can remove this work from the queue.
I've done a fair amount of thread programming in Java in the past, but it's all been prior to JDK 1.5 and consequently I am not familiar with the appropriate new APIs for handling this case. I understand that JDK7 will have fork-join, and that that might be a solution for me, but I am not able to use an early-access product in this project.
The problems, as I see them, are:
1) how to have the "threads doing the work" communicate back to the master telling them that their work is complete and that the master can now remove the work from the queue
2) how to efficiently have the master guarantee that work is only ever scheduled once. For example, let's say this queue has a million items, and it wants to tell a worker to "go do these 100 things". What's the most efficient way of guaranteeing that when it schedules work to the next worker, it gets "the next 100 things" and not "the 100 things I've already scheduled"?
3) choosing an appropriate data structure for the queue. My thinking here is that the "threads finding work to do" could potentially find the same work to do more than once, and they'd send a message to the master saying "here's work", and the master would realize that the work has already been scheduled and consequently should ignore the message. I want to ensure that I choose the right data structure such that this computation is as cheap as possible.
Traditionally, I would have done this in a database, in sort of a finite-state-machine manner, working "tasks" through from start to complete. However, in this problem, I don't want to use a database because of the high volume and volatility of the queue. In addition, I'd like to keep this as light-weight as possible. I don't want to use any app server if that can be avoided.
It is quite likely that this problem I'm describing is a common problem with a well-known name and accepted set of solutions, but I, with my lowly non-CS degree, do not know what this is called (i.e. please be gentle).
Thanks for any and all pointers.
As far as I understand your requirements, you need ExecutorService. ExecutorService have
submit(Callable task)
method which return value is Future. Future is a blocking way to communicate back from worker to master. You could easily expand this mechanism to work is asynchronous manner. And yes, ExecutorService also maintaining work queue like ThreadPoolExecutor. So you don't need to bother about scheduling, in most cases. java.util.concurrent package already have efficient implementations of thread safe queue (ConcurrentLinked queue - nonblocking, and LinkedBlockedQueue - blocking).
Check out java.util.concurrent in the Java library.
Depending on your application it might be as simple as cobbling together some blocking queue and a ThreadPoolExecutor.
Also, the book Java Concurrency in Practice by Brian Goetz might be helpful.
First, why do you want to hold the items after a worker started doing them? Normally, you would have a queue of work and a worker takes items out of this queue. This would also solve the "how can I prevent workers from getting the same item"-problem.
To your questions:
1) how to have the "threads doing the
work" communicate back to the master
telling them that their work is
complete and that the master can now
remove the work from the queue
The master could listen to the workers using the listener/observer pattern
2) how to efficiently have the master
guarantee that work is only ever
scheduled once. For example, let's say
this queue has a million items, and it
wants to tell a worker to "go do these
100 things". What's the most efficient
way of guaranteeing that when it
schedules work to the next worker, it
gets "the next 100 things" and not
"the 100 things I've already
scheduled"?
See above. I would let the workers pull the items out of the queue.
3) choosing an appropriate data
structure for the queue. My thinking
here is that the "threads finding work
to do" could potentially find the same
work to do more than once, and they'd
send a message to the master saying
"here's work", and the master would
realize that the work has already been
scheduled and consequently should
ignore the message. I want to ensure
that I choose the right data structure
such that this computation is as cheap
as possible.
There are Implementations of a blocking queue since Java 5
Don't forget Jini and Javaspaces. What you're describing sounds very like the classic producer/consumer pattern that space-based architectures excel at.
A producer will write the jobs into the space. 1 or more consumers will take out jobs (under a transaction) and work on that in parallel, and then write the results back. Since it's under a transaction, if a problem occurs the job is made available again for another consumer .
You can scale this trivially by adding more consumers. This works especially well when the consumers are separate VMs and you scale across the network.
If you are open to the idea of Spring, then check out their Spring Integration project. It gives you all the queue/thread-pool boilerplate out of the box and leaves you to focus on the business logic. Configuration is kept to a minimum using #annotations.
btw, the Goetz is very good.
This doesn't sound like a master-worker problem, but a specialized client above a threadpool. Given that you have a lot of scavenging threads and not a lot of processing units, it may be worthwhile simply doing a scavaging pass and then a computing pass. By storing the work items in a Set, the uniqueness constraint will remove duplicates. The second pass can submit all of the work to an ExecutorService to perform the process in parallel.
A master-worker model generally assumes that the data provider has all of the work and supplies it to the master to manage. The master controls the work execution and deals with distributed computation, time-outs, failures, retries, etc. A fork-join abstraction is a recursive rather than iterative data provider. A map-reduce abstraction is a multi-step master-worker that is useful in certain scenarios.
A good example of master-worker is for trivially parallel problems, such as finding prime numbers. Another is a data load where each entry is independant (validate, transform, stage). The need to process a known working set, handle failures, etc. is what makes a master-worker model different than a thread-pool. This is why a master must be in control and pushes the work units out, whereas a threadpool allows workers to pull work from a shared queue.